-
Notifications
You must be signed in to change notification settings - Fork 201
/
Copy pathdemo.cpp
294 lines (255 loc) · 11.8 KB
/
demo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#include <iostream>
#include <codecvt>
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include "charset_32_94_3944.h"
using namespace std;
using namespace cv;
using namespace dnn;
vector< pair<cv::dnn::Backend, cv::dnn::Target> > backendTargetPairs = {
std::make_pair<cv::dnn::Backend, cv::dnn::Target>(dnn::DNN_BACKEND_OPENCV, dnn::DNN_TARGET_CPU),
std::make_pair<cv::dnn::Backend, cv::dnn::Target>(dnn::DNN_BACKEND_CUDA, dnn::DNN_TARGET_CUDA),
std::make_pair<cv::dnn::Backend, cv::dnn::Target>(dnn::DNN_BACKEND_CUDA, dnn::DNN_TARGET_CUDA_FP16),
std::make_pair<cv::dnn::Backend, cv::dnn::Target>(dnn::DNN_BACKEND_TIMVX, dnn::DNN_TARGET_NPU),
std::make_pair<cv::dnn::Backend, cv::dnn::Target>(dnn::DNN_BACKEND_CANN, dnn::DNN_TARGET_NPU)};
vector<u16string> loadCharset(string);
std::string keys =
"{ help h | | Print help message. }"
"{ model m | text_recognition_CRNN_EN_2021sep.onnx | Usage: Set model type, defaults to text_recognition_CRNN_EN_2021sep.onnx }"
"{ input i | | Usage: Path to input image or video file. Skip this argument to capture frames from a camera.}"
"{ width | 736 | Usage: Resize input image to certain width, default = 736. It should be multiple by 32.}"
"{ height | 736 | Usage: Resize input image to certain height, default = 736. It should be multiple by 32.}"
"{ binary_threshold | 0.3 | Usage: Threshold of the binary map, default = 0.3.}"
"{ polygon_threshold | 0.5 | Usage: Threshold of polygons, default = 0.5.}"
"{ max_candidates | 200 | Usage: Set maximum number of polygon candidates, default = 200.}"
"{ unclip_ratio | 2.0 | Usage: The unclip ratio of the detected text region, which determines the output size, default = 2.0.}"
"{ save s | 1 | Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.}"
"{ viz v | 1 | Usage: Specify to open a new window to show results.}"
"{ backend bt | 0 | Choose one of computation backends: "
"0: (default) OpenCV implementation + CPU, "
"1: CUDA + GPU (CUDA), "
"2: CUDA + GPU (CUDA FP16), "
"3: TIM-VX + NPU, "
"4: CANN + NPU}";
class PPOCRDet {
public:
PPOCRDet(string modPath, Size inSize = Size(736, 736), float binThresh = 0.3,
float polyThresh = 0.5, int maxCand = 200, double unRatio = 2.0,
dnn::Backend bId = DNN_BACKEND_DEFAULT, dnn::Target tId = DNN_TARGET_CPU) : modelPath(modPath), inputSize(inSize), binaryThreshold(binThresh),
polygonThreshold(polyThresh), maxCandidates(maxCand), unclipRatio(unRatio),
backendId(bId), targetId(tId)
{
this->model = TextDetectionModel_DB(readNet(modelPath));
this->model.setPreferableBackend(backendId);
this->model.setPreferableTarget(targetId);
this->model.setBinaryThreshold(binaryThreshold);
this->model.setPolygonThreshold(polygonThreshold);
this->model.setUnclipRatio(unclipRatio);
this->model.setMaxCandidates(maxCandidates);
this->model.setInputParams(1.0 / 255.0, inputSize, Scalar(122.67891434, 116.66876762, 104.00698793));
}
pair< vector<vector<Point>>, vector<float> > infer(Mat image) {
CV_Assert(image.rows == this->inputSize.height && "height of input image != net input size ");
CV_Assert(image.cols == this->inputSize.width && "width of input image != net input size ");
vector<vector<Point>> pt;
vector<float> confidence;
this->model.detect(image, pt, confidence);
return make_pair< vector<vector<Point>> &, vector< float > &>(pt, confidence);
}
private:
string modelPath;
TextDetectionModel_DB model;
Size inputSize;
float binaryThreshold;
float polygonThreshold;
int maxCandidates;
double unclipRatio;
dnn::Backend backendId;
dnn::Target targetId;
};
class CRNN {
private:
string modelPath;
dnn::Backend backendId;
dnn::Target targetId;
Net model;
vector<u16string> charset;
Size inputSize;
Mat targetVertices;
public:
CRNN(string modPath, dnn::Backend bId = DNN_BACKEND_DEFAULT, dnn::Target tId = DNN_TARGET_CPU) : modelPath(modPath), backendId(bId), targetId(tId) {
this->model = readNet(this->modelPath);
this->model.setPreferableBackend(this->backendId);
this->model.setPreferableTarget(this->targetId);
// load charset by the name of model
if (this->modelPath.find("_EN_") != string::npos)
this->charset = loadCharset("CHARSET_EN_36");
else if (this->modelPath.find("_CH_") != string::npos)
this->charset = loadCharset("CHARSET_CH_94");
else if (this->modelPath.find("_CN_") != string::npos)
this->charset = loadCharset("CHARSET_CN_3944");
else
CV_Error(-1, "Charset not supported! Exiting ...");
this->inputSize = Size(100, 32); // Fixed
this->targetVertices = Mat(4, 1, CV_32FC2);
this->targetVertices.row(0) = Vec2f(0, this->inputSize.height - 1);
this->targetVertices.row(1) = Vec2f(0, 0);
this->targetVertices.row(2) = Vec2f(this->inputSize.width - 1, 0);
this->targetVertices.row(3) = Vec2f(this->inputSize.width - 1, this->inputSize.height - 1);
}
Mat preprocess(Mat image, Mat rbbox)
{
// Remove conf, reshape and ensure all is np.float32
Mat vertices;
rbbox.reshape(2, 4).convertTo(vertices, CV_32FC2);
Mat rotationMatrix = getPerspectiveTransform(vertices, this->targetVertices);
Mat cropped;
warpPerspective(image, cropped, rotationMatrix, this->inputSize);
// 'CN' can detect digits (0\~9), upper/lower-case letters (a\~z and A\~Z), and some special characters
// 'CH' can detect digits (0\~9), upper/lower-case le6tters (a\~z and A\~Z), some Chinese characters and some special characters
if (this->modelPath.find("CN") == string::npos && this->modelPath.find("CH") == string::npos)
cvtColor(cropped, cropped, COLOR_BGR2GRAY);
Mat blob = blobFromImage(cropped, 1 / 127.5, this->inputSize, Scalar::all(127.5));
return blob;
}
u16string infer(Mat image, Mat rbbox)
{
// Preprocess
Mat inputBlob = this->preprocess(image, rbbox);
// Forward
this->model.setInput(inputBlob);
Mat outputBlob = this->model.forward();
// Postprocess
u16string results = this->postprocess(outputBlob);
return results;
}
u16string postprocess(Mat outputBlob)
{
// Decode charaters from outputBlob
Mat character = outputBlob.reshape(1, outputBlob.size[0]);
u16string text(u"");
for (int i = 0; i < character.rows; i++)
{
double minVal, maxVal;
Point maxIdx;
minMaxLoc(character.row(i), &minVal, &maxVal, nullptr, &maxIdx);
if (maxIdx.x != 0)
text += charset[maxIdx.x - 1];
else
text += u"-";
}
// adjacent same letters as well as background text must be removed to get the final output
u16string textFilter(u"");
for (int i = 0; i < text.size(); i++)
if (text[i] != u'-' && !(i > 0 && text[i] == text[i - 1]))
textFilter += text[i];
return textFilter;
}
};
Mat visualize(Mat image, pair< vector<vector<Point>>, vector<float> >&results, double fps=-1, Scalar boxColor=Scalar(0, 255, 0), Scalar textColor=Scalar(0, 0, 255), bool isClosed=true, int thickness=2)
{
Mat output;
image.copyTo(output);
if (fps > 0)
putText(output, format("FPS: %.2f", fps), Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, textColor);
polylines(output, results.first, isClosed, boxColor, thickness);
return output;
}
int main(int argc, char** argv)
{
CommandLineParser parser(argc, argv, keys);
parser.about("An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition (https://arxiv.org/abs/1507.05717)");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
int backendTargetid = parser.get<int>("backend");
String modelPath = parser.get<String>("model");
if (modelPath.empty())
{
CV_Error(Error::StsError, "Model file " + modelPath + " not found");
}
Size inpSize(parser.get<int>("width"), parser.get<int>("height"));
float binThresh = parser.get<float>("binary_threshold");
float polyThresh = parser.get<float>("polygon_threshold");
int maxCand = parser.get<int>("max_candidates");
double unRatio = parser.get<float>("unclip_ratio");
bool save = parser.get<bool>("save");
bool viz = parser.get<float>("viz");
PPOCRDet detector("../text_detection_ppocr/text_detection_en_ppocrv3_2023may.onnx", inpSize, binThresh, polyThresh, maxCand, unRatio, backendTargetPairs[backendTargetid].first, backendTargetPairs[backendTargetid].second);
CRNN recognizer(modelPath, backendTargetPairs[backendTargetid].first, backendTargetPairs[backendTargetid].second);
//! [Open a video file or an image file or a camera stream]
VideoCapture cap;
if (parser.has("input"))
cap.open(parser.get<String>("input"));
else
cap.open(0);
if (!cap.isOpened())
CV_Error(Error::StsError, "Cannot open video or file");
Mat originalImage;
static const std::string kWinName = modelPath;
while (waitKey(1) < 0)
{
cap >> originalImage;
if (originalImage.empty())
{
if (parser.has("input"))
{
cout << "Frame is empty" << endl;
break;
}
else
continue;
}
int originalW = originalImage.cols;
int originalH = originalImage.rows;
double scaleHeight = originalH / double(inpSize.height);
double scaleWidth = originalW / double(inpSize.width);
Mat image;
resize(originalImage, image, inpSize);
// inference of text detector
TickMeter tm;
tm.start();
pair< vector<vector<Point>>, vector<float> > results = detector.infer(image);
tm.stop();
if (results.first.size() > 0 && results.second.size() > 0)
{
u16string texts;
auto score=results.second.begin();
for (auto box : results.first)
{
Mat result = Mat(box).reshape(2, 4);
texts = texts + u"'" + recognizer.infer(image, result) + u"'";
}
std::wstring_convert<std::codecvt_utf8<char16_t>, char16_t> converter;
std::cout << converter.to_bytes(texts) << std::endl;
}
auto x = results.first;
// Scale the results bounding box
for (auto &pts : results.first)
{
for (int i = 0; i < 4; i++)
{
pts[i].x = int(pts[i].x * scaleWidth);
pts[i].y = int(pts[i].y * scaleHeight);
}
}
originalImage = visualize(originalImage, results, tm.getFPS());
tm.reset();
if (parser.has("input"))
{
if (save)
{
cout << "Result image saved to result.jpg\n";
imwrite("result.jpg", originalImage);
}
if (viz)
imshow(kWinName, originalImage);
}
else
imshow(kWinName, originalImage);
}
return 0;
}