-
Notifications
You must be signed in to change notification settings - Fork 3
/
yolov8_od_ov_sync_infer.py
88 lines (74 loc) · 3.04 KB
/
yolov8_od_ov_sync_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from openvino.runtime import Core
import numpy as np
import cv2, time
from ultralytics.yolo.utils import ROOT, yaml_load
from ultralytics.yolo.utils.checks import check_yaml
MODEL_NAME = "yolov8n"
CLASSES = yaml_load(check_yaml('coco128.yaml'))['names']
colors = np.random.uniform(0, 255, size=(len(CLASSES), 3))
def draw_bounding_box(img, class_id, confidence, x, y, x_plus_w, y_plus_h):
label = f'{CLASSES[class_id]} ({confidence:.2f})'
color = colors[class_id]
cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2)
cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# 实例化Core对象
core = Core()
# 载入并编译模型
net = core.compile_model(f'{MODEL_NAME}.xml', device_name="AUTO")
# 获得模型输出节点
output_node = net.outputs[0] # yolov8n只有一个输出节点
ir = net.create_infer_request()
cap = cv2.VideoCapture("store-aisle-detection.mp4")
while True:
start = time.time()
ret, frame = cap.read()
if not ret:
break
[height, width, _] = frame.shape
length = max((height, width))
image = np.zeros((length, length, 3), np.uint8)
image[0:height, 0:width] = frame
scale = length / 640
blob = cv2.dnn.blobFromImage(image, scalefactor=1 / 255, size=(640, 640), swapRB=True)
outputs = ir.infer(blob)[output_node]
outputs = np.array([cv2.transpose(outputs[0])])
rows = outputs.shape[1]
boxes = []
scores = []
class_ids = []
for i in range(rows):
classes_scores = outputs[0][i][4:]
(minScore, maxScore, minClassLoc, (x, maxClassIndex)) = cv2.minMaxLoc(classes_scores)
if maxScore >= 0.25:
box = [
outputs[0][i][0] - (0.5 * outputs[0][i][2]), outputs[0][i][1] - (0.5 * outputs[0][i][3]),
outputs[0][i][2], outputs[0][i][3]]
boxes.append(box)
scores.append(maxScore)
class_ids.append(maxClassIndex)
result_boxes = cv2.dnn.NMSBoxes(boxes, scores, 0.25, 0.45, 0.5)
detections = []
for i in range(len(result_boxes)):
index = result_boxes[i]
box = boxes[index]
detection = {
'class_id': class_ids[index],
'class_name': CLASSES[class_ids[index]],
'confidence': scores[index],
'box': box,
'scale': scale}
detections.append(detection)
draw_bounding_box(frame, class_ids[index], scores[index], round(box[0] * scale), round(box[1] * scale),
round((box[0] + box[2]) * scale), round((box[1] + box[3]) * scale))
end = time.time()
# show FPS
fps = (1 / (end - start))
fps_label = "Throughput: %.2f FPS" % fps
cv2.putText(frame, fps_label, (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
cv2.imshow('YOLOv8 OpenVINO Infer Demo on AIxBoard', frame)
# wait key for ending
if cv2.waitKey(1) > -1:
print("finished by user")
cap.release()
cv2.destroyAllWindows()
break