-
Notifications
You must be signed in to change notification settings - Fork 105
/
Copy pathowPhysicsConstant.h
219 lines (202 loc) · 11.9 KB
/
owPhysicsConstant.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/*******************************************************************************
* The MIT License (MIT)
*
* Copyright (c) 2011, 2013 OpenWorm.
* http://openworm.org
*
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the MIT License
* which accompanies this distribution, and is available at
* http://opensource.org/licenses/MIT
*
* Contributors:
* OpenWorm - http://openworm.org/people.html
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*******************************************************************************/
#ifndef OW_PHYSICS_CONSTANT_H
#define OW_PHYSICS_CONSTANT_H
#include <math.h>
#include "owOpenCLConstant.h"
/** Main physical default constants are defined here
*/
#ifndef M_PI
#define M_PI 3.1415927f
#endif
const float rho0 =
1000.0f; // Standard value of liquid density for water (kg/m^3)
// const float rho0 = readDensityFromConfig();
// const float mass = 0.54e-13f; // normal resolution //Mass for one particle
// (kg). const float mass = 7.83e-13f; // half resolution - 0.8 mm worm //
// Mass for one particle (kg).
const float mass = 20.00e-13f; // half resolution - 0.8 mm worm // Mass for
// one particle (kg).
// Some facts about C. elegans:
// Adult worm mass = 3.25e-06 grams = 3.25e-09 kg
// worm density is around 1000 kg/m3
// Adult worm length = 1 mm = 1000 um =
// 1e-03 m Adult worm broad diameter = 60..80 um
// = 6..8e-05 m // we'll consider it to be equal
// 80 um (radius = 40 um) Adult worm volume =
// 0.0033 mm3 1000*40*40*Cw = 0.0033 then Cw
// = 2.0625 so, if we need a worm body model
// composed of, for example, 1e+05 particles each
// particle's mass should be 3.25e-09 / 1e+05
// = 3.25e-14 kg and length of the worm will be
// (calculation follows): n - number of particles
// per 1 um (1000*n)*(40*n)*(40*n)*Cw = 1e+5
// particles then n^3 = 0.303, n = 0.311 then
// worm length = (1000*n) = 311 particles, radius
// = (40*n) = 12 particles So, in this case (1e+5
// particles) we need r0 = 3.2 um = 3.2e-6 m and
// particle mass = 3.25e-14 kg NOTE: we use this
// value of mass because we are oriented on
// modeling of C. elegans's body model. But we
// you can use your own value of mass
// TODO: make it as an input parameter
const float timeStep =
4.0f *
5.0e-06f; // Time step of simulation (s)
// NOTE: "For numerical stability and convergence, several time
// step constraints must be satisfied. The Courant-Friedrich-Levy
// (CFL) condition for SPH (dt <= lambda_v*(h/v_max))
// states that the speed of numerical propagation must be
// higher than the speed of physical propagation, where v_max =
// max(||v_i(t)||) is the maximum magnitude of the velocity
// throughout the simulation. lambda_v is a constant factor, e. g.
// lambda_v = 0.4. In other words, a particle i must not move more
// than its smoothing length h in one time step. Fur- thermore,
// high accelerations might influence the simulation results
// negatively. Therefore, the time step must also satisfy dt <=
// lambda_f*sqrt(h/F_max) where F_max=max(||F_i(t)||) denotes the
// magnitude of the maximum force per unit mass for all particles
// throughout the simulation. lambda_f = 0.25." For more info [1,
// page 5]. NOTE: actually it depends on mass too for bigger value
// of mass it possible to use bigger value of time step.
// Dependence on mass could be described by following mass
// influent on simulation scale and due to the fact that we're
// simulating incompressible liquid start configuration of
// particles should satisfy condition that density in every
// particle of configuration <= rh0. So if we decrease mass we
// should decrease distance among particles than it leads to that
// we should decrease time step.
// TODO: find dependence and make choice automatically
// [1] M. Ihmsen, N. Akinci, M. Gissler, M. Teschner, Boundary
// Handling and Adaptive Time-stepping for PCISPH Proc. VRIPHYS,
// Copenhagen, Denmark, pp. 79-88, Nov 11-12, 2010. ATTENTION! too
// large values can lead to 'explosion' of elastic matter objects
/*0.0041*/
const float simulationScale =
0.0037f * pow(mass, 1.f / 3.f) /
pow(0.00025f, 1.f / 3.f); // pow(mass,1.f/3.f)/pow(rho0,1.f/3.f); //
// Simulation scale coefficient. It means that N *
// simulationScale
// converts from simulation scale to meters N /
// simulationScale convert from meters simulation
// scale If you want to take real value of
// distance in meters you need multiple on
// simulation scale NOTE: simulationScale depends
// from mass of particle. If we place one particle
// into volume with some size of side we want that
// density in this value is equal to rho0
const float h =
3.34f; // Smoothed radius value. This is dimensionless invariant parameter.
// For taken real value in meter you need multiple this on
// simulationScale. h is a spatial distance, over which their
// properties are "smoothed" by a kernel function [1]. [1]
// https://en.wikipedia.org/wiki/Smoothed-particle_hydrodynamics
const float hashGridCellSize =
2.0f * h; // All bounding box is divided on small spatial cells with size of
// side == h. Size of side for one spatial cell This require for
// spatial hashing and => searching a neighbors
const float r0 = 0.5f * h; // Standard distance between two boundary particle ==
// equilibrium distance between 2 particles [1] [1]
// M. Ihmsen, N. Akinci, M. Gissler, M. Teschner,
// Boundary Handling and Adaptive Time-stepping for
// PCISPH Proc. VRIPHYS, Copenhagen, Denmark, pp.
// 79-88, Nov 11-12, 2010.
const float viscosity = 0.1f * 0.00004f; // liquid viscosity value //why this
// value? Dynamic viscosity of water at
// 25 C = 0.89e-3 Pa*s
const double beta =
timeStep * timeStep * mass * mass * 2 /
(rho0 *
rho0); // B. Solenthaler's dissertation, formula 3.6 (end of page 30)
const double Wpoly6Coefficient =
315.0 / (64.0 * M_PI *
pow((double)(h * simulationScale),
9.0)); // Wpoly6Coefficient for kernel Wpoly6 [1]
// [1] Solenthaler (Dissertation) page 17 eq. (2.20)
const double gradWspikyCoefficient =
-45.0 /
(M_PI * pow((double)(h * simulationScale),
6.0)); // gradWspikyCoefficient for kernel gradWspiky [1]
// [1] Solenthaler (Dissertation) page 18 eq. (2.21)
const double divgradWviscosityCoefficient =
-gradWspikyCoefficient; // divgradWviscosityCoefficient for kernel Viscous
// [1] [1] Solenthaler (Dissertation) page 18 eq.
// (2.22)
/* We' re using Cartesian coordinate system
y|
|___x
/
z/
*/
const float gravity_x = 0.0f; // Value of vector Gravity component x
const float gravity_y = -9.8f; // Value of vector Gravity component y
const float gravity_z = 0.0f; // Value of vector Gravity component z
const int maxIteration =
3; // Number of iterations for Predictive-Corrective scheme
const float mass_mult_Wpoly6Coefficient =
(float)((double)mass * Wpoly6Coefficient); // Conversion of double value to
// float. For work with only 1st
// precision arithmetic.
const float mass_mult_gradWspikyCoefficient =
(float)((double)mass * gradWspikyCoefficient); // It needs for work with
// devices don't support
// double precision.
const float mass_mult_divgradWviscosityCoefficient =
(float)((double)mass * divgradWviscosityCoefficient); // Also it helps to
// increase
// performance and
// memory consumption
/** Following parameters need for decreasing repeating calculation of this
* values
*/
const float hashGridCellSizeInv =
1.0f / hashGridCellSize; // Inverted value for hashGridCellSize
const float simulationScaleInv =
1.0f / simulationScale; // Inverted value for simulationScale
const float _hScaled = h * simulationScale; // scaled smoothing radius
const float _hScaled2 = _hScaled * _hScaled; // squared scaled smoothing radius
const float surfTensCoeff = mass_mult_Wpoly6Coefficient * simulationScale;
// const float surfTensCoeff = -1.5e-09f * 0.3f* (float)(Wpoly6Coefficient *
// pow(h*simulationScale*h*simulationScale/2.0,3.0)) * simulationScale; //
// Surface coefficient. Actually it is -1.5e-09f * 0.3f
// But for decreasing number of repeating calculation we suppose that
/*3->6*/ // surfTensCoeff = -1.5e-09f * 0.3f* (float)(Wpoly6Coefficient *
// pow(h*simulationScale*h*simulationScale/2.0,3.0)) * simulationScale
const float elasticityCoefficient =
4 * 1.5e-04f / mass; // Elasticity coefficient. Actually it isn't
// elasticity coefficient (elasticity coefficient
// = 1.95e-05f) But for decreasing number of repeating
// calculation we suppose that elasticityCoefficient
// = 1.95e-05f / mass
const float max_muscle_force = 4000.f; // 2300.f;//2000.f;//1300
#endif // #ifndef OW_PHYSICS_CONSTANT_H