diff --git a/projects/BEVFusion/README.md b/projects/BEVFusion/README.md index 0828bd4f8d..9d5ebd4c52 100644 --- a/projects/BEVFusion/README.md +++ b/projects/BEVFusion/README.md @@ -34,7 +34,7 @@ python projects/BEVFusion/setup.py develop Run a demo on NuScenes data using [BEVFusion model](https://drive.google.com/file/d/1QkvbYDk4G2d6SZoeJqish13qSyXA4lp3/view?usp=share_link): ```shell -python demo/multi_modality_demo.py demo/data/nuscenes/n015-2018-07-24-11-22-45+0800__LIDAR_TOP__1532402927647951.pcd.bin demo/data/nuscenes/ demo/data/nuscenes/n015-2018-07-24-11-22-45+0800.pkl projects/BEVFusion/configs/bevfusion_lidar-cam_voxel0075_second_secfpn_8xb4-cyclic-20e_nus-3d.py ${CHECKPOINT_FILE} --cam-type all --score-thr 0.2 --show +python projects/BEVFusion/demo/multi_modality_demo.py demo/data/nuscenes/n015-2018-07-24-11-22-45+0800__LIDAR_TOP__1532402927647951.pcd.bin demo/data/nuscenes/ demo/data/nuscenes/n015-2018-07-24-11-22-45+0800.pkl projects/BEVFusion/configs/bevfusion_lidar-cam_voxel0075_second_secfpn_8xb4-cyclic-20e_nus-3d.py ${CHECKPOINT_FILE} --cam-type all --score-thr 0.2 --show ``` ### Training commands diff --git a/projects/BEVFusion/demo/multi_modalit_demo.py b/projects/BEVFusion/demo/multi_modalit_demo.py new file mode 100644 index 0000000000..9f82867d40 --- /dev/null +++ b/projects/BEVFusion/demo/multi_modalit_demo.py @@ -0,0 +1,78 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from argparse import ArgumentParser + +import mmcv + +from mmdet3d.apis import inference_multi_modality_detector, init_model +from mmdet3d.registry import VISUALIZERS + + +def parse_args(): + parser = ArgumentParser() + parser.add_argument('pcd', help='Point cloud file') + parser.add_argument('img', help='image file') + parser.add_argument('ann', help='ann file') + parser.add_argument('config', help='Config file') + parser.add_argument('checkpoint', help='Checkpoint file') + parser.add_argument( + '--device', default='cuda:0', help='Device used for inference') + parser.add_argument( + '--cam-type', + type=str, + default='CAM_FRONT', + help='choose camera type to inference') + parser.add_argument( + '--score-thr', type=float, default=0.0, help='bbox score threshold') + parser.add_argument( + '--out-dir', type=str, default='demo', help='dir to save results') + parser.add_argument( + '--show', + action='store_true', + help='show online visualization results') + parser.add_argument( + '--snapshot', + action='store_true', + help='whether to save online visualization results') + args = parser.parse_args() + return args + + +def main(args): + # build the model from a config file and a checkpoint file + model = init_model(args.config, args.checkpoint, device=args.device) + + # init visualizer + visualizer = VISUALIZERS.build(model.cfg.visualizer) + visualizer.dataset_meta = model.dataset_meta + + # test a single image and point cloud sample + result, data = inference_multi_modality_detector(model, args.pcd, args.img, + args.ann, args.cam_type) + points = data['inputs']['points'] + if isinstance(result.img_path, list): + img = [] + for img_path in result.img_path: + single_img = mmcv.imread(img_path) + single_img = mmcv.imconvert(single_img, 'bgr', 'rgb') + img.append(single_img) + else: + img = mmcv.imread(result.img_path) + img = mmcv.imconvert(img, 'bgr', 'rgb') + data_input = dict(points=points, img=img) + + # show the results + visualizer.add_datasample( + 'result', + data_input, + data_sample=result, + draw_gt=False, + show=args.show, + wait_time=-1, + out_file=args.out_dir, + pred_score_thr=args.score_thr, + vis_task='multi-modality_det') + + +if __name__ == '__main__': + args = parse_args() + main(args)