-
Notifications
You must be signed in to change notification settings - Fork 201
/
Copy pathdemo.cpp
322 lines (277 loc) · 13.5 KB
/
demo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
#include "opencv2/opencv.hpp"
#include "opencv2/core/types.hpp"
#include <string>
#include <vector>
const std::vector<std::pair<int, int>> backend_target_pairs = {
{cv::dnn::DNN_BACKEND_OPENCV, cv::dnn::DNN_TARGET_CPU},
{cv::dnn::DNN_BACKEND_CUDA, cv::dnn::DNN_TARGET_CUDA},
{cv::dnn::DNN_BACKEND_CUDA, cv::dnn::DNN_TARGET_CUDA_FP16},
{cv::dnn::DNN_BACKEND_TIMVX, cv::dnn::DNN_TARGET_NPU},
{cv::dnn::DNN_BACKEND_CANN, cv::dnn::DNN_TARGET_NPU}
};
class YuNet
{
public:
YuNet(const std::string& model_path,
const cv::Size& input_size,
const float conf_threshold,
const float nms_threshold,
const int top_k,
const int backend_id,
const int target_id)
{
_detector = cv::FaceDetectorYN::create(
model_path, "", input_size, conf_threshold, nms_threshold, top_k, backend_id, target_id);
}
void setInputSize(const cv::Size& input_size)
{
_detector->setInputSize(input_size);
}
void setTopK(const int top_k)
{
_detector->setTopK(top_k);
}
cv::Mat infer(const cv::Mat& image)
{
cv::Mat result;
_detector->detect(image, result);
return result;
}
private:
cv::Ptr<cv::FaceDetectorYN> _detector;
};
class SFace
{
public:
SFace(const std::string& model_path,
const int backend_id,
const int target_id,
const int distance_type)
: _distance_type(static_cast<cv::FaceRecognizerSF::DisType>(distance_type))
{
_recognizer = cv::FaceRecognizerSF::create(model_path, "", backend_id, target_id);
}
cv::Mat extractFeatures(const cv::Mat& orig_image, const cv::Mat& face_image)
{
// Align and crop detected face from original image
cv::Mat target_aligned;
_recognizer->alignCrop(orig_image, face_image, target_aligned);
// Extract features from cropped detected face
cv::Mat target_features;
_recognizer->feature(target_aligned, target_features);
return target_features.clone();
}
std::pair<double, bool> matchFeatures(const cv::Mat& target_features, const cv::Mat& query_features)
{
const double score = _recognizer->match(target_features, query_features, _distance_type);
if (_distance_type == cv::FaceRecognizerSF::DisType::FR_COSINE)
{
return {score, score >= _threshold_cosine};
}
return {score, score <= _threshold_norml2};
}
private:
cv::Ptr<cv::FaceRecognizerSF> _recognizer;
cv::FaceRecognizerSF::DisType _distance_type;
double _threshold_cosine = 0.363;
double _threshold_norml2 = 1.128;
};
cv::Mat visualize(const cv::Mat& image,
const cv::Mat& faces,
const std::vector<std::pair<double, bool>>& matches,
const float fps = -0.1F,
const cv::Size& target_size = cv::Size(512, 512))
{
static const cv::Scalar matched_box_color{0, 255, 0};
static const cv::Scalar mismatched_box_color{0, 0, 255};
if (fps >= 0)
{
cv::Mat output_image = image.clone();
const int x1 = static_cast<int>(faces.at<float>(0, 0));
const int y1 = static_cast<int>(faces.at<float>(0, 1));
const int w = static_cast<int>(faces.at<float>(0, 2));
const int h = static_cast<int>(faces.at<float>(0, 3));
const auto match = matches.at(0);
cv::Scalar box_color = match.second ? matched_box_color : mismatched_box_color;
// Draw bounding box
cv::rectangle(output_image, cv::Rect(x1, y1, w, h), box_color, 2);
// Draw match score
cv::putText(output_image, cv::format("%.4f", match.first), cv::Point(x1, y1+12), cv::FONT_HERSHEY_DUPLEX, 0.30, box_color);
// Draw FPS
cv::putText(output_image, cv::format("FPS: %.2f", fps), cv::Point(0, 15), cv::FONT_HERSHEY_SIMPLEX, 0.5, box_color, 2);
return output_image;
}
cv::Mat output_image = cv::Mat::zeros(target_size, CV_8UC3);
// Determine new height and width of image with aspect ratio of original image
const double ratio = std::min(static_cast<double>(target_size.height) / image.rows,
static_cast<double>(target_size.width) / image.cols);
const int new_height = static_cast<int>(image.rows * ratio);
const int new_width = static_cast<int>(image.cols * ratio);
// Resize the original image, maintaining aspect ratio
cv::Mat resize_out;
cv::resize(image, resize_out, cv::Size(new_width, new_height), cv::INTER_LINEAR);
// Determine top left corner in resized dimensions
const int top = std::max(0, target_size.height - new_height) / 2;
const int left = std::max(0, target_size.width - new_width) / 2;
// Copy resized image into target output image
const cv::Rect roi = cv::Rect(cv::Point(left, top), cv::Size(new_width, new_height));
cv::Mat out_sub_image = output_image(roi);
resize_out.copyTo(out_sub_image);
for (int i = 0; i < faces.rows; ++i)
{
const int x1 = static_cast<int>(faces.at<float>(i, 0) * ratio) + left;
const int y1 = static_cast<int>(faces.at<float>(i, 1) * ratio) + top;
const int w = static_cast<int>(faces.at<float>(i, 2) * ratio);
const int h = static_cast<int>(faces.at<float>(i, 3) * ratio);
const auto match = matches.at(i);
cv::Scalar box_color = match.second ? matched_box_color : mismatched_box_color;
// Draw bounding box
cv::rectangle(output_image, cv::Rect(x1, y1, w, h), box_color, 2);
// Draw match score
cv::putText(output_image, cv::format("%.4f", match.first), cv::Point(x1, y1+12), cv::FONT_HERSHEY_DUPLEX, 0.30, box_color);
}
return output_image;
}
int main(int argc, char** argv)
{
cv::CommandLineParser parser(argc, argv,
// General options
"{help h | | Print this message}"
"{backend_target b | 0 | Set DNN backend target pair:\n"
"0: (default) OpenCV implementation + CPU,\n"
"1: CUDA + GPU (CUDA),\n"
"2: CUDA + GPU (CUDA FP16),\n"
"3: TIM-VX + NPU,\n"
"4: CANN + NPU}"
"{save s | false | Whether to save result image or not}"
"{vis v | false | Whether to visualize result image or not}"
// SFace options
"{target_face t | | Set path to input image 1 (target face)}"
"{query_face q | | Set path to input image 2 (query face), omit if using camera}"
"{model m | face_recognition_sface_2021dec.onnx | Set path to the model}"
"{distance_type d | 0 | 0 = cosine, 1 = norm_l1}"
// YuNet options
"{yunet_model | ../face_detection_yunet/face_detection_yunet_2023mar.onnx | Set path to the YuNet model}"
"{detect_threshold | 0.9 | Set the minimum confidence for the model\n"
"to identify a face. Filter out faces of\n"
"conf < conf_threshold}"
"{nms_threshold | 0.3 | Set the threshold to suppress overlapped boxes.\n"
"Suppress boxes if IoU(box1, box2) >= nms_threshold\n"
", the one of higher score is kept.}"
"{top_k | 5000 | Keep top_k bounding boxes before NMS}"
);
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
// General CLI options
const int backend = parser.get<int>("backend_target");
const bool save_flag = parser.get<bool>("save");
const bool vis_flag = parser.get<bool>("vis");
const int backend_id = backend_target_pairs.at(backend).first;
const int target_id = backend_target_pairs.at(backend).second;
// YuNet CLI options
const std::string detector_model_path = parser.get<std::string>("yunet_model");
const float detect_threshold = parser.get<float>("detect_threshold");
const float nms_threshold = parser.get<float>("nms_threshold");
const int top_k = parser.get<int>("top_k");
// Use YuNet as the detector backend
auto face_detector = YuNet(
detector_model_path, cv::Size(320, 320), detect_threshold, nms_threshold, top_k, backend_id, target_id);
// SFace CLI options
const std::string target_path = parser.get<std::string>("target_face");
const std::string query_path = parser.get<std::string>("query_face");
const std::string model_path = parser.get<std::string>("model");
const int distance_type = parser.get<int>("distance_type");
auto face_recognizer = SFace(model_path, backend_id, target_id, distance_type);
if (target_path.empty())
{
CV_Error(cv::Error::StsError, "Path to target image " + target_path + " not found");
}
cv::Mat target_image = cv::imread(target_path);
// Detect single face in target image
face_detector.setInputSize(target_image.size());
face_detector.setTopK(1);
cv::Mat target_face = face_detector.infer(target_image);
// Extract features from target face
cv::Mat target_features = face_recognizer.extractFeatures(target_image, target_face.row(0));
if (!query_path.empty()) // use image
{
// Detect any faces in query image
cv::Mat query_image = cv::imread(query_path);
face_detector.setInputSize(query_image.size());
face_detector.setTopK(5000);
cv::Mat query_faces = face_detector.infer(query_image);
// Store match scores for visualization
std::vector<std::pair<double, bool>> matches;
for (int i = 0; i < query_faces.rows; ++i)
{
// Extract features from query face
cv::Mat query_features = face_recognizer.extractFeatures(query_image, query_faces.row(i));
// Measure similarity of target face to query face
const auto match = face_recognizer.matchFeatures(target_features, query_features);
matches.push_back(match);
const int x1 = static_cast<int>(query_faces.at<float>(i, 0));
const int y1 = static_cast<int>(query_faces.at<float>(i, 1));
const int w = static_cast<int>(query_faces.at<float>(i, 2));
const int h = static_cast<int>(query_faces.at<float>(i, 3));
const float conf = query_faces.at<float>(i, 14);
std::cout << cv::format("%d: x1=%d, y1=%d, w=%d, h=%d, conf=%.4f, match=%.4f\n", i, x1, y1, w, h, conf, match.first);
}
if (save_flag || vis_flag)
{
auto vis_target = visualize(target_image, target_face, {{1.0, true}});
auto vis_query = visualize(query_image, query_faces, matches);
cv::Mat output_image;
cv::hconcat(vis_target, vis_query, output_image);
if (save_flag)
{
std::cout << "Results are saved to result.jpg\n";
cv::imwrite("result.jpg", output_image);
}
if (vis_flag)
{
cv::namedWindow(query_path, cv::WINDOW_AUTOSIZE);
cv::imshow(query_path, output_image);
cv::waitKey(0);
}
}
}
else // use video capture
{
const int device_id = 0;
auto cap = cv::VideoCapture(device_id);
const int w = static_cast<int>(cap.get(cv::CAP_PROP_FRAME_WIDTH));
const int h = static_cast<int>(cap.get(cv::CAP_PROP_FRAME_HEIGHT));
face_detector.setInputSize(cv::Size(w, h));
auto tick_meter = cv::TickMeter();
cv::Mat query_frame;
while (cv::waitKey(1) < 0)
{
bool has_frame = cap.read(query_frame);
if (!has_frame)
{
std::cout << "No frames grabbed! Exiting ...\n";
break;
}
tick_meter.start();
// Detect faces from webcam image
cv::Mat query_faces = face_detector.infer(query_frame);
tick_meter.stop();
// Extract features from query face
cv::Mat query_features = face_recognizer.extractFeatures(query_frame, query_faces.row(0));
// Measure similarity of target face to query face
const auto match = face_recognizer.matchFeatures(target_features, query_features);
const auto fps = static_cast<float>(tick_meter.getFPS());
auto vis_target = visualize(target_image, target_face, {{1.0, true}}, -0.1F, cv::Size(w, h));
auto vis_query = visualize(query_frame, query_faces, {match}, fps);
cv::Mat output_image;
cv::hconcat(vis_target, vis_query, output_image);
// Visualize in a new window
cv::imshow("SFace Demo", output_image);
tick_meter.reset();
}
}
return 0;
}