-
Notifications
You must be signed in to change notification settings - Fork 3
/
yolov8_seg_ov_sync_infer.py
194 lines (147 loc) · 7.25 KB
/
yolov8_seg_ov_sync_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import math
import time
import cv2
import numpy as np
from openvino.runtime import Core
from utils import xywh2xyxy, nms, draw_detections, sigmoid
# Define the YOLOSeg
class YOLOSeg:
def __init__(self, path, device_name="CPU", conf_thres=0.7, iou_thres=0.5, num_masks=32):
self.conf_threshold = conf_thres
self.iou_threshold = iou_thres
self.num_masks = num_masks
# Initialize model
self.initialize_model(path, device_name)
def __call__(self, image):
return self.segment_objects(image)
def initialize_model(self, path, device_name):
self.core = Core()
self.net = self.core.compile_model(path, device_name=device_name)
self.ir = self.net.create_infer_request()
input_shape = self.net.inputs[0].shape
self.input_height = input_shape[2]
self.input_width = input_shape[3]
def segment_objects(self, image):
input_tensor = self.prepare_input(image)
# Perform inference on the image
outputs = self.ir.infer(input_tensor)
self.boxes, self.scores, self.class_ids, mask_pred = self.process_box_output(outputs[0])
self.mask_maps = self.process_mask_output(mask_pred, outputs[1])
return self.boxes, self.scores, self.class_ids, self.mask_maps
def prepare_input(self, image):
self.img_height, self.img_width = image.shape[:2]
input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Resize input image
input_img = cv2.resize(input_img, (self.input_width, self.input_height))
# Scale input pixel values to 0 to 1
input_img = input_img / 255.0
input_img = input_img.transpose(2, 0, 1)
input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32)
return input_tensor
def process_box_output(self, box_output):
predictions = np.squeeze(box_output).T
num_classes = box_output.shape[1] - self.num_masks - 4
# Filter out object confidence scores below threshold
scores = np.max(predictions[:, 4:4+num_classes], axis=1)
predictions = predictions[scores > self.conf_threshold, :]
scores = scores[scores > self.conf_threshold]
if len(scores) == 0:
return [], [], [], np.array([])
box_predictions = predictions[..., :num_classes+4]
mask_predictions = predictions[..., num_classes+4:]
# Get the class with the highest confidence
class_ids = np.argmax(box_predictions[:, 4:], axis=1)
# Get bounding boxes for each object
boxes = self.extract_boxes(box_predictions)
# Apply non-maxima suppression to suppress weak, overlapping bounding boxes
indices = nms(boxes, scores, self.iou_threshold)
return boxes[indices], scores[indices], class_ids[indices], mask_predictions[indices]
def process_mask_output(self, mask_predictions, mask_output):
if mask_predictions.shape[0] == 0:
return []
mask_output = np.squeeze(mask_output)
# Calculate the mask maps for each box
num_mask, mask_height, mask_width = mask_output.shape # CHW
masks = sigmoid(mask_predictions @ mask_output.reshape((num_mask, -1)))
masks = masks.reshape((-1, mask_height, mask_width))
# Downscale the boxes to match the mask size
scale_boxes = self.rescale_boxes(self.boxes,
(self.img_height, self.img_width),
(mask_height, mask_width))
# For every box/mask pair, get the mask map
mask_maps = np.zeros((len(scale_boxes), self.img_height, self.img_width))
blur_size = (int(self.img_width / mask_width), int(self.img_height / mask_height))
for i in range(len(scale_boxes)):
scale_x1 = int(math.floor(scale_boxes[i][0]))
scale_y1 = int(math.floor(scale_boxes[i][1]))
scale_x2 = int(math.ceil(scale_boxes[i][2]))
scale_y2 = int(math.ceil(scale_boxes[i][3]))
x1 = int(math.floor(self.boxes[i][0]))
y1 = int(math.floor(self.boxes[i][1]))
x2 = int(math.ceil(self.boxes[i][2]))
y2 = int(math.ceil(self.boxes[i][3]))
scale_crop_mask = masks[i][scale_y1:scale_y2, scale_x1:scale_x2]
crop_mask = cv2.resize(scale_crop_mask,
(x2 - x1, y2 - y1),
interpolation=cv2.INTER_CUBIC)
crop_mask = cv2.blur(crop_mask, blur_size)
crop_mask = (crop_mask > 0.5).astype(np.uint8)
mask_maps[i, y1:y2, x1:x2] = crop_mask
return mask_maps
def extract_boxes(self, box_predictions):
# Extract boxes from predictions
boxes = box_predictions[:, :4]
# Scale boxes to original image dimensions
boxes = self.rescale_boxes(boxes,
(self.input_height, self.input_width),
(self.img_height, self.img_width))
# Convert boxes to xyxy format
boxes = xywh2xyxy(boxes)
# Check the boxes are within the image
boxes[:, 0] = np.clip(boxes[:, 0], 0, self.img_width)
boxes[:, 1] = np.clip(boxes[:, 1], 0, self.img_height)
boxes[:, 2] = np.clip(boxes[:, 2], 0, self.img_width)
boxes[:, 3] = np.clip(boxes[:, 3], 0, self.img_height)
return boxes
def draw_detections(self, image, draw_scores=True, mask_alpha=0.4):
return draw_detections(image, self.boxes, self.scores,
self.class_ids, mask_alpha)
def draw_masks(self, image, draw_scores=True, mask_alpha=0.5):
return draw_detections(image, self.boxes, self.scores,
self.class_ids, mask_alpha, mask_maps=self.mask_maps)
@staticmethod
def rescale_boxes(boxes, input_shape, image_shape):
# Rescale boxes to original image dimensions
input_shape = np.array([input_shape[1], input_shape[0], input_shape[1], input_shape[0]])
boxes = np.divide(boxes, input_shape, dtype=np.float32)
boxes *= np.array([image_shape[1], image_shape[0], image_shape[1], image_shape[0]])
return boxes
# Initialize the VideoCapture
cap = cv2.VideoCapture("store-aisle-detection.mp4")
# Initialize YOLOv5 Instance Segmentator
model_path = "yolov8n-seg.xml"
device_name = "GPU"
yoloseg = YOLOSeg(model_path, device_name, conf_thres=0.3, iou_thres=0.3)
while cap.isOpened():
# Read frame from the video
ret, frame = cap.read()
if not ret:
break
# Update object localizer
start = time.time()
boxes, scores, class_ids, masks = yoloseg(frame)
# postprocess and draw masks
combined_img = yoloseg.draw_masks(frame)
end = time.time()
# show FPS
fps = (1 / (end - start))
fps_label = "Throughput: %.2f FPS" % fps
cv2.putText(combined_img, fps_label, (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
# show ALL
cv2.imshow("YOLOv8 Segmentation OpenVINO inference Demo", combined_img)
# Press Any key stop
if cv2.waitKey(1) > -1:
print("finished by user")
break
cap.release()
cv2.destroyAllWindows()