diff --git a/notebooks/mllama-3.2/mllama-3.2.ipynb b/notebooks/mllama-3.2/mllama-3.2.ipynb index 10d714eda4a..347324b18c6 100644 --- a/notebooks/mllama-3.2/mllama-3.2.ipynb +++ b/notebooks/mllama-3.2/mllama-3.2.ipynb @@ -44,55 +44,13 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mWARNING: Skipping /home/ea/work/py311/lib/python3.11/site-packages/transformers-4.36.2.dist-info due to invalid metadata entry 'name'\u001b[0m\u001b[33m\n", - "\u001b[0m\u001b[33mWARNING: Skipping /home/ea/work/py311/lib/python3.11/site-packages/transformers-4.36.2.dist-info due to invalid metadata entry 'name'\u001b[0m\u001b[33m\n", - "\u001b[0m\u001b[33mWARNING: Skipping /home/ea/work/py311/lib/python3.11/site-packages/transformers-4.36.2.dist-info due to invalid metadata entry 'name'\u001b[0m\u001b[33m\n", - "\u001b[0m\u001b[33mWARNING: Skipping /home/ea/work/py311/lib/python3.11/site-packages/transformers-4.36.2.dist-info due to invalid metadata entry 'name'\u001b[0m\u001b[33m\n", - "\u001b[0m\u001b[33mWARNING: Skipping /home/ea/work/py311/lib/python3.11/site-packages/transformers-4.36.2.dist-info due to invalid metadata entry 'name'\u001b[0m\u001b[33m\n", - "\u001b[0m\u001b[33mWARNING: Skipping /home/ea/work/py311/lib/python3.11/site-packages/transformers-4.36.2.dist-info due to invalid metadata entry 'name'\u001b[0m\u001b[33m\n", - "\u001b[0m\u001b[33mWARNING: Skipping /home/ea/work/py311/lib/python3.11/site-packages/transformers-4.36.2.dist-info due to invalid metadata entry 'name'\u001b[0m\u001b[33m\n", - "\u001b[0m\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.1.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.3.1\u001b[0m\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", - "Note: you may need to restart the kernel to use updated packages.\n", - "\u001b[33mWARNING: Skipping /home/ea/work/py311/lib/python3.11/site-packages/transformers-4.36.2.dist-info due to invalid metadata entry 'name'\u001b[0m\u001b[33m\n", - "\u001b[0m\u001b[33mWARNING: Skipping /home/ea/work/py311/lib/python3.11/site-packages/transformers-4.36.2.dist-info due to invalid metadata entry 'name'\u001b[0m\u001b[33m\n", - "\u001b[0m\u001b[33mWARNING: Skipping /home/ea/work/py311/lib/python3.11/site-packages/transformers-4.36.2.dist-info due to invalid metadata entry 'name'\u001b[0m\u001b[33m\n", - "\u001b[0m\u001b[33mWARNING: Skipping /home/ea/work/py311/lib/python3.11/site-packages/transformers-4.36.2.dist-info due to invalid metadata entry 'name'\u001b[0m\u001b[33m\n", - "\u001b[0m\u001b[33mWARNING: Skipping /home/ea/work/py311/lib/python3.11/site-packages/transformers-4.36.2.dist-info due to invalid metadata entry 'name'\u001b[0m\u001b[33m\n", - "\u001b[0m\u001b[33mWARNING: Skipping /home/ea/work/py311/lib/python3.11/site-packages/transformers-4.36.2.dist-info due to invalid metadata entry 'name'\u001b[0m\u001b[33m\n", - "\u001b[0m\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.1.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.3.1\u001b[0m\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", - "Note: you may need to restart the kernel to use updated packages.\n", - "\u001b[33mWARNING: Skipping /home/ea/work/py311/lib/python3.11/site-packages/transformers-4.36.2.dist-info due to invalid metadata entry 'name'\u001b[0m\u001b[33m\n", - "\u001b[0m\u001b[33mWARNING: Skipping /home/ea/work/py311/lib/python3.11/site-packages/transformers-4.36.2.dist-info due to invalid metadata entry 'name'\u001b[0m\u001b[33m\n", - "\u001b[0m\u001b[33mWARNING: Skipping /home/ea/work/py311/lib/python3.11/site-packages/transformers-4.36.2.dist-info due to invalid metadata entry 'name'\u001b[0m\u001b[33m\n", - "\u001b[0m\u001b[33mWARNING: Skipping /home/ea/work/py311/lib/python3.11/site-packages/transformers-4.36.2.dist-info due to invalid metadata entry 'name'\u001b[0m\u001b[33m\n", - "\u001b[0m\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", - "whowhatbench 1.0.0.dev0+27e0fed7 requires openvino-genai, which is not installed.\n", - "whowhatbench 1.0.0.dev0+27e0fed7 requires openvino-tokenizers, which is not installed.\u001b[0m\u001b[31m\n", - "\u001b[0m\u001b[33mWARNING: Skipping /home/ea/work/py311/lib/python3.11/site-packages/transformers-4.36.2.dist-info due to invalid metadata entry 'name'\u001b[0m\u001b[33m\n", - "\u001b[0m\u001b[33mWARNING: Skipping /home/ea/work/py311/lib/python3.11/site-packages/transformers-4.36.2.dist-info due to invalid metadata entry 'name'\u001b[0m\u001b[33m\n", - "\u001b[0m\u001b[33mWARNING: Skipping /home/ea/work/py311/lib/python3.11/site-packages/transformers-4.36.2.dist-info due to invalid metadata entry 'name'\u001b[0m\u001b[33m\n", - "\u001b[0m\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.1.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.3.1\u001b[0m\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", - "Note: you may need to restart the kernel to use updated packages.\n" - ] - } - ], + "outputs": [], "source": [ "%pip install -q \"torch>=2.1\" \"torchvision\" \"Pillow\" \"tqdm\" \"datasets>=2.14.6\" \"gradio>=4.36\" \"nncf>=2.14.0\" --extra-index-url https://download.pytorch.org/whl/cpu\n", "%pip install -q \"transformers>=4.45\" --extra-index-url https://download.pytorch.org/whl/cpu\n", - "%pip install -Uq \"openvino>=2024.5.0\"" + "%pip install -Uq --pre \"openvino>=2024.5.0\" --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly" ] }, { @@ -697,7 +655,7 @@ "source": [ "from ov_mllama_compression import vision_encoder_selection_widget\n", "\n", - "vision_encoder_options = vision_encoder_selection_widget(device.value)\n", + "vision_encoder_options = vision_encoder_selection_widget()\n", "\n", "vision_encoder_options" ] @@ -1086,1045 +1044,7 @@ }, "widgets": { "application/vnd.jupyter.widget-state+json": { - "state": { - "062e7293318b48d6bc3951a8370e3a80": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_09bbfd21397a4b2e942eb07ef4ce08fc", - "style": "IPY_MODEL_657897dee358448396bf805766b32da3", - "value": "tokenizer.json: 100%" - } - }, - "09bbfd21397a4b2e942eb07ef4ce08fc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "0a0f0b32667c46ffa6af69fefdc9999a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "12f17310d687427d92aacb1d506764ea": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "15a0507189de4a48b468ea415abe30b0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_7c14bd34d26f4380bd7f0d6308ee5d50", - "style": "IPY_MODEL_a9a8182b11d24e8f91b6093e8d931a6b", - "value": " 55.8k/55.8k [00:00<00:00, 244kB/s]" - } - }, - "15ce646a202041eeb9f81e7d0662a354": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "CheckboxStyleModel", - "state": { - "description_width": "" - } - }, - "198283a2f5394ea49ea27aa6cef438d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_3e254f3b2d6d4710947e041363a5efbd", - "style": "IPY_MODEL_4eeb3c42875547c39ce6a8bee627a46f", - "value": " 5.09k/5.09k [00:00<00:00, 490kB/s]" - } - }, - "19985b9ad80a45ab90b255f0d88266bc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_536ac34f4c1b4461b208470e87eed30d", - "max": 5, - "style": "IPY_MODEL_31a10cfdeaba43f6bdf63a6bb79ccf5b", - "value": 5 - } - }, - "1b9a99e4105b432ca60f3e3512a2bc1c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "1c82ec55fe89478e99701b2f395e0c8b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1e3cd7eabfff468ba3b02d268f9eab43": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "1e945ae9164e4c3b9c2c597321abed9d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "20621d17410b4c3ebd4e5e94c2e86982": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_7f543c2d01c447aaa6f4e8377449a232", - "style": "IPY_MODEL_5e47fcb4f30146d485e9c3e426e43633", - "value": "chat_template.json: 100%" - } - }, - "2195cfb5d1a04830b9d428666f56bbc9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "296f8479233d43a79984fbb7406c1c75": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_a46fcf1fbd864368ac08bf336a4833cd", - "IPY_MODEL_ad911717d65c4c8aa86b551afab71fa1", - "IPY_MODEL_c987df211fe74cf687a986e06002c5b6" - ], - "layout": "IPY_MODEL_2195cfb5d1a04830b9d428666f56bbc9" - } - }, - "2e08b1315bf7461290d62877763423ac": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "2feefc77fd484e13bf363d33fcd9c308": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "AccordionModel", - "state": { - "layout": "IPY_MODEL_12f17310d687427d92aacb1d506764ea" - } - }, - "31a10cfdeaba43f6bdf63a6bb79ccf5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "3446d910c9ed4b5984dde265fb901746": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_46d8d62021d941ff8986cf94b41e0beb", - "outputs": [ - { - "data": { - "text/html": "
Applying Smooth Quant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 162/1620:00:090:00:00\n
\n", - "text/plain": "Applying Smooth Quant \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[38;2;0;104;181m162/162\u001b[0m • \u001b[38;2;0;104;181m0:00:09\u001b[0m • \u001b[38;2;0;104;181m0:00:00\u001b[0m\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "345d2c88aeac4d688524d363ff0d2c31": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_95fb2a71f0934d55836db6b24ef762b5", - "max": 5, - "style": "IPY_MODEL_4bc06f36e3f047a8b6ad382bf31d840e", - "value": 5 - } - }, - "3473e1904297456785551580a2e31d56": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "34f7977e796d4c91b6299f3bbfde6bd2": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_87fd26ada4374acfb44780b0dfc7fecb", - "outputs": [ - { - "data": { - "text/html": "
Applying Fast Bias correction ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 81/810:00:460:00:00\n
\n", - "text/plain": "Applying Fast Bias correction \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[38;2;0;104;181m81/81\u001b[0m • \u001b[38;2;0;104;181m0:00:46\u001b[0m • \u001b[38;2;0;104;181m0:00:00\u001b[0m\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "3a18da8d4e234b798b46a1278fb4b77f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_eee809ed58c44f0da153dc261da12846", - "IPY_MODEL_d5b44f7a64be46018f8466b9b3384725", - "IPY_MODEL_15a0507189de4a48b468ea415abe30b0" - ], - "layout": "IPY_MODEL_91689d961d4d44f4b5a385d8e89decb0" - } - }, - "3ce513e5f74a44cfbbfc92cb2f1b0ffa": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "3e254f3b2d6d4710947e041363a5efbd": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "3fd4e0137c444406acb95b7c5318200e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "41bec58f812f4b3895b0a9790b881ee9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "46d8d62021d941ff8986cf94b41e0beb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "473617e0e1fc4b189110033a2a3bcf07": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4817b49920dc4e06861b835b806be9e2": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_f116afbe40c046218dd2bc905b14adb9", - "outputs": [ - { - "data": { - "text/html": "
Statistics collection ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 100/1001:02:100:00:00\n
\n", - "text/plain": "Statistics collection \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[38;2;0;104;181m100/100\u001b[0m • \u001b[38;2;0;104;181m1:02:10\u001b[0m • \u001b[38;2;0;104;181m0:00:00\u001b[0m\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "4bc06f36e3f047a8b6ad382bf31d840e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "4d4e832693f54f3ea4cbc23dfc9e655e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "4dc68c53bb004ed788f6b7e66565c2fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_0a0f0b32667c46ffa6af69fefdc9999a", - "style": "IPY_MODEL_71462dd0478740d7ad0dab45499211db", - "value": "Loading checkpoint shards: 100%" - } - }, - "4e57b00302d8439caf2d91fb9c2ae505": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "AccordionModel", - "state": { - "children": [ - "IPY_MODEL_8dce5236d4cd4956b90eddf85d63a3ce" - ], - "layout": "IPY_MODEL_3ce513e5f74a44cfbbfc92cb2f1b0ffa", - "titles": [ - "Data-Aware settings" - ] - } - }, - "4eeb3c42875547c39ce6a8bee627a46f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5071d762789f467595b45d70e70f9e04": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_759db20165624a509265791a2611f36f", - "style": "IPY_MODEL_ec6ea17b7bec402ba1c4016916754b82", - "value": " 9.09M/9.09M [00:01<00:00, 6.37MB/s]" - } - }, - "50f918da70934f2aacc29de17e11890c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "5277b005ff4d48588858e38d422345f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_473617e0e1fc4b189110033a2a3bcf07", - "max": 9085825, - "style": "IPY_MODEL_f2c6bdeef8c5455ca15e0867cead4ced", - "value": 9085825 - } - }, - "536ac34f4c1b4461b208470e87eed30d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "54986f41155e4eb89865724566cf3d25": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_ebb56683bd194649b8e620a4f0f7b9e6", - "outputs": [ - { - "data": { - "text/html": "
Applying AWQ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 40/400:09:500:00:00\n
\n", - "text/plain": "Applying AWQ \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[38;2;0;104;181m40/40\u001b[0m • \u001b[38;2;0;104;181m0:09:50\u001b[0m • \u001b[38;2;0;104;181m0:00:00\u001b[0m\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "59308fc9ed8d46d1921ff100487fb2d7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "5e47fcb4f30146d485e9c3e426e43633": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "657897dee358448396bf805766b32da3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "65b0d49cc107471b94f71f6e37225fa4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DropdownModel", - "state": { - "_options_labels": [ - "FP16", - "INT8 quantization", - "INT8 weights compression" - ], - "description": "Vision Encoder", - "index": 1, - "layout": "IPY_MODEL_db1ad0bcbb7c4d43b3ed6efb0101fd29", - "style": "IPY_MODEL_d85f765e19ed4aedae24e6295ca4a4ee" - } - }, - "6cb3681203834ae799961976313f7b5c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "6cbc98fafad34510971cd3dafabb0ea5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_062e7293318b48d6bc3951a8370e3a80", - "IPY_MODEL_5277b005ff4d48588858e38d422345f3", - "IPY_MODEL_5071d762789f467595b45d70e70f9e04" - ], - "layout": "IPY_MODEL_1b9a99e4105b432ca60f3e3512a2bc1c" - } - }, - "6d9ed11ca22a47578e444be32534f797": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "71462dd0478740d7ad0dab45499211db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7347db895cce46e28d62dad66a24338e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "CheckboxStyleModel", - "state": { - "description_width": "" - } - }, - "73df804f45564c2ca3a4e01151692590": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "759db20165624a509265791a2611f36f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "7762e934818845b786f3e29a1b3d9f6a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_4dc68c53bb004ed788f6b7e66565c2fc", - "IPY_MODEL_19985b9ad80a45ab90b255f0d88266bc", - "IPY_MODEL_d56c4eff53dd4bd89a1dbbfb2c6ebacb" - ], - "layout": "IPY_MODEL_d9e499b6b5ee4907b0ef5a120e0c1b4f" - } - }, - "7c14bd34d26f4380bd7f0d6308ee5d50": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "7f543c2d01c447aaa6f4e8377449a232": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "7f96a25169c54c67bb19a225ba086018": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "809a6a1f04c44feb9639038d3e18d9fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "CheckboxModel", - "state": { - "description": "Scale Estimation", - "disabled": false, - "layout": "IPY_MODEL_afc32dc74f73474eb213f752f874930c", - "style": "IPY_MODEL_7347db895cce46e28d62dad66a24338e", - "value": true - } - }, - "878df29201bc4fa985e4a371363a64b0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "87fd26ada4374acfb44780b0dfc7fecb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "8875d80b56f94f648b14a295332cbdcb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "8b961e2c2b924517ab44620145cf0094": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "8dce5236d4cd4956b90eddf85d63a3ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_dc974160707444cdaabc7170c4528688", - "IPY_MODEL_809a6a1f04c44feb9639038d3e18d9fc", - "IPY_MODEL_fe5f794486df4c0398d410b55032455c", - "IPY_MODEL_cd57a3f8e1b24b9e8a1b510a8050977a" - ], - "layout": "IPY_MODEL_da49d38c21524125875944fbc80e330d" - } - }, - "8e53b7ae56a544a2962af492e2b133b6": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_e0ea9e7ca6bd4080b81d83a7ef170732", - "outputs": [ - { - "data": { - "text/html": "
Statistics collection ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 100/1000:44:320:00:00\n
\n", - "text/plain": "Statistics collection \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[38;2;0;104;181m100/100\u001b[0m • \u001b[38;2;0;104;181m0:44:32\u001b[0m • \u001b[38;2;0;104;181m0:00:00\u001b[0m\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "91689d961d4d44f4b5a385d8e89decb0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "9228aae17aac4ba4b7489651de5c4955": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "92c23f4f950f4b95be6d6adb1d4b3388": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "92c9e033731f43d3826e3c45302e857f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "RadioButtonsModel", - "state": { - "_options_labels": [ - "data-free", - "data-aware" - ], - "index": 1, - "layout": "IPY_MODEL_4d4e832693f54f3ea4cbc23dfc9e655e", - "style": "IPY_MODEL_8875d80b56f94f648b14a295332cbdcb" - } - }, - "95fb2a71f0934d55836db6b24ef762b5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "9e57ce58bd2844f7804844e7252f320e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_a129cc95c6ad4622868356df21972823", - "IPY_MODEL_345d2c88aeac4d688524d363ff0d2c31", - "IPY_MODEL_a08fded822aa438789f558c4f497c3d4" - ], - "layout": "IPY_MODEL_f5631bec278c4c169f557f33e8ceb915" - } - }, - "9f2058443ec042898af6a7479005f578": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "a08fded822aa438789f558c4f497c3d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_eabe8266b3e242be8ab644ed7b15e2d5", - "style": "IPY_MODEL_9228aae17aac4ba4b7489651de5c4955", - "value": " 5/5 [00:01<00:00,  2.54it/s]" - } - }, - "a129cc95c6ad4622868356df21972823": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_b9714d38d12143428390206b6bba6ad9", - "style": "IPY_MODEL_ebc508f9cac949bda630e20d86795662", - "value": "Downloading shards: 100%" - } - }, - "a16f12802f3f43388faf34bbf0fd8cae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "VBoxModel", - "state": { - "children": [ - "IPY_MODEL_92c9e033731f43d3826e3c45302e857f", - "IPY_MODEL_4e57b00302d8439caf2d91fb9c2ae505" - ], - "layout": "IPY_MODEL_50f918da70934f2aacc29de17e11890c" - } - }, - "a185b9fd7db541c6b558fb2b637185f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DropdownModel", - "state": { - "_options_labels": [ - "CPU", - "AUTO" - ], - "description": "Device:", - "index": 0, - "layout": "IPY_MODEL_1e945ae9164e4c3b9c2c597321abed9d", - "style": "IPY_MODEL_878df29201bc4fa985e4a371363a64b0" - } - }, - "a46fcf1fbd864368ac08bf336a4833cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_6d9ed11ca22a47578e444be32534f797", - "style": "IPY_MODEL_7f96a25169c54c67bb19a225ba086018", - "value": "100%" - } - }, - "a9a8182b11d24e8f91b6093e8d931a6b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ac0280b2ba814b748eb5e7f5cab1e088": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "ad1d32c4188a416eb38050e2c7f40716": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "ad911717d65c4c8aa86b551afab71fa1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_8b961e2c2b924517ab44620145cf0094", - "max": 64, - "style": "IPY_MODEL_e4be510b78904240ba901cb62fda85ee", - "value": 64 - } - }, - "afc32dc74f73474eb213f752f874930c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "b1955d23136048f9ac97d5394e29ba49": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "b25f2253dc9e4e03b83bdcfaf8b62356": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b500bff6c33d4363a9acd7748434946b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "CheckboxStyleModel", - "state": { - "description_width": "" - } - }, - "b9714d38d12143428390206b6bba6ad9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "b977c602ba82415ea9ac67120b12cc49": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "c1a27cf2d77d46278400486345aabc9b": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_ad1d32c4188a416eb38050e2c7f40716", - "outputs": [ - { - "data": { - "text/html": "
Statistics collection ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 64/640:00:530:00:00\n
\n", - "text/plain": "Statistics collection \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[38;2;0;104;181m64/64\u001b[0m • \u001b[38;2;0;104;181m0:00:53\u001b[0m • \u001b[38;2;0;104;181m0:00:00\u001b[0m\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "c4e874ce68884d13a02d34203710390c": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_92c23f4f950f4b95be6d6adb1d4b3388", - "outputs": [ - { - "data": { - "text/html": "
Applying Weight Compression ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100%0:05:160:00:00\n
\n", - "text/plain": "Applying Weight Compression \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m • \u001b[38;2;0;104;181m0:05:16\u001b[0m • \u001b[38;2;0;104;181m0:00:00\u001b[0m\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "c987df211fe74cf687a986e06002c5b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_73df804f45564c2ca3a4e01151692590", - "style": "IPY_MODEL_b25f2253dc9e4e03b83bdcfaf8b62356", - "value": " 64/64 [29:22<00:00, 26.04s/it]" - } - }, - "cd57a3f8e1b24b9e8a1b510a8050977a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "CheckboxModel", - "state": { - "description": "LoRA correction", - "disabled": false, - "layout": "IPY_MODEL_59308fc9ed8d46d1921ff100487fb2d7", - "style": "IPY_MODEL_e30db52a26004b0aaee38f9ffadd31c9", - "value": false - } - }, - "cd9ce4c6cf4f4e219fc938e69c181cd4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "children": [ - "IPY_MODEL_20621d17410b4c3ebd4e5e94c2e86982", - "IPY_MODEL_e086026287654794aca20dd4575aaa2a", - "IPY_MODEL_198283a2f5394ea49ea27aa6cef438d8" - ], - "layout": "IPY_MODEL_ac0280b2ba814b748eb5e7f5cab1e088" - } - }, - "d56c4eff53dd4bd89a1dbbfb2c6ebacb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_6cb3681203834ae799961976313f7b5c", - "style": "IPY_MODEL_1c82ec55fe89478e99701b2f395e0c8b", - "value": " 5/5 [00:10<00:00,  1.79s/it]" - } - }, - "d5b44f7a64be46018f8466b9b3384725": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_1e3cd7eabfff468ba3b02d268f9eab43", - "max": 55782, - "style": "IPY_MODEL_3473e1904297456785551580a2e31d56", - "value": 55782 - } - }, - "d85f765e19ed4aedae24e6295ca4a4ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "DescriptionStyleModel", - "state": { - "description_width": "" - } - }, - "d9e499b6b5ee4907b0ef5a120e0c1b4f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "da49d38c21524125875944fbc80e330d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "db1ad0bcbb7c4d43b3ed6efb0101fd29": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "dc974160707444cdaabc7170c4528688": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "CheckboxModel", - "state": { - "description": "AWQ", - "disabled": false, - "layout": "IPY_MODEL_b1955d23136048f9ac97d5394e29ba49", - "style": "IPY_MODEL_b500bff6c33d4363a9acd7748434946b", - "value": true - } - }, - "e086026287654794aca20dd4575aaa2a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "bar_style": "success", - "layout": "IPY_MODEL_e606f484258d43d8ace050ff28613916", - "max": 5089, - "style": "IPY_MODEL_9f2058443ec042898af6a7479005f578", - "value": 5089 - } - }, - "e0ea9e7ca6bd4080b81d83a7ef170732": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "e30db52a26004b0aaee38f9ffadd31c9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "CheckboxStyleModel", - "state": { - "description_width": "" - } - }, - "e4be510b78904240ba901cb62fda85ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "e606f484258d43d8ace050ff28613916": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "eabe8266b3e242be8ab644ed7b15e2d5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "ebb56683bd194649b8e620a4f0f7b9e6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "ebc508f9cac949bda630e20d86795662": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ec6ea17b7bec402ba1c4016916754b82": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "eee809ed58c44f0da153dc261da12846": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "layout": "IPY_MODEL_3fd4e0137c444406acb95b7c5318200e", - "style": "IPY_MODEL_41bec58f812f4b3895b0a9790b881ee9", - "value": "tokenizer_config.json: 100%" - } - }, - "f116afbe40c046218dd2bc905b14adb9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "f2615ae812d74d739b7d799bdde6da2e": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "layout": "IPY_MODEL_2e08b1315bf7461290d62877763423ac", - "outputs": [ - { - "data": { - "text/html": "
Applying Scale Estimation ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 266/2660:51:140:00:00\n
\n", - "text/plain": "Applying Scale Estimation \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[38;2;0;104;181m266/266\u001b[0m • \u001b[38;2;0;104;181m0:51:14\u001b[0m • \u001b[38;2;0;104;181m0:00:00\u001b[0m\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ] - } - }, - "f2c6bdeef8c5455ca15e0867cead4ced": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "description_width": "" - } - }, - "f5631bec278c4c169f557f33e8ceb915": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": {} - }, - "fe5f794486df4c0398d410b55032455c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "CheckboxModel", - "state": { - "description": "GPTQ", - "disabled": false, - "layout": "IPY_MODEL_b977c602ba82415ea9ac67120b12cc49", - "style": "IPY_MODEL_15ce646a202041eeb9f81e7d0662a354", - "value": false - } - } - }, + "state": {}, "version_major": 2, "version_minor": 0 } diff --git a/notebooks/mllama-3.2/ov_mllama_compression.py b/notebooks/mllama-3.2/ov_mllama_compression.py index d4765fc78c4..2b19c41bf2c 100644 --- a/notebooks/mllama-3.2/ov_mllama_compression.py +++ b/notebooks/mllama-3.2/ov_mllama_compression.py @@ -47,14 +47,12 @@ def remove_data_aware_settings(button): return vb, compression_settings -def vision_encoder_selection_widget(device): +def vision_encoder_selection_widget(): from ipywidgets import Dropdown optimizations = ["FP16", "INT8 quantization", "INT8 weights compression"] - options = Dropdown( - description="Vision Encoder", options=optimizations, value=optimizations[0] if "GPU" in device else optimizations[1], disabled="GPU" in device - ) + options = Dropdown(description="Vision Encoder", options=optimizations, value=optimizations[1]) return options