-
Notifications
You must be signed in to change notification settings - Fork 201
/
Copy pathdemo.py
162 lines (131 loc) · 6.04 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.
#
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
# Third party copyrights are property of their respective owners.
import argparse
import numpy as np
import cv2 as cv
# Check OpenCV version
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split("."))))
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python"
from pphumanseg import PPHumanSeg
# Valid combinations of backends and targets
backend_target_pairs = [
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
]
parser = argparse.ArgumentParser(description='PPHumanSeg (https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.2/contrib/PP-HumanSeg)')
parser.add_argument('--input', '-i', type=str,
help='Usage: Set input path to a certain image, omit if using camera.')
parser.add_argument('--model', '-m', type=str, default='human_segmentation_pphumanseg_2023mar.onnx',
help='Usage: Set model path, defaults to human_segmentation_pphumanseg_2023mar.onnx.')
parser.add_argument('--backend_target', '-bt', type=int, default=0,
help='''Choose one of the backend-target pair to run this demo:
{:d}: (default) OpenCV implementation + CPU,
{:d}: CUDA + GPU (CUDA),
{:d}: CUDA + GPU (CUDA FP16),
{:d}: TIM-VX + NPU,
{:d}: CANN + NPU
'''.format(*[x for x in range(len(backend_target_pairs))]))
parser.add_argument('--save', '-s', action='store_true',
help='Usage: Specify to save a file with results. Invalid in case of camera input.')
parser.add_argument('--vis', '-v', action='store_true',
help='Usage: Specify to open a new window to show results. Invalid in case of camera input.')
args = parser.parse_args()
def get_color_map_list(num_classes):
"""
Returns the color map for visualizing the segmentation mask,
which can support arbitrary number of classes.
Args:
num_classes (int): Number of classes.
Returns:
(list). The color map.
"""
num_classes += 1
color_map = num_classes * [0, 0, 0]
for i in range(0, num_classes):
j = 0
lab = i
while lab:
color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
j += 1
lab >>= 3
color_map = color_map[3:]
return color_map
def visualize(image, result, weight=0.6, fps=None):
"""
Convert predict result to color image, and save added image.
Args:
image (str): The input image.
result (np.ndarray): The predict result of image.
weight (float): The image weight of visual image, and the result weight is (1 - weight). Default: 0.6
fps (str): The FPS to be drawn on the input image.
Returns:
vis_result (np.ndarray): The visualized result.
"""
color_map = get_color_map_list(256)
color_map = np.array(color_map).reshape(256, 3).astype(np.uint8)
# Use OpenCV LUT for color mapping
c1 = cv.LUT(result, color_map[:, 0])
c2 = cv.LUT(result, color_map[:, 1])
c3 = cv.LUT(result, color_map[:, 2])
pseudo_img = np.dstack((c1, c2, c3))
vis_result = cv.addWeighted(image, weight, pseudo_img, 1 - weight, 0)
if fps is not None:
cv.putText(vis_result, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
return vis_result
if __name__ == '__main__':
backend_id = backend_target_pairs[args.backend_target][0]
target_id = backend_target_pairs[args.backend_target][1]
# Instantiate PPHumanSeg
model = PPHumanSeg(modelPath=args.model, backendId=backend_id, targetId=target_id)
if args.input is not None:
# Read image and resize to 192x192
image = cv.imread(args.input)
h, w, _ = image.shape
image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
_image = cv.resize(image, dsize=(192, 192))
# Inference
result = model.infer(_image)
result = cv.resize(result[0, :, :], dsize=(w, h), interpolation=cv.INTER_NEAREST)
# Draw results on the input image
image = visualize(image, result)
# Save results if save is true
if args.save:
print('Results saved to result.jpg\n')
cv.imwrite('result.jpg', image)
# Visualize results in a new window
if args.vis:
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
cv.imshow(args.input, image)
cv.waitKey(0)
else: # Omit input to call default camera
deviceId = 0
cap = cv.VideoCapture(deviceId)
w = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
tm = cv.TickMeter()
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
print('No frames grabbed!')
break
_frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
_frame = cv.resize(_frame, dsize=(192, 192))
# Inference
tm.start()
result = model.infer(_frame)
tm.stop()
result = cv.resize(result[0, :, :], dsize=(w, h), interpolation=cv.INTER_NEAREST)
# Draw results on the input image
frame = visualize(frame, result, fps=tm.getFPS())
# Visualize results in a new window
cv.imshow('PPHumanSeg Demo', frame)
tm.reset()