-
Notifications
You must be signed in to change notification settings - Fork 201
/
Copy pathdemo.cpp
311 lines (277 loc) · 11.7 KB
/
demo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
#include <vector>
#include <string>
#include <utility>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
using namespace dnn;
vector< pair<dnn::Backend, dnn::Target> > backendTargetPairs = {
std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_OPENCV, dnn::DNN_TARGET_CPU),
std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_CUDA, dnn::DNN_TARGET_CUDA),
std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_CUDA, dnn::DNN_TARGET_CUDA_FP16),
std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_TIMVX, dnn::DNN_TARGET_NPU),
std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_CANN, dnn::DNN_TARGET_NPU) };
vector<string> labelYolox = {
"person", "bicycle", "car", "motorcycle", "airplane", "bus",
"train", "truck", "boat", "traffic light", "fire hydrant",
"stop sign", "parking meter", "bench", "bird", "cat", "dog",
"horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe",
"backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
"skis", "snowboard", "sports ball", "kite", "baseball bat",
"baseball glove", "skateboard", "surfboard", "tennis racket",
"bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl",
"banana", "apple", "sandwich", "orange", "broccoli", "carrot",
"hot dog", "pizza", "donut", "cake", "chair", "couch",
"potted plant", "bed", "dining table", "toilet", "tv", "laptop",
"mouse", "remote", "keyboard", "cell phone", "microwave",
"oven", "toaster", "sink", "refrigerator", "book", "clock",
"vase", "scissors", "teddy bear", "hair drier", "toothbrush" };
class YoloX {
private:
Net net;
string modelPath;
Size inputSize;
float confThreshold;
float nmsThreshold;
float objThreshold;
dnn::Backend backendId;
dnn::Target targetId;
int num_classes;
vector<int> strides;
Mat expandedStrides;
Mat grids;
public:
YoloX(string modPath, float confThresh = 0.35, float nmsThresh = 0.5, float objThresh = 0.5, dnn::Backend bId = DNN_BACKEND_DEFAULT, dnn::Target tId = DNN_TARGET_CPU) :
modelPath(modPath), confThreshold(confThresh),
nmsThreshold(nmsThresh), objThreshold(objThresh),
backendId(bId), targetId(tId)
{
this->num_classes = int(labelYolox.size());
this->net = readNet(modelPath);
this->inputSize = Size(640, 640);
this->strides = vector<int>{ 8, 16, 32 };
this->net.setPreferableBackend(this->backendId);
this->net.setPreferableTarget(this->targetId);
this->generateAnchors();
}
Mat preprocess(Mat img)
{
Mat blob;
Image2BlobParams paramYolox;
paramYolox.datalayout = DNN_LAYOUT_NCHW;
paramYolox.ddepth = CV_32F;
paramYolox.mean = Scalar::all(0);
paramYolox.scalefactor = Scalar::all(1);
paramYolox.size = Size(img.cols, img.rows);
paramYolox.swapRB = true;
blob = blobFromImageWithParams(img, paramYolox);
return blob;
}
Mat infer(Mat srcimg)
{
Mat inputBlob = this->preprocess(srcimg);
this->net.setInput(inputBlob);
vector<Mat> outs;
this->net.forward(outs, this->net.getUnconnectedOutLayersNames());
Mat predictions = this->postprocess(outs[0]);
return predictions;
}
Mat postprocess(Mat outputs)
{
Mat dets = outputs.reshape(0,outputs.size[1]);
Mat col01;
add(dets.colRange(0, 2), this->grids, col01);
Mat col23;
exp(dets.colRange(2, 4), col23);
vector<Mat> col = { col01, col23 };
Mat boxes;
hconcat(col, boxes);
float* ptr = this->expandedStrides.ptr<float>(0);
for (int r = 0; r < boxes.rows; r++, ptr++)
{
boxes.rowRange(r, r + 1) = *ptr * boxes.rowRange(r, r + 1);
}
// get boxes
Mat boxes_xyxy(boxes.rows, boxes.cols, CV_32FC1, Scalar(1));
Mat scores = dets.colRange(5, dets.cols).clone();
vector<float> maxScores(dets.rows);
vector<int> maxScoreIdx(dets.rows);
vector<Rect2d> boxesXYXY(dets.rows);
for (int r = 0; r < boxes_xyxy.rows; r++, ptr++)
{
boxes_xyxy.at<float>(r, 0) = boxes.at<float>(r, 0) - boxes.at<float>(r, 2) / 2.f;
boxes_xyxy.at<float>(r, 1) = boxes.at<float>(r, 1) - boxes.at<float>(r, 3) / 2.f;
boxes_xyxy.at<float>(r, 2) = boxes.at<float>(r, 0) + boxes.at<float>(r, 2) / 2.f;
boxes_xyxy.at<float>(r, 3) = boxes.at<float>(r, 1) + boxes.at<float>(r, 3) / 2.f;
// get scores and class indices
scores.rowRange(r, r + 1) = scores.rowRange(r, r + 1) * dets.at<float>(r, 4);
double minVal, maxVal;
Point maxIdx;
minMaxLoc(scores.rowRange(r, r+1), &minVal, &maxVal, nullptr, &maxIdx);
maxScoreIdx[r] = maxIdx.x;
maxScores[r] = float(maxVal);
boxesXYXY[r].x = boxes_xyxy.at<float>(r, 0);
boxesXYXY[r].y = boxes_xyxy.at<float>(r, 1);
boxesXYXY[r].width = boxes_xyxy.at<float>(r, 2);
boxesXYXY[r].height = boxes_xyxy.at<float>(r, 3);
}
vector<int> keep;
NMSBoxesBatched(boxesXYXY, maxScores, maxScoreIdx, this->confThreshold, this->nmsThreshold, keep);
Mat candidates(int(keep.size()), 6, CV_32FC1);
int row = 0;
for (auto idx : keep)
{
boxes_xyxy.rowRange(idx, idx + 1).copyTo(candidates(Rect(0, row, 4, 1)));
candidates.at<float>(row, 4) = maxScores[idx];
candidates.at<float>(row, 5) = float(maxScoreIdx[idx]);
row++;
}
if (keep.size() == 0)
return Mat();
return candidates;
}
void generateAnchors()
{
vector< tuple<int, int, int> > nb;
int total = 0;
for (auto v : this->strides)
{
int w = this->inputSize.width / v;
int h = this->inputSize.height / v;
nb.push_back(tuple<int, int, int>(w * h, w, v));
total += w * h;
}
this->grids = Mat(total, 2, CV_32FC1);
this->expandedStrides = Mat(total, 1, CV_32FC1);
float* ptrGrids = this->grids.ptr<float>(0);
float* ptrStrides = this->expandedStrides.ptr<float>(0);
int pos = 0;
for (auto le : nb)
{
int r = get<1>(le);
for (int i = 0; i < get<0>(le); i++, pos++)
{
*ptrGrids++ = float(i % r);
*ptrGrids++ = float(i / r);
*ptrStrides++ = float((get<2>(le)));
}
}
}
};
std::string keys =
"{ help h | | Print help message. }"
"{ model m | object_detection_yolox_2022nov.onnx | Usage: Path to the model, defaults to object_detection_yolox_2022nov.onnx }"
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
"{ confidence | 0.5 | Class confidence }"
"{ obj | 0.5 | Enter object threshold }"
"{ nms | 0.5 | Enter nms IOU threshold }"
"{ save s | true | Specify to save results. This flag is invalid when using camera. }"
"{ vis v | 1 | Specify to open a window for result visualization. This flag is invalid when using camera. }"
"{ backend bt | 0 | Choose one of computation backends: "
"0: (default) OpenCV implementation + CPU, "
"1: CUDA + GPU (CUDA), "
"2: CUDA + GPU (CUDA FP16), "
"3: TIM-VX + NPU, "
"4: CANN + NPU}";
pair<Mat, double> letterBox(Mat srcimg, Size targetSize = Size(640, 640))
{
Mat paddedImg(targetSize.height, targetSize.width, CV_32FC3, Scalar::all(114.0));
Mat resizeImg;
double ratio = min(targetSize.height / double(srcimg.rows), targetSize.width / double(srcimg.cols));
resize(srcimg, resizeImg, Size(int(srcimg.cols * ratio), int(srcimg.rows * ratio)), INTER_LINEAR);
resizeImg.copyTo(paddedImg(Rect(0, 0, int(srcimg.cols * ratio), int(srcimg.rows * ratio))));
return pair<Mat, double>(paddedImg, ratio);
}
Mat unLetterBox(Mat bbox, double letterboxScale)
{
return bbox / letterboxScale;
}
Mat visualize(Mat dets, Mat srcimg, double letterbox_scale, double fps = -1)
{
Mat resImg = srcimg.clone();
if (fps > 0)
putText(resImg, format("FPS: %.2f", fps), Size(10, 25), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 0, 255), 2);
for (int row = 0; row < dets.rows; row++)
{
Mat boxF = unLetterBox(dets(Rect(0, row, 4, 1)), letterbox_scale);
Mat box;
boxF.convertTo(box, CV_32S);
float score = dets.at<float>(row, 4);
int clsId = int(dets.at<float>(row, 5));
int x0 = box.at<int>(0, 0);
int y0 = box.at<int>(0, 1);
int x1 = box.at<int>(0, 2);
int y1 = box.at<int>(0, 3);
string text = format("%s : %f", labelYolox[clsId].c_str(), score * 100);
int font = FONT_HERSHEY_SIMPLEX;
int baseLine = 0;
Size txtSize = getTextSize(text, font, 0.4, 1, &baseLine);
rectangle(resImg, Point(x0, y0), Point(x1, y1), Scalar(0, 255, 0), 2);
rectangle(resImg, Point(x0, y0 + 1), Point(x0 + txtSize.width + 1, y0 + int(1.5 * txtSize.height)), Scalar(255, 255, 255), -1);
putText(resImg, text, Point(x0, y0 + txtSize.height), font, 0.4, Scalar(0, 0, 0), 1);
}
return resImg;
}
int main(int argc, char** argv)
{
CommandLineParser parser(argc, argv, keys);
parser.about("Use this script to run Yolox deep learning networks in opencv_zoo using OpenCV.");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
string model = parser.get<String>("model");
float confThreshold = parser.get<float>("confidence");
float objThreshold = parser.get<float>("obj");
float nmsThreshold = parser.get<float>("nms");
bool vis = parser.get<bool>("vis");
bool save = parser.get<bool>("save");
int backendTargetid = parser.get<int>("backend");
if (model.empty())
{
CV_Error(Error::StsError, "Model file " + model + " not found");
}
YoloX modelNet(model, confThreshold, nmsThreshold, objThreshold,
backendTargetPairs[backendTargetid].first, backendTargetPairs[backendTargetid].second);
//! [Open a video file or an image file or a camera stream]
VideoCapture cap;
if (parser.has("input"))
cap.open(samples::findFile(parser.get<String>("input")));
else
cap.open(0);
if (!cap.isOpened())
CV_Error(Error::StsError, "Cannot open video or file");
Mat frame, inputBlob;
double letterboxScale;
static const std::string kWinName = model;
int nbInference = 0;
while (waitKey(1) < 0)
{
cap >> frame;
if (frame.empty())
{
cout << "Frame is empty" << endl;
waitKey();
break;
}
pair<Mat, double> w = letterBox(frame);
inputBlob = get<0>(w);
letterboxScale = get<1>(w);
TickMeter tm;
tm.start();
Mat predictions = modelNet.infer(inputBlob);
tm.stop();
cout << "Inference time: " << tm.getTimeMilli() << " ms\n";
Mat img = visualize(predictions, frame, letterboxScale, tm.getFPS());
if (save && parser.has("input"))
{
imwrite("result.jpg", img);
}
if (vis)
{
imshow(kWinName, img);
}
}
return 0;
}