-
Notifications
You must be signed in to change notification settings - Fork 9.5k
/
metafile.yml
165 lines (159 loc) · 4.8 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
Collections:
- Name: HTC
Metadata:
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- FPN
- HTC
- RPN
- ResNet
- ResNeXt
- RoIAlign
Paper:
URL: https://arxiv.org/abs/1901.07518
Title: 'Hybrid Task Cascade for Instance Segmentation'
README: configs/htc/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/detectors/htc.py#L6
Version: v2.0.0
Models:
- Name: htc_r50_fpn_1x_coco
In Collection: HTC
Config: configs/htc/htc_r50_fpn_1x_coco.py
Metadata:
Training Memory (GB): 8.2
inference time (ms/im):
- value: 172.41
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.3
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 37.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_r50_fpn_1x_coco/htc_r50_fpn_1x_coco_20200317-7332cf16.pth
- Name: htc_r50_fpn_20e_coco
In Collection: HTC
Config: configs/htc/htc_r50_fpn_20e_coco.py
Metadata:
Training Memory (GB): 8.2
inference time (ms/im):
- value: 172.41
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 20
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 43.3
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 38.3
Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_r50_fpn_20e_coco/htc_r50_fpn_20e_coco_20200319-fe28c577.pth
- Name: htc_r101_fpn_20e_coco
In Collection: HTC
Config: configs/htc/htc_r101_fpn_20e_coco.py
Metadata:
Training Memory (GB): 10.2
inference time (ms/im):
- value: 181.82
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 20
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 44.8
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 39.6
Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_r101_fpn_20e_coco/htc_r101_fpn_20e_coco_20200317-9b41b48f.pth
- Name: htc_x101-32x4d_fpn_16xb1-20e_coco
In Collection: HTC
Config: configs/htc/htc_x101-32x4d_fpn_16xb1-20e_coco.py
Metadata:
Training Resources: 16x V100 GPUs
Batch Size: 16
Training Memory (GB): 11.4
inference time (ms/im):
- value: 200
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 20
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 46.1
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 40.5
Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_32x4d_fpn_16x1_20e_coco/htc_x101_32x4d_fpn_16x1_20e_coco_20200318-de97ae01.pth
- Name: htc_x101-64x4d_fpn_16xb1-20e_coco
In Collection: HTC
Config: configs/htc/htc_x101-64x4d_fpn_16xb1-20e_coco.py
Metadata:
Training Resources: 16x V100 GPUs
Batch Size: 16
Training Memory (GB): 14.5
inference time (ms/im):
- value: 227.27
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 20
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 47.0
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 41.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_64x4d_fpn_16x1_20e_coco/htc_x101_64x4d_fpn_16x1_20e_coco_20200318-b181fd7a.pth
- Name: htc_x101-64x4d-dconv-c3-c5_fpn_ms-400-1400-16xb1-20e_coco
In Collection: HTC
Config: configs/htc/htc_x101-64x4d-dconv-c3-c5_fpn_ms-400-1400-16xb1-20e_coco.py
Metadata:
Training Resources: 16x V100 GPUs
Batch Size: 16
Epochs: 20
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 50.4
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 43.8
Weights: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco/htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco_20200312-946fd751.pth