diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index ec042684b..94e9863b2 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -6,7 +6,7 @@ repos: - id: check-useless-excludes # - id: identity # Prints all files passed to pre-commits. Debugging. - repo: https://github.com/lyz-code/yamlfix - rev: 1.9.0 + rev: 1.10.0 hooks: - id: yamlfix exclude: tests/optimization/fixtures @@ -52,7 +52,7 @@ repos: - id: check-docstring-first exclude: src/estimagic/optimization/algo_options.py - repo: https://github.com/adrienverge/yamllint.git - rev: v1.31.0 + rev: v1.32.0 hooks: - id: yamllint exclude: tests/optimization/fixtures @@ -67,7 +67,7 @@ repos: - id: blacken-docs exclude: docs/source/how_to_guides/optimization/how_to_specify_constraints.md - repo: https://github.com/PyCQA/docformatter - rev: v1.6.4 + rev: v1.7.1 hooks: - id: docformatter args: @@ -79,7 +79,7 @@ repos: - --blank exclude: src/estimagic/optimization/algo_options.py - repo: https://github.com/charliermarsh/ruff-pre-commit - rev: v0.0.263 + rev: v0.0.270 hooks: - id: ruff - repo: https://github.com/nbQA-dev/nbQA @@ -110,7 +110,7 @@ repos: - '88' files: (docs/.) - repo: https://github.com/asottile/setup-cfg-fmt - rev: v2.2.0 + rev: v2.3.0 hooks: - id: setup-cfg-fmt - repo: https://github.com/mgedmin/check-manifest diff --git a/docs/source/how_to_guides/optimization/how_to_benchmark_optimization_algorithms.ipynb b/docs/source/how_to_guides/optimization/how_to_benchmark_optimization_algorithms.ipynb index 17d6514c3..f14a2fcae 100644 --- a/docs/source/how_to_guides/optimization/how_to_benchmark_optimization_algorithms.ipynb +++ b/docs/source/how_to_guides/optimization/how_to_benchmark_optimization_algorithms.ipynb @@ -120,7 +120,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAEsCAYAAAA1u0HIAAAgAElEQVR4XuydB3RU1RaG/0lPICT03nvvCAgiXREVEBDpHQSkVylSBKUjTelFpaggCiq9g0jvvfcO6W0y89Z/8iakTibJZDIz2Xutt3yQe8/Z57uX/Pecs8/eGr1er4eYEBACQkAICAEhYNMENCLoNv38xHkhIASEgBAQAoqACLq8CEJACAgBISAE7ICACLodPEQZghAQAkJACAgBEXR5B4SAEBACQkAI2AEBEXQ7eIgyBCEgBISAEBACIujyDggBISAEhIAQsAMCIuh28BBlCEJACAgBISAERNDlHRACQkAICAEhYAcERNDt4CHKEISAEBACQkAIiKDLOyAEhIAQEAJCwA4IiKDbwUOUIQgBISAEhIAQEEGXd0AICAEhIASEgB0QEEG3g4coQxACQkAICAEhIIIu74AQEAJCQAgIATsgIIJuBw9RhiAEhIAQEAJCQARd3gEhIASEgBAQAnZAQATdDh6iDEEICAEhIASEgAi6vANCQAgIASEgBOyAgAi6HTxEGYIQEAJCQAgIARF0eQeEgBAQAkJACNgBARF0O3iIMgQhIASEgBAQAiLo8g4IASEgBISAELADAiLodvAQZQhCQAgIASEgBETQ5R0QAkJACAgBIWAHBETQ7eAhyhCEgBAQAkJACIigyzsgBISAEBACQsAOCIig28FDlCEIASEgBISAEBBBl3dACAgBISAEhIAdEBBBt4OHKEMQAkJACAgBIZCmBL1o0aK4du2aPHUhIASEgBAQAnZHQATd7h6pDEgICAEhIATSIgER9LT41GXMQkAICAEhYHcERNDt7pHKgISAEBACQiAtEhBBT4tPXcYsBISAEBACdkdABN3uHqkMSAgIASEgBNIiAZsVdL1ejwULFmDFihU4ceKESc9OotxNwiQXCQEhIASEgA0SsElBDwsLw6BBg5AtWzZs3rwZx44dMwm9CLpJmOQiIZAmCAQEBKBChQo4fPgwsmbNmmpj3r17N7799lts37491XyQju2DgE0KOtHv378ftWrVQuXKlXHq1CmTnoYIukmY5CIhkCYIWErQO3bsiE6dOqF+/fqKa4sWLbBx48ZIxiLoaeJ1s8ggbVbQSUer1aJq1aqpLuj/HtPh6XN9sh7YWo/jybpfbhYCtk4g/asbcAr2TdQwfmjTO1HXR73YUoL+22+/oVq1asiXLx9u3LiBNm3aRFtVFEFP8iOUG2MQsFtB//DDD2M97MuXL6dIprhpc7W4eiPpgh7qEoof26yWl1MICIFEEtBX/tzoHefPn8fMmTPB/4aHh+Odd97BN998A3d3d8QUdP550qRJSmyfPHmCkJAQ1Xb37t0xYsQIhIaGYsaMGfjzzz/h5+eHcuXKYdy4cShZsqS6ju3mzp0bQUFBWLx4MWrWrIl58+ahWbNmqo0iRYqo/7Jtb29vdc/WrVtx5swZ1e4nn3yC5cuXw9/fX7U9efJk9RFAYxs9evTAjz/+iIcPH8LJyQkjR46Er68vli1bpsaSN29eTJs2TfkgljYJ2K2g8x9VTOM/kpRI/Tp5pha37urxTk0HeGVI/Iv00MkHfTKth6fOFU0CSye+AblDCNgBgZxXt8A18Dn8shRDuKO7SSNKaIZ+9+5d3LlzB5UqVUJwcLAS1A8++ED9N6agUwx5/XfffadE+dNPP0X79u3x2WefKV/48//++0/9l3vuGzZswA8//IBdu3Yhffr0StC5FUiB79evHzJkyIAsWbJECnrTpk1x+vRpJcxR4344Q//iiy+UX/xwcHV1xZgxY9RHA8XaIOj8888//4wcOXJg/fr1mDhxImrXrq385T1ffvml8nv27NkmsZOL7I+A3Qp6XI8qpfbQx32rxcNHekwY6YTcOTWJfksO+j9C7Sub8Fa6bDhS4pNE3y83CAF7IOA7pAN0924hw4zVcMhXKEWGtHDhQty+fVuJckxB/+ijjzB06FA1i6dxdv3gwQMVsMbZecWKFbFmzRqUL18+0re2bduicePGao+cgr5t2zbs2LEDzs7OkdcYZujGBL1v375K5PlhQGNcUK9evXD06NFIQW/QoIH6UKD5+PigSpUqWLt2rfovbd++fZgyZYryQSxtEhBBN8NzHzUxDM9eAN+Mc0bWzIlvcOPrm/jkxjZ86JUffxZpkvgG5A4hYAcEfPu1hu7pQ2SY9wscsucyy4jOnTuHpUuX4tatW+BR1xcvXqi4G85qYwp6o0aNMHbsWDXrNQj648eP1dI37+fPL1y4ABcXl0jfKKCBgYH4+uuvlaCzfS6fRzVTBH38+PFqdm+wq1evonnz5qo/GttgcB0D6mjcDihTpgz27t0bucTO1YMhQ4bg4MGDZmEnjdgeARF0MzyzIWPD4OMLzJzknKQl90XPLqD33f3olqUEluavawaPpAkhYHsEfHp+DP3rF/BatAmajFmSPQDuVb/33nv46quvwJgaR0dHNeu+fv16nIJOUX369CnmzJmjxJ6z72HDhqFevXq4cuUKOMOOKegUey5zGwSd4s59+MQKesxja3EJOrcJ6ENUQT9w4IBagqeJoCf7lbH5Bmxa0BNLP6WW3L8YGQZu2c/91hkepm39RXN90qPjGPfwGEblqIQpud9K7LDkeiFgFwRed24MBAbAa8U/0KTzTPaYdu7cqcSVS9EGGzx4sAqOi2uGzgAzLrvrdDpkzJgRrVu3Rrt27dSt3H/nzJ5BaTy7bjCKfsOGDdGlSxc1Q09I0M+ePYvOnTvj5MmTkW3EFeUugp7sx58mGxBBN8Nj7z04DNpw4IdZznByTHyDX9w9gPnPzmN23rcxMFu5xDcgdwgBOyDw+rM6QHg4vNfsAZze7EEndWiXLl1SkePcZy5evLhK3MJAsrfffjtOQf/jjz/A/02fPh0ODg7w9PRU0eQGo2AfP35c7b8zqRWPo3FPnkFxDIAzRdC5JM/o959++kntxbMfLrXLDD2pT1nui0pABN0M70P3AWGqlaXfJe2X0Kc3t+OXVzewpmADfJapqBk8kiaEgG0R0OvC4dOmjnLa+xfz7QEzPfSqVavUDJtL51yC/+eff+IU9CNHjqjZM2fwNIotA9547I1Bbsx7wZk9hZyz+bJly6podO5l00wRdF63aNEiLFmyRO3p8wOCs3ERdNt6X63VWxH0ZD6ZkFCg77AwuLoAC6YnTdDrXv0De/0eYmexD1HfM08yPZLbhYANEggKxOtOjQA3d3iv3mHxATDhS7du3fD999+jRIkSqn/uwXft2lVFm3/88ccW90k6FAKJJSCCnlhiMa73DwAGfhmG9OmAOVOSJuhlLqzDheBXOFuqNcq6JyFMPpljkNuFQGoT0Pu8gk+PD6HJ4A2vpVss7g6LPDHBCwPiohqPk3GJnnvlYkLA2gmIoCfzCb14BYwYH4ZMGYFp45Mm6NnOrMAzbTAel++M7E5JiKpL5hjkdiGQ2gR0Tx/Bt18raLJkh9fCDRZ3h9HiTMzCc+bMuMbldS7Nc8+dCWQMGdss7ph0KAQSQUAEPRGw4rr08VNgzOQw5MgGfD068YLOfTSHkz+opnWVekOjSXximmQOQW4XAqlOQHf/FnwHd4BDrnzIMGdNqvjDWTqD1RipzmA4Lr1zhh41qj1VHJNOhYCJBETQTQQV32V37+sxcboW+XJrMG74m4hYU5t9qg1C9jMrkcXJDc/KdzH1NrlOCNgVgfCbl+E3sjscCxSF57QVdjU2GYwQsBSBWIJep05EpKkpFvV8pynXp/Y1KXEO/fotPb6do0WRghqMHJh4QT8f9BJlL65HKbeMuFC6TWojkv6FQKoQ0F46A/+v+sKxeFl4Tvo+VXyQToWArROIJeiHDh2KHBPTHfJ4BYsTFCpUSB3dYB7klStXqhSDTMJgS5YSgn7pqh4zF2hRspgGQ/omXtD3+D1Avat/4l3PXNhTTCJpbel9El/NR0B75ij8Jw+GU9kqSD82emCa+XqRloSAfRMwuuTesmVLjBo1CpUrV45GgRWDmE6RZyhtyVJC0M+c12PeEi3Kl9bgi56JF/T1r66jzc0daJ2xMNYXamRLOMVXIWA2AmFH9yNgxpdwrvw20o2YarZ2pSEhkJYIGBX0UqVKqQpA6dKli8aEeY6ZBvHixYs2xSolBP3YKR0WrQxH1YoO6NU58Wni5j09h/73DqJf1jKYly+iKISYEEhrBEIPbkfg3IlwrlkP6QZOTGvDl/EKAbMQMCro9evXV+X6WPUnqm3evFmd12TKQ1uylBD0Q//psGJNOGpWc0DXdokX9LEPj+LrRycwMVdVjM0ZUQZRTAikNQKhu7cg8Idv4fLu+/DoMzqtDd9i461evTr+/vtvZMqUSeWsHz58OE6cOIEaNWqo0qvxGbPbscJb//79LeardJR4AkYFnecwuVfO3MMlS5ZUqRBZdYhnNlki8P333098j6l4hzkEnXXPj53WRY7izj09zl7Qo24tB7RrZZqgj394LPL+f3zu4mjgUyzKXwc9s5RKRTrStRBIJQKhIQha8wNC/v4Vro2aw737kFRyxP67jSro/D2+ePFiVXCG4s7f7yLotv0OJHhs7e7duyp38Z07d1TuYSZYYBUiW0y0YA5BP3hEh5VrI3I9R7VGdR3QulnCgn426AXKX/wl1v2/F34PzbwL2vbbJN4LgUQQ0Af6KxEP+esX6AP81J2uTdvAvWO/RLQilyaGQFRB55l7/n5nQp2ETGboCRGyjp8nKOjW4aZ5vDCHoG/fo8Mvm8JRuKAGpYq/SQJTrLCDinRPyBY/v4hed/ahskdWNPXKH3l55ywlUMAl+SUjE+pffi4EUpuA/vVLBG9Zh5DtvwPBQcodh2w54VKrIZzKVFb/s3d75513VMnVgwcP4vnz56hUqZIKNKYx6JhlX1+9eqVmzePGjQOvp/3666+qehxrsLOue9asWcECNBUrVowTGa//4Ycf4OLiolZUmfXu999/V7FRXGX18/NT9dTnzp2rluGZGY8/Y79t2rRBjx49VLtRBf3o0aNgHXh/f3+VCGvs2LFIzHFne3+2qTk+o4LOZZj169djy5YtqlAB6wvT+BIyMI6ViGzJzCHof/wdjs3bdPj4fUd8+F78S1TxcelyezdWvriC7/LWQv9sZW0Jn/gqBJJFQPf8CYI3/YjQPX8DYaGqLceCxeD2cXs416gLpFCWxNAwgMdLLW0uzoj3I7906dIYMGAAevbsqaq7tWrVCiNHjkS1atXU71pWh8ufP7+q5c5KbNz+pPDz5BH3wD08PPDFF1+gadOm8f4eZsGZDh06YOPGjUq0mQmP++T//fefEm/++fHjx+okE40zdS8vL7Wvzt/vLEzDjw5+CEQVdBaqYYnZYsWKwcfHR4k6y8eKpT4Bo4I+f/58Jebt27dXL4Ihqp01gfnVyBfLlswcgr52Qzh27dehTQtHNKiTeEEvcX4troS8xn8lPkG1dNlsCZ/4KgSSRED38C6CN6xE6KFdgC5iu8qpdCW4NWsPp/LVktRmYm4y1FtIzD3muDZzRmBqPPUdKOjcw6aw0vj7lOVYKexRLSwsTJ0o4qydwWucjS9fvlxdQpHlNmjv3r3jdJc5RPhxwBKvtNDQUNXHv//+G6egc5bPDwiDOG/btk3N5jnDjyrogwYNgre3t/qgMPhvDl7SRvIJGBX02rVrq1rCTCrDF/DChQuqRy4F8Wfnz59PvgcWbMEcgr7853AcPqpTEe2MbE+M+YaHwuv0MjjBAYGVusNZk/Cee2Lal2uFgDURCL9xWQl52PH/1zfXaOBc9R24fdJJzcwtZX7+wMo1Wkt1F9mPZ3oNOreN+984f5/y96ehdsP48ePVjJdV3ViXffXq1WqWTuME6uzZs3jx4gWaNWum8n9QUDm7Z/32WrVqxTk21mfPnDmzus5g/DigUMecoXP5nPvrUX+n8yNiwoQJStSjCjpz3S9btkwt/7PG/LBhw2IdbbY4bOlQETAq6GXKlFEvV/r06aMJOvduGBh38uRJm8JoDkGfv1SL0+f06NvNCRXLJbxnHhXQVt+7eP/aX6iZLgcOlYh+FNCmQIqzQsAIAe254wj+/Udoz5+IuMrJCS61G8OteQc45Mgj7IBov08JxCDoTZo0QYMGDfDLL7+oiRSXvnmkjIJO42yZQsrleO6rU9DjM87QuUxvWFLn0j5/pzMbaExB50yfRWj279+vlt1p8c3QDf1xxk+/OaPndoFY6hMwKugMiChXrpxaWjHM0F+/fo3Bgwerhz579uzUH0EiPDCHoE+bq8XVG3oM6+eE4kUTJ+hfPTyGiY+OY3D28piZp2YiPJdLhYCVE9DrEXbsgNojD79+KcJZN3e4NvgIbh+1hcY7s5UPwLLuRV3xjCroXPnkPvmePXvUPjmPlXGZnbXaaR9++KFaNTVlqfvatWtqH5ynlLJnz64qyXHGbWwPnZM3fgAY9tA7deqEDz74INoMnVuvTDpGoy88AcUtA7HUJ2BU0B89eqTEnEvs9+7dU193nJ2zrODChQuRJUuW1B9BIjwwh6BPmKbFvQd6VVmNFdYSY42vbcZ23/v4tVAjtMxYODG3yrVCwDoJ6MIRenAngjf9BJZApWk8veD6fiu4NmkJjUd66/Q7lb2KT9C55M6l8r/++kstl3MldN26dWAyLwYpd+/eXQkyo9Y9PT3xySefqOC6+Iwzfc7qHR0d1fI4V1wZDBdXUByX3Tnj5h67m5ub6pvL9dwWiLrkzqA5XuPq6qqOL0+dOlVF24ulPgGTjq0xGINCziWbIkWKqEhMWzRzCPqICWF48RL4dpwzsiRy0pHh1FL46cJwr1wH5HGWX3S2+A6Jz/8nEBaKkD1/IeSPn6F79lj9pUOW7HD98DO41v8QcHEVVGYmwGh37p1369ZNFcrinjpFlwJti3lBzIxHmktoD53nInlEgWck7cHMIej9R4YhMAj47htnpPMwncrF4FcofWEdMju64XkFqXtuOjm50qoIBAWq8+PBf60Hz5MrIc9TEG7N2qlz5HCQQM+Uel6MZudyPPfYaffv31eVMHk0jTP4qJYxY0YVWCeWtggYnaFzaWXHjh3qq5B7NyyXyhm6rZo5BL3HwDDo9cCSOc6JOja7/PlldLuzB594F8JvhW3r/L6tPm/x23wE9P6+CNmyHiFbN4AZ3miOxcqoo2fOVeKOsjZf79ISCTDtNpfEGf3OxC9cFu/bt69KzS0mBEggwSV3RjLyvCTPnLMYC6MrKewMlGCyAluy5Ap6UDDwxYgwuLoCC6Y5J2roPe/sxZLnlzAjTw0MyV4hUffKxUIgtQjoXz1H8B8/I2Tnn0BoiHLDqWJ1uDXrAKeS5VPLLelXCAiBOAgkKOhR72G1HWaJYzL/w4cP4+rVqzYFNbmC/vIVMHx8GDJ6A9MnJE7Qy11cj3NBL3GweHO8nd62PoRs6iGLs2YhoHt8Xx09C92/FQgPBxwc4FyzPtxbdFRL7GJCQAhYHwGTBZ1pBDlL59nEp0+fqnSAPAJhS5ZcQb//UI/xU7XIlVODiSOdTB56kE6LdKeWwFESypjMTC5MHQLhd28geMMqhB3ZA7W35OIC13c/UGfINZkls2HqPBXpVQiYRsCooLMSD49P8H88a8j66Fxu51lJRlnamiVX0K/d1GPqd1oUKaTByAGmC/ouv/tocHUzqnpkxdGSLW0Nm/ibBghoL52JSAZz+ogaLY+buTZurqqf8RiamBAQAtZPwKig87w5Ay4o4g0bNrRIej9WA5ozZ47KO8w+uQrAM5QxzZAxiX/PjEo80sFzm8YsuYJ+5oIe8xZrUbaUBgN6mS7okx+dwJiHR/FFtrKYm1cCiKz/n0Xa8VB76giCfl+N8MsRmciYAMat6adwbdQMcEvEMY60g0xGKgSsloBRQec5x4RE0pwju3XrFjp27KgSKWTLlg1DhgxR6QiZ7SiqnTp1SpUa5HXMpsQPAGawYwRoSgr6v8d0WPZTON6q7IAeHU0/ntP0+t/4y+cOfi7YAG0zFTUnMmlLCCSegE6HsCN7EbxpNcJvX1f3MyWr28ft4FLnfZWqVUwICAHbIxBL0FldzVRj6T5zGtMc+vr6YujQoarZS5cuqTSEmzZtitbN3r17Va5jZqujsbQgI/BZ3zclBX33AR3W/BaOurUd0K6l6YJuSChzs2w7FHSRMoPmfGekrUQQ0GpVkJvK6vb4vrrRsVDxiKNnb72bYuVLE+GhXGoDBDjB6tWrF956661Y3q5Zs0YFSyc0ubKWYbIgDWPDTEmlay0+G/MjlqCzmo+pFlNoTb0vvutYj7dKlSpo0aKFuoRR9fzzuXPnot3C5XgmU+B2AHPNs8wr0w8mdEY+OUvuJ8/osedguKqr/EEjBzT/wBEBOi2mPz5ldNi8ZsaT08ji5IZn5SWhTHLfEWu8n/vPLEhizcaz46GHd0Umg2H5Utemn8K58tvW7Lb4Bqj02yzCUrlyZavgIYJuFY8hTidMjnK3xBBY9IVZkFhxyGAUYX7xGcoMGv6eCW9YEID5jZnNjklwnKIsFTZuHDt5y82bN8GCBUmx7xZpce6iXt3a6mNHNK7ngBshvihy/meTmvvYuwA2FX7fpGvlItsgQJEMWj0fobtNX9VK7ZHx6BmLpXBmLmYbBFiYpXDhwqrqpTWYCLo1PIW4fTBJ0C9fvqyEkCX2OAs2VNox97BGjx6N8uXLq/zEtLhq9PLvmehm7ty5qiYvsyVNnjwZYWFhmDJlSqRLzDsf0xjkl1RB/3qmFrfv6lHnbQfUru6AAvk0+C/gCapf3oh8LunRJXMJozhqe+ZEfU8pHWnudya12gs7vBuBK+dEzHjdPeDauAU0TlZ88sPBES5v14dDzryphUz6/T8BrVarYoBYZIWrjfx9yiBf/n5lERRuJ7LaGbNzjhkzRsUQGZa4+f+5TMziKPz9yERfkyZNUtnjGjVqpMqfuru7q56YL4S/u/n7MS5jWyzYsnv3brDGOeORZs2apTKD0ugTa6HzdylXRFl5jRbVH8ZZjRgxAjzWnDNnTpUm3FDkJaE22A5XVjlW+sA/8wQVy7uyMFjJkiUVAzLh+AoUKKC2VZklz1jbrONOJiwqxms58WOpWRpLz3JcLG7Do9cMwuYY7XbJPeqDJxAGprE4C18czpJv376tRJeBaOaGsHz5cjx58iSyfi9rAFPkY+Yp5ktesWJFVWmIxn8UfMkTqs+enCX3EePD8OIVMPUrZ2TOFEHpb587+OD632jilQ9/FflAfmGlAQK6V88R+MNUaE/9q0brXK0OPHoMhcYrYxoYvY0OMTQEYamwJaJxcYVT2SqxoDHeh9uV8+bNUz9jJcu8efPizz//VCVOly5dqiqp8fcvf8fGFHQKLyc0FCt+GDBv+8CBA1UaWIqUIbaJed5ZiY2/G+MTdB4/ZiwSTxJxQsR+ucTPfWXuh3PSxMlSq1atVBU4Q5Cy4QOD/bIwDFdXX758qa6jKHMPPaE2OD7qCLXF8KHAVYjvvvtOrbxy+5dB2eTB1Vd+UJBFnTp1jLZNDeEHANvdt2+fOgHFOCt+dPDDZOPGjSrLKYvacMyGcrI2+nZHc9voDH3QoEFKxCdOnBi53MOvr7FjxyrgBG9OY7EBlg9cu3ZtZJR7sWLF0K9fP/VgHj58qIoR8CW7cOECpk2bph701q1b1cNZv369UXeSI+i9BoUhXAcsmuUMwym6H19cRcfbu9AhUzGsLljfnCikLWsjoNcjZMcmBP38PRAUqI53efQeAedKkkfb2h5VTH90z5/At0/Ex78ljdXnMizcEKtLbiGy0MrXX38dLQ87/47xQ5xpR7WYgs4VzPfee09dwsDhYcOGgcHM/FDgyZ8lS5aoiRELufD3pmFGG9MRtksB5kcAjflGWIeds+CYhWD4AcHf+RTwqP4whonZQzNkiAj2nT17Nnx8fJSgJ9QGt0U//fTTSLfYbtSxMTiacQP8nU/jbD5XrlxKlI21HXWc/BipWrUqOGs3cOGEkMaJYNmyZdVqh7knp5Z8z6L2ZVTQ+TXGzHDZs2eP5h9fFr5QPD5mbuOLyQfHLyx+ifELissjfBgsTsCXjQ+C/xiYfpZflvSPHx1ckjFmSRX0kFCg77AwuLoAC6a/WVb97ulZDLx3CAOzlcPsvBJcZO53wVraC390D4HzJyH82kXlkkvDZvBo30cttYtZPwG972sEfv+NxR3VZPCGx+ej4uyXq54LFixQwjty5Eg1q23evLkSQq6AGhN0lk99++2I3ze8nzFErHPOpfx3331XzfS5qvngwQMw0Dg+o4Cy3rlhBs9ZLCdHnKjRF864WfOcxgBlCjDbMwh6mTJlVKT7+fPnI7vgMj9nwhxHQm1E7ZsNxPSHcVFcKjesOEyfPh1ZsmRBly5djLZNFqw0Rw2hHT9+HFzt5QoDZ/zs12AUe2pcmhB0fn3xiy3mWfRnz56pr8iUEPSU/FeXVEF//gIYOTEMWTIB3371RtDHPTyKSY9OYGKuqhibM/bSWkqORdq2AAGtFsGbfkTwxlWAVqvOanv0GwunYqUt0Ll0kRYIUAwp0BQVzrQ5Q2VCLWOCzkRfhtNI/B3MFVPDcWPulzPOifvC3K7kDNSYoEc9fhZV0DkD5syYk6qYFnWGbpjhGgL2uI3AfXXDDN2UNgztxwy2Mybo8fnHfCQMrGYcAhOOcX++Ro0aStA5KXz+/Hnkli5jA/hRwj37NCHon3/+uRJzvjCGLzV+9fBhBQUFmX3JPaX/ASdV0G/e0WPKLC0K5tdg9OA3STf63t2Phc8uYEG+2uiTtUxKuy/tW5CA9sZlNSvXPbijEq3wrLZbi06ANQe+WZCPdJV0Agz4YjAv974pOKxcyX1dBoYxSIvCQ4F8/Pix2uuNueTOADbGG3Hlsn///uC2JJfCaVyC52olRXX79u1GnYwpoFEFnfvfP//8s1pFYJAc97sZtBdzTxGvfp8AACAASURBVN/QP7dFeU2bNm2UgBr20E1pIymCHp9/5MmtBk5EGWvA3CYcA08KMCCaY/7tt9/Uqi7jFZiJNM3sofOF6tOnD5jTnV87fKBcTuH/Jyhb+6pJqqCfOa/HvCValC+twRc93wh6m5s7sP7Vdawr1BCfZrTdOvFJ/9Vkh3cGBSJozQ8I2f67Kk7C412clTvmMb6dY4ckZEgpRIDBu1xm5xI5g9IoMtxLNsQlMWCOEycupUdd4ubyNq9lQPDOnTvVkjj/jhHdhsh2uswZPOtuMCDOmBkTdN7HuCSKHkWSHx+MWeKMPOp9XK1llPv169dV3BOj5lm8y5BYxpQ2kiLoxvzj0jrjATgZ5YoH4woMgdWcuTPKnVu19JXL8/TR1rQsvuea4LE1ivixY8eUkPMFLF68uEr2El+gRQr9GzBLs0kV9AP/6rBqXThqVXdA58/eZIhreHUzdvrdx46iH6JBBjmSZpaHlIqNhJ08rCLY9a9fqDzm7m17qeNo0GhS0SvpWgi8IUAx5XJztWrV4sXC+CZGrnPiJZa2CCQo6PaEI6mC/vcOHTZuCUeThg5o0fSNoFe+9CtOBj7HyZKtUNEjiz2hSlNj0fu8QuCyWRElQwE4VayhItgdMsozTVMvgg0M1lhSF7rPpWjOSBkURuNqAI+2xbTvv/8eefLIJMQGHnmiXIxT0Hn4nns3jLw0GMP+ubTC/R8uVTD4Il26dInqLLUvTqqgr/89HDv26vBpM0c0rBuR1IBW4NyPuBPqj9tl2yO/i2dqD0/6TwIBZnkL+nEB9AF+6iy5R5dBcK5ZLwktyS1CIOUJxCfoPMvO6G/+TmZgGs+Gi6U9AnEKOo8JMNjBcB6Sx8S4J9O+fXu1ZzNz5kwVHUiBtyVLqqAvWR2O/07o0L2DI6pXeSPonqeWwF+nhV/F7kjvYMVZwmzpIVnI1/AnDxC4YHJk2VCXek3h3rGfqgMuJgSEgBCwRQJxCjrPQf7xxx+R57p5rpF/ZkIXGoulUPAZSWhLllRBn7VQi4tX9BjcxwmlikfspzK2wOHkDxH/v/LntoQhbfuqC0fwH2sQ/NsKICwUDtlywaPvaDiVjH72N21DktELASFgiwTiFHTm42VovyGogkcRevTooWbpNB6J4HL8xYsRiTZsxZIq6OOnanH/oR5fDXdC3twRgv4oLBC5zq5CTmcPPCwXkeNYzLoJhN++hoB5k6C7dxNwcITrR5/BvVVXwNnFuh0X74SAEBACJhCIU9CZ6IAp9ni2kZmDeOaR1c0Mke08okCRZwYeW7KkCvqQsWHw8QVmTnKG1//LmV8IfokyF9ajjFsmnCv9Jn2hLfFIM74GByFo3RKE/PNrxFG0/EXg8cVYOOYrnGYQyECFgBCwfwJxCjoFm6LO3OkMjuPBfGaNMxizEDFwjsn7bcmSKujdB4SpYS6Z4xx5gmm//0PUufIH3kmfE/uKm15D3pZ42YOvYWeOqrSf+pfPAFc3uH/aA65NWgH/r9hkD2OUMQgBISAESCDeY2vcI2aaPB7Oj3nmnHXF+XPW6LUlS4qgBwQCA0aFwcMdmPvtm8C331/fQosbW9HcuyA2Fo4olCBmPQSYvzto5VyEHozIluVUrio8eo2AQ9Yc1uOkeCIEhIAQMCMBOYeeAMzHT4Exk8OQPRswefQbQV/6/BJ63NmL7llKYkn+d834SKSp5BII3b9Vibne3xcaTy+4dx4Al9rRK1gltw+5XwgIAeshwNViVrEzZKizHs8s64kIehy8Hz0Bjp4MVz957QMwU1zRQhqMGBCR9nXGk9PY4XsP233vY2SOivgmd9z1hi37KK2nN93Thwjd+0+qOKS9cg7a/9e+dnmnMdw7D4QmveQISJWHIZ2ahQDrk3fu3FmVEjWncaWV6WZZzMUajMejWco0roIwCfmX2oKeHN8TGltifi6CHgetY6d0WLQyQtANVqm8Bn26Rgh61jMr8FwbUZpvWp4aGJa9QmKY2/W1umeP4TeuD/QvnqbaODVZsiNd75FqmV1MCNg6ARYW4famoaKZucbDMtWMjTLUQzdXu0ltZ+/eveD/kjLLTm1BT47vSeUV130i6HFQ+feYDst+CkeeXBpULBdxTC1/HgdUKBvx/zOeXobX4aFqdt4yY2FU9shqzmdis21RxP2+6gfO0B0LFIFzlTeZBi01KCaGcW3UDHCJqOMsJgSsjQBrYjAdK6t8cWZXqlQpVTCEcUmLFi1SpT9ZEOXDDz/EmDFjYlVbY/1yzmT9/f2RP39+VZyFxVyYCGz//v2RhVpYm/zy5csqq2dMY7ESVmXz9PREhgwZMHv2bNUOM9FR6Nk/q7+xchl9NZRhpW88rkzRZfZQppDNmTMnbt++rWKueH+LFi1Ud1wBGDdunKoDwmqdK1euVLlN2O++ffsQFhaGChUqqERlvJYrET4+Pqo9BmVz/OTCIGyWOu3QoQM6dYo4Isyj00xsxrZ5PY9ak4exjwHWVmc2vYMHDypfeU/UtLhx9TV//nxVC37IkCGqXyZXK1iwoGJFo88cw/r162P5zjwtM2bMiHxOX3/9dWQGv4R8Seo7a1TQWX6PxVj40tAOHDigjrDlzp1b1e718vJKar+pcp+pQXGGYiy1azigU5s3udsNTmc4tRR+ujD4VuwOT8kQp7DoXr+A/+he4AzdIW8hpJ8wHw7p/3/GL1WetnQqBCIIBOm02OX3wOI43B0cUd8zdr70Xbt2gRXVmKKVxrStefPmBRN4sbrZ0qVLldCyHGnMcqUUTJYFnTt3rgpWpiCxEhqPGPft21fNtpnpk8Za5Ky4xg+AuIwixdrhhhk622afc+bMifydn5Cgt2rVSp14oqhRZBs3bozDhw+ramYsC8v+2T7bpV7QZ+aXN5yaateundpO4DVRPxboL/PSc+bNhGYUf/bFSmrsi+NletvBgwerqnP8GXOjGBP00qVLK3969uypPhB4D6vesdBNfH2x31mzZmHt2rVKmFkVjx9hPMZNq1mzpqpFz+p3hg8dwzNt27atKkFLP3n8m8+bH1JkYMyX5LyoRgWdkPlVwb0blsTjw+IXCR3n1yS/rGzJTBX0PQd1+PnXcNSt5YB2rWILerpTSxCo0yKgYg94OLwpp2pLLMzpq873FfxH94buyQM45MqH9F//IGJuTsDSVrII3A31R/5zPyarjaTcnN8lPW6X7RDrVgZvsWIaf7dSEAzGv+Ps1pBy2/D3MeuhsyQoK6rRWP+ckyuKCj8UWJiF9dSfPHmiZtecCcdXGTMuQefveIqWwRIS9FGjRoF11A3G+9k/xW/48OHKL2NGDeEHCccYU9DJg/3zo4PGjxju+VPM+UHAmTZXF2hcYeDsPiFB56TUUCqVqwdceaCwx9cXy4fzGfEjhSsWXFW5cuWK6oelb1kHnqVaY/rOiS+PfXOFxWD8wJk+fbpakaGgx+dLUt41wz1GBZ2dMnkMa+3yK4XLFFOmTFHgGjZsiKNHjyanb4vfa6qgsxALC7I0qOOANi1iC7rryUUI1esQXKknXDWxf27xgaVih0rMx/WF7uFdOGTPjfSTf4BDhoyp6JF0LQSiE3imDUK325ZPU53VyR3LCtSN83GcOHFC5feg8HKWyNll8+bNlVAw9XZUiynoXI5+++231SW8n3XTWdebS/nvvvuumulzJvjgwQNVTz0+i0vQOXuNOqOPKehcWuZHhGHJnTXSo+Yj4SSQy9R3795Vqw2GdOEGH4KCgtS4z58/rz407ty5o1YSunfvHksUyYOzby7X07j0zQ8GzrJZU4RtGIzbC1x+T0jQeY/m/+WQeW2xYsXAmXR8fZEfl/q5EsCx80OKE1qKube3t9rSGDt2bCzfqZNZsmRRqwEG43NkW3Xr1lWCHp8vyfn3a1TQ+WD5hcUlHjpBaATA/RrWRI8KNDlOWOpeUwV96y4dfvszHO/Vd0DLj2ILttOJHxAOPbSVe8MRabdWts7fF/5jer8R80kL4eCd2VKPU/oRAjZPgL9DKdDbtm1TM23OvjlZMiboH330EZo1i0hmderUKSUohpkw98sZtc5959GjR0fufccFaujQoSqdd9Ql9169eimxNBhn6xQ1w0cG98z5EWEQdM44uaxsMIOgBwYGqvv4YRHVvv32W/BnnB07OTmpJfSsWbMqQefS/YULFyJFmbNmin1cUe+cWTOOwBAoyOVsLvknJOhs32BRBd1YX/xAcXNzU8vunI1zv59+c++eqwdcUYnpu2GVxNgMPT5fkvNSGxV0bvyzEAuXOZgKlksehpeIX5V8CW3JTBX0Ldt02PR3OJo2dkCzJrEFXXPiezXstFyURR/oD7+xfVRedCZrST95kYi5Lf1jEF9TjQBLUFMguNTM4DMuxW7cuFEt6W7YsEEtWVOoHj9+rDJ1xpyhUxC5pOvi4qKKZHGSxWVoGmfPDDqjuDEGyphxyZ8+cO+dFldpVi6bU8y5182JHAW+YsWKCQo64644m6ZO8AOFS/CcGVNE+XuYM1d+GHB2bJihc1+as/pVq1Ypf7ivzY8Fzug5G+Y+PLd6uWRuGDeXvPn3TEVeo0aNJAu6sb6OHTumguCyZ8+ung2NH0JcYaCQ07eYvnOFgsw4CWYgILWSsQn8IDDsoVtc0LmEQ4cp6Fx6MSx9cKmdD4h10W3JTBV0ijlFnWJOUY9qOujheOIH8G/D02iVNYq5/4T+CL91FZpMWeFJMc+czZZeBfFVCKQaAQaFUej4+5VLtxRSCiV/z3733XcqYI7iyaV0znJjCjoFlUFYXI7mbJpiw21Rg3EGT8Hh0rQx40yTe8QMEGO/jMiOOUPnkjhXDjibZh/sm1uvCc3QecyOy9EM2mMbXOXl8jsDygYNGqTGnidPHiXCFHrO0PkzFgFjxDw/MrhasWLFCiXy/PDhxweX+Dk7f/bsmYpyZ5rybNmyKS1inFdSZ+jkFF9f9ItxZHxmFGkaYwe4umJYgYjLd8Y00F9uMzAwjh9QFHcal9wtLuip9sanUMemCjqX27nszuV2LrtHtTC9Di4nF8FZ44DQSr1SyFPrbVYfHAj/r/q9EfOJC+GQLaf1OiyeCQE7IkBx5/IwI7PjM+7zLly4MLJaph0NX4aSAIEEz6HzC4hRffxCimn8grIlM1XQ120Mx859Onza3BEN340u6DwC43FqCdw0jgiq9CbgwZY4JNVXfUhwxMz8+kVovDJFzMxFzJOKU+4TAokmENeyeNRGuHTMSPfVq1erv+ZqQNSz1oZruRfOGbK9WVobb8znZ1TQeR6S6/48i849n5gWNRjCFl4MUwWdR9Z4dK1dS0fUrR1d0P11YfA8tRTpHJzgX7GHLQzbLD7qQ0PgP2kgwq+cg8bTW0WzO+awv18IZoEljQiBFCIQn6DzLDuTpqRLl06dd+YSr1jaI2BU0HmUwrCpbw9oTBX0VevCVf52JpVhcpmo5hMeCu/Ty+Dl6ILXFbrZA5YEx0AxD/hmGLQXTkaI+cQFcMwdkWxITAgIASEgBKyDgFFB51E1pq+zFzNV0Jn2lelfu7V3RI2q0QX9ZXgIMp9ejkyOrnhRoau9oIl3HHptGAImD4kQ83SeKmmMiLndP3YZoBAQAjZIwKigM+KRZySNBWDY0phNFfRFq8Jx7KQOvTo5omql6ILOJBXZzqxEVic3PC3fxZaGn2hf9eFaBHw7Atoz/wHu6eA5aSEc8xVOdDtygxAQAkJACKQ8AaOCzuMGPDrBNHs8RM/8vFGN2XBsyUwV9IXLtDh5Vo8+3ZxQ6f/FWQzjfBwWiJxnVyGHkzsele9sS8NPlK9KzGeMhvbEISXm6b+aC6dCxRPVhlwsBISAEBACliNgVNCZt515h2vVqhVnUBzPJ5rbmFiBgXg818eEBBMmTIj1IcE+mVyBWYp4HpMH9ZmRJ2aGpZi+mSro3y3S4txFPfr3dEK50tEzwd0P80fesz8it3M63C/X0dzDt4r29LpwBEz/MkLMXd1VoRURc6t4NOKEEBACQiBeAkYFnUkLeDje3HV44/Pm1q1b6Nixozp2wWQBzDXMyjqM7IxpPItZsmRJlRiByRlMMVMFfdZCLS5e0WNwHyeUKh5d0O+E+qHAuZ8QX+EFU/yw5mv0Oh0CZ49D2H97VQlSNTMvWtqaXRbfhIAQEAJCAIBRQWe2IQq6pWzx4sXw9fUFcwzTmMaQGXmYOSmqMQMR8xRzNp8YM1XQp83V4uoNPYb3d0KxwtEF/WaILwqf/xmFXDLgRtmIrEH2YkrM509C2MEdEWI+ZjacSpSzl+HJOISAEBACdk3AqKAvWrRIDZ7nG5k3OKWNaQ5Z9IUlBGmsrsM/M598VGPSBFa8YfpZVthhOj0mT2DeY2NmiqAzun3jlnC8eg1k+fw83DJoozXJKPd5T8+hmKsXrpRpm9JIEmw/7NgBlbXNHBZ++xrCjh8EnF2QftR0OJWpbI5mpQ0hIASEgBCwAAGjgs4I9/379ysxZ0WcmKKeUPL/xPrPEnWsXtOkSZPIWynC3Mc3lLzjD7h3zoxIzHZUokQJleuXhQ1YsMBgce2nM0fwtWvXjLo1c4EWl67q1TVrO61EoD66oBtuLuHmjUulP0vsEM1+fcC0kREibEZTM/NyVc3YojQlBISAEBACKU3AqKBTJI2ZuYuzcBmdlX0MKWU5A2cJ15hlWlmbnYFwhgpDLC7AmTzT/kUV/pi+mzJDnz5PiyvX9ahZzQHdSixWTXyVs0osDNmc3dEna5mUfj4Jtu83qjvCb1yGS8NmcPBKfh1yp1IV4VSmUoL9ygVCQAgIASFgXQQSzOVuSXc5w2ZJPe6b086ePav2ymPW1GUFuDNnzqjqNTRGxLNqz4kTJ4y6a4qgfzNHixu39BjcX4PSr5fAReOAECsuwuLTuxn0L5/D6/uN0EjFM0u+rtKXEBACQsCqCBgVdJbzW79+PbZs2aKElkfEaAcPHlTFWljv1px2//59VR+XheQNUe6s9cuat/v27cPDhw9V7VwfHx+wohDL8ZUqVQrc62cpOkO99vh8MkXQJ8/U4tZdPb4YFI4KL1bA29EFr6w0xStrA/t8WlsN12vNXmicnMz5OKQtISAEhIAQsCECRgV9/vz5Sszbt28PJpFhIBrt+PHjGDdunNrHNrexv6lTp6p6wHXq1FH9cu+eheVZ9Y01e2nc2+cMnR8WZcqUweTJk5ElS5Zkz9AnTtPi7gM9eg0KRbUXq5HT2QMPy3Uy9zDN0p7e5xV8enwITQZveC3dYpY2pREhIASEgBCwTQIJFmdZtWqVqqsbtSD7q1evwMItMfe2rR2BKTP0cd9q8fCRHp2HBKL2szVWfTwt/PZ1+A3vDId8hZBhRkS5RDEhIASEgBBImwSMCjpnvkeOHFGJZaIKOmukM3CNQWi2ZKYI+ujJYXjyFGg3zA/1nqxHGbdMOFf6U6scpvb0EfhPGaoi0hmZLiYEhIAQEAJpl4BRQe/Ro4fK484UsAZBf/36NXi8zMvLC7Nn25aImCLooyaG4dkLoOXwV3j/8QZU9ciKoyVbWuUbErrnLwR+/w1c6rwPj76jrdJHcUoICAEhIAQsQ8CooD969EiJOZfY7927p/aqOTvn2e+FCxcmuGdtmSGY3ospgj58fBhevgI+GvEMHz/6A3XS58Le4h+b3okFrwzeuBrB6xbDtVl7uLftbcGepSshIASEgBCwNgImHVvjcTAKOc97FylSxGbLqZoi6EPGhsHHF3hv5CO0evgX3suQF/8UbWptz035E7R8NkK2boB75wFwbdLKKn0Up4SAEBACQsAyBEwSdMu4kvK9mCLoA78Mg38AUHfUPbR/sA3NvQtiY+H3Ut65JPQQMHM0wv7bh3QDJ8K5Zr0ktCC3CAEhIASEgL0QiCXoY8eONXlskyZNMvlaa7jQFEH/YmQYgoKAmiNvodvDXWiXqSh+KtjAGtyP5YPfmN4Iv3oe6ScsgFPJ8lbpozglBISAEBACliEQS9C/+eYbk3s2ZHQz+YZUvtAUQe8zLAyhoUDlUdfQ58E+dM9SEkvyv5vKnsfdvW+/VtA9fYQMc9fBIUceq/RRnBICQkAICAHLEJAl9xicew0OQ3g4UGbUZQx6cBD9s5XFd3lrWeZpJLKX15/VAZ31Wr0DGjf3RN4tlwsBISAEhIA9EUhQ0IOCgrBjxw4V5c7CJ/nz51cV0VxdXW2Ogykz9O4DwtS4iow8j1EPj2BEjor4Nnd1qxurPsAPPl3eB9w84L16u9X5Jw4JASEgBISAZQkYFXRGt3/++efIlCmTim5nbnemX6XI//DDD+qMui1ZQoKu1wM9BkYIeu4RpzHx0XGMz1U1zmprqT1u3f3b8B3cXi21c8ldTAgIASEgBNI2AaOC/tFHH6F58+bo0qVLNEoLFixQs/ZNmzbZFL2EBF2rBXoPCYOjI+A1+DimPzmNaXlqYFj2ClY3Tu35E/CfOEAFwzEoTkwICAEhIATSNgGjgl6yZElVktTDwyMaJT8/P7z11luRxVpsBWFCgh4SCvQdFgYXF8DhiyNY8Ow85uWthX7ZylrdEEMPbEfgvIjjajy2JiYEhIAQEAJpm4BRQW/YsKEqUZovX75olJhkpm/fvti2bZtN0UtI0AODgC6TX+J2savQVr2Hk4HPsSx/XXTNUsJqxqm7fwuhh3dDe/0SmMvd9YPWcO/U32r8E0eEgBAQAkIgdQjEEvRnz54pTxwcHPDvv//ip59+Qp8+fVCgQAGw/vaNGzdU2lemhGV5U1uyhATdzx9oPf8OtjZ8UxZ2bcGGaJOpiNUMM3TnHwhcPD3SH/d2n8P143ZW4584IgSEgBAQAqlDIJagU/RMsbx582L37t2mXGo11yQk6K99gDaLbmFb/a0o6uqFtpmK4tNMRVDSLaPVjCH4l2UI/m0FnMpUhlOJcnCuUguOhYpbjX/iiBAQAkJACKQOgViCHhAQYLIn6dKlM/laa7gwIUF/8Qr4bOkN7Ki3HU298mNzkSbW4HY0HwIXT0Pozj/h0XMYXBpYZ9EYq4MmDgkBISAE0gCBBM+h2xODhAT96XOg3cpr2Fl3Jz72LoBNhd+3uuEHTB2BsBOHkG74t2p2LiYEhIAQEAJCgAQSFPTTp09j8eLFuHbtmtpD53n0bt26oWrVqjZHMCFBf/QEaP/TVex+dxdaeBfEBissyuI3qjvCb1yG5zdL4VjYeoL1bO5lEIeFgBAQAnZGwKig//3332Cxlo4dO6J06dIqU9z58+exevVqfPXVV+A5dVuyhAT9wSM9Oqy7ij3v7EbrjIWxvlAjqxueT+/m0L98Bq/vN0KTOZvV+ScOCQEhIASEQOoQMCrojRo1wujRo2NFs+/duxdTpkzB9u22lXI0IUG/e1+PTr9ewd539uCzTEWwpmDD1Hkq8fTKFRKfT2urn3qtP6A+sMSEgBAQAkJACCS45M7EMsePH0fM4Dd/f39Uq1bN7hLL3LqjR5dNl7Gv1l60z1QMPxasb1Vvid73NXy6N4Umgze8lm6xKt/EGSEgBISAEEhdAkZn6PXr18fkyZNRvXr04iQHDx4Ea6HbW2KZ6zf16LblEva/vQ+dMhfHygL1UvfpxOg9/M51+A3rDMd8heE5Y5VV+SbOCAEhIASEQOoSMCro69atw+zZs1UQXKlSpVRQ3MWLF1X2OC7Ff/yxbR2bSmjJ/cp1Pbr/cwEHax5A18wlsKxA3dR9OjF61545Cv/Jg+FUvhrSj55lVb6JM0JACAgBIZC6BBKMct+zZ48ScGaI02q1KF68uBL4unWtS+xMwZiQoF+8okfPnedxqPpB9MhSEovzv2tKsxa7JnTvPwhcOBkudd6HR9/RFutXOhICQkAICAHrJ5CgoFv/EEz3MCFBP3dRj957zuFw9UP4PGtpLMz3jumNW+DK4E0/InjNIrg2aw/3tr0t0KN0IQSEgBAQArZCwKigM/Dtjz/+QM6cOW1lPEb9TEjQz5zX4/P9Z/DvW/+iX9YymJcvIqLcWixoxRyE/PMb3DsPgGuTVtbilvghBISAEBACVkDAqKC/++67mDt3LsqVK2cFribfhYQE/eQZPfr+expHqh7BgGxlMSevdWViC5g1FmFH9iDdoIlwrmFdAXvJfzrSghAQAkJACCSHgFFBZ/GVRYsWYerUqaramq1bQoJ+7KQO/Y6dxtEq/2Fw9vKYmaemVQ3Zf1wfaC+fRfqJC1VhFjEhIASEgBAQAgYCRgWdZVMvXbqE+/fvI0eOHHB3d49GLiUSy2zYsAFz5sxBaGgoWI99woQJcHR0jPeJHThwAF27dsXhw4eRNWtWo082IUH/95gOA06dxLHKxzAsewVMy1PDqt4U3/6fQvf4ATLMXQeHHHmsyjdxRggIASEgBFKXQIIzdGPu1atn3mXfW7duqTSzPC6XLVs2DBkyBBUqVFCCHZcxwQ2vDw4OxqpVq5It6If+02HguRM4XvE4RuWohCm530rdpxOj99ef1QHCw+G1Zi80Tk5W5Zs4IwSEgBAQAqlLwKqi3FkExtfXF0OHDlVUuDowatQobNq0KU5K/FnNmjVV8Zjly5cnW9D3H9Zh8MXjOFHxBMbkrIxJuaql7tOJ2ntQIF53agS4ecB7tW2l3LUeiOKJEBACQsB+CcQr6CzMwj308PBwNG3aFMwal9L25ZdfokqVKmjRooXqKiQkRP353Llzsbret28ffv31V8yfPx/vv/++KhgTdcldp9PFuodn6Fk17rUPsO9weKyffx92HGedHuFR9kcYn6sqvspZJaWHbFL7wb8sgz4wACF//wKHXPmQYc4ak+6Ti4SAEBACQiDtEIhT0CmU48ePR8uWLVUBEM6QWYylSZMmKUpm8ODBaNCgQbR+uO999erVaIVI/Pz80K5dO6xcuRKZMmWKU9AbN24cy9ebN28qQb95W48ps7XRfu7n6Ydfmq+P/LuJuapirBUIuu7ZBKYkxwAAIABJREFUY/j2bRnpl1Opikg/fl6KPgdpXAgIASEgBGyPQJyCzpSu7du3R6tWEWedd+3ahRkzZuCff/5J0REynWz58uXRunVr1Q/3yJlHniVbo9qIESPAI3WcmdPimqHH5aghKO7qDT2mzdUicyagZjUHdelZlwcY5/0XcmozoJlbUXxWOC9qp0/98/dhxw4gYPooNTN3qVkfjnkKwLlmyq+WpOiDlsaFgBAQAkLA7ATiFHQGolG8DQllmPK1TJkyaunb2dnZ7E4YGuQ++JMnT9S+uRLZs2dVzvjNmzdH65O12V1cXCL/LiAgQFWEY0S8sRrtBkFnitdZC7UoVVyDwX0igssWP7+IXnf2WV3K1+DfVoBL7q5N28C9Y78UYy8NCwEhIASEgG0TiFPQKXynT5+OVja1cuXK4L569uzZU2zEPB7Xtm1brF27NjLKvVixYujXrx+4Z/7w4UN89tlnsfpP7Az97AU95i7WomwpDQb0ihD0Eff/xbQnp/FN7rcwMkelFBtjYhsOmDEaYUf3waPfGLi8815ib5frhYAQEAJCII0QiFfQu3TpEm02zmNh3FOPWht92LBhZse0ZcsWlciGR9Hq1Kmj9u45G1+yZAmuXLmilv5jWmIFnRnhFi7XomI5Dfp2ixD0lje2YcPrm1hfqCFaZyxi9nEltUHfL1pD9+QhPKevhGN+6/ErqeOR+4SAEBACQiBlCMQp6MOHDzept2nTppl0nbVcZFhyP3pSh8WrwlG1kgN6dYpIWlPp4q84FfQcx0u2RGUP4wlqLDUefUgwfDo0ADQaeK3dB41DxH6/mBAQAkJACAiBmASs6hx6Sj8eg6AfPqrD8p/DUaOqA7q1jxB0t5OLEaIPx8sKXZHR0TWlXTGp/fAr5+A39nM1M+cMXUwICAEhIASEQHwE0qSgH/hXh1XrwlG7hgM6tXHEc20wsp5ZAU8HZ/hW7G41b0vI9t8RtHSm2jvnHrqYEBACQkAICAERdACGGfqeAzr8/Fs46tZyQLtWjjga8BRvXd6ASh5ZcKKk9ZQlDVw8HaE7/1DR7YxyFxMCQkAICAEhYLKgMzOcsWIotozSIOg79uiwflM4GtRxQJsWjlj78hra3tqJlhkL4ddCsRPSpNaY/Ub3Qvi1C0g/dg6cylpH1rrUYiH9CgEhIASEgHECsZbcmQ3uxx9/RObMmVVCGUukfLXUQzII+j87ddiwORzv1XdAy48cMfnRCYx5eBTDs1fAVCuqsPa6fX0gNAReK/6BJp2npTBJP0JACAgBIWCDBGIJerly5XD06FG4ubmhatWqOHbsmA0OK26XDYK+eZsOf/wdjqaNHdCsiSO63t6DFS8uY1H+OuiZpZRVjFf36B58B3wGTcYs8FoUd3Eaq3BUnBACQkAICAGrIBBL0Fmq1MnJSVUxmzVrFoydNe/QoYNVDMJUJwyCvumvcGzZrlNiTlGvc2UT9vs/wo6iH6JBBuuoMx52ZA8CZo2FU4XqSP9l7LP3po5ZrhMCQkAICIG0QSCWoL98+RLLli3D9evXceDAAZVLPT5jqlZbMoOg//ZnOLbu0qnldi675z27GvfDAnCjTDsUcs1gFUMKXrcEwRtXwbVZe7i37W0VPokTQkAICAEhYL0EjB5b6969O5YuXWq93ifSM4Ogr9sYjp37dPi0uSPq1QGcTi6CAzQIrdQTjhrrSN4SMHUEwk4cQroB4+H8doNEjlQuFwJCQAgIgbRGwKigh4aGRiuCYutwDIL+0y/h2HtIh3YtHZGjqg9KXViHgi6euFm2vdUM0afPJ9A/f4IMs36CQ54CVuOXOCIEhIAQEALWSSDBxDIs0rJ48WJVR1yv16NIkSLo1q2bCpizNTMI+sq14Th4RKeSyviWuoem1/9GA8882FHsQ6sYkj7ADz5d3gccneD1825J+WoVT0WcEAJCQAhYNwGjgs7qamPHjkXHjh3BkqUajUbVJl+9ejW++uoro6VKrXHYBkFf9lM4/j2mU2lfj+W/gAH3Dqrodka5W4NpL56C//gv4FioODy/XWYNLokPQkAICAEhYOUEjAp6o0aNVD1yVj2Lanv37lVV0LZv327lw4vunioLe+YaxizyxT6vi6hc3gGX0j3AoYDHmJq7OobnqGix8egeP0Do/q1x9hd++xrCjh+ES72m8Og90mI+SUdCQAgIASFguwSMCnrJkiVx/PjxaCVTOVR/f39Uq1YNFy9etKmRU9APHrqGHosfYPP7f0bz/ddCjdAyY2GLjYeCHTDNuFi7dx0E1/c+sZhP0pEQEAJCQAjYLgGjgs4scZMnT451dO3gwYOYNGkStm3bZlMjp6Dv3X8VvVbcw1+N/0JeR090zVZcjaFblpLI65LeYuMJPbAdgfMmqkpqzlVrx9mvS+1GcMiZ12I+SUdCQAgIASFguwSMCvq6deswe/ZsFQRXqlQpFRTHWTnPqXMp/uOPP7apkVPQd+6+it4/38HWhv+gYYY82F40dQLhIiupNWwGjx5DbYqjOCsEhIAQEALWRyDBKPc9e/YoAb9x4wa0Wi2KFy+uBL5u3brWN5oEPKKgb91+FZ//ehM76m/HB175saVIk1QZR8ifaxD000K4ftQW7u37pIoP0qkQEAJCQAjYD4EEBd1+hhpRPnXL31fR989r2PXuLjT3LoiNhd9LlSEG/7IUwb+thFvrbnBr2SVVfJBOhYAQEAJCwH4IpDlB37T5Kvr9cxV739mNNhmLYG2hhqnyNINWzUXIX79IrfNUoS+dCgEhIATsj0CaE/TfNl1F/52XsL/WPnTMXAyrCtRPlacauGgqQndthkfP4XBp8FGq+CCdCgEhIASEgP0QSHOCvv63qxhw4AIO1jiA7llKYkn+d1PlaQbM+Qphh3chXf+v4FwrdVYJUmXg0qkQEAJCQAikCIE0J+g/r7+CQUfO4fBbh9Ena2ksyPdOioBNqNGAb4cj7ORhpBsxFc6V307ocvm5EBACQkAICAGjBIwKuk6nw/r167FlyxY8efIEO3fuVI3xHHpAQAAaN25sU3gZFLfq5ysYfPI0/qv6HwZmK4fZeVNHTJnalSle0381F06lK9kUR3FWCAgBISAErI+AUUGfP3++EvP27durVK+GzHDMHjdu3Dgw17stGQV92aorGHL+JI5XPobh2Stgap4aqTIEv5HdEH7zCjy/WQrHwiVSxQfpVAgIASEgBOyHgFFBr127NlatWoVChQqp4iwXLlxQI3/16hX4MxZqsSWjoC9afgXDrh7DyQonMTZnZUzMVS1VhuA7sC10D+8iw5w1cMiVL1V8kE6FgBAQAkLAfggYFfQyZcrgyJEjSJ8+fTRBv379Olq3bo2TJ0/aFAkK+sLFVzD89lGcLncKk3JVw5iclVNlDD69mkH/6jm8fvgdmkxZU8UH6VQICAEhIATsh4BRQe/RowfKlSuHL774IlLQX79+jcGDB8PLy0ulhbUlo6DP/f4KRj74F2fLnLV4hbWorF53agQEBcJ75TbAI50tYRRfhYAQEAJCwAoJGBX0R48eKTHnEvu9e/fAGTtn5yVKlMDChQuRJUsWKxxS/C5R0GfNv4JRTw/hQqnzKiCOgXGpYa8/rQ3o9fBatx8aB4fUcEH6FAJCQAgIATsiYNKxtRMnTighDw8PR5EiRVTp1JSyDRs2YM6cOQgNDUXDhg0xYcIEODo6Ruvu+fPnmDp1Kg4cOABnZ2e88847GD9+vPr/xoyCPm3OZXzpcwCXi1/Cgny10SdrmZQaSvzthgTjdYcGgIsLvH/abfn+pUchIASEgBCwOwJGBX316tVo3rw5PD09LTLwW7duoWPHjmCVt2zZsmHIkCGoUKECunbtGq3/U6dOgdd+9NFH4NG63r17g6Ve27Vrl6CgT5lxGWOC9uJq0atYmv9dVTbV0qb3eQWfHh9Ck8EbXku3WLp76U8ICAEhIATskIBRQWdk+/bt25E7d26LDH3x4sXw9fXF0KER5UQvXbqEUaNGYdOmTUb7X7FiBe7fv4+xY8cmKOiTpl7GWO1uXC98HasL1EeHzMUsMraonegeP4Bv/0/hkC0XMsz/xeL9S4dCQAgIASFgfwSMCvrAgQNRtmxZVS7VEvbll1+iSpUqaNGiheouJCRE/fncuXNGu+/fv7+aoUetzx4WFhbrHtZ0z/vNTzjtfQuvMr7C+kIN0TpjEbMOTXv5LLRnjxltU+f7CqHbN8GxQBF4Tltp1v6lMSEgBISAEEibBIwKOpe2x4wZg5IlS+Ktt96Cu7t7NEpNmzY1KzVGzzdo0ABNmrypUc5976tXr0Kj0cTZF7PWMdqeGe2cnJwir4nahuEvr127huvrBkde83vh99DMu6BZxxD8yzIE/7bCpDYdS5SD58SFJl0rFwkBISAEhIAQMEbAqKA3a9bMKL2ElsITi3706NEoX768OuNO8/f3R/Xq1eNNYHP27FkMHz4cXHLPmTNngt3x48Bz1I9gjF2ttxzwecFiKObqneB9ibkg6KeFCPlzDZzKVYVTMeMBdw45csPlndSpx56YMcm1QkAICAEhYP0ETIpyt9Qwli9frnLGc9+cRsGmyG/evDmWC5cvX8agQYPA9LSFCxc2yUUKep0mF5HBE5j1tfGIeJMajOOioOWzEbJ1A9y7DoLre58ktRm5TwgIASEgBIRAoghYlaAzsK1t27ZYu3ZtZJR7sWLF0K9fP+zbtw8PHz7EZ599hhs3boD75t999506RmeqGQTd2wuYMTFlBD3w+28QuucvePQeCZd65t2SMHWccp0QEAJCQAikPQJGBf3mzZv45ptv1B42A9SiGs+GHzp0yOzEWAyGZ8yDg4NRp04dVRTGxcUFS5YswZUrVzBjxgw1M+d1DlESsri6uqoZvTEzCHqmjMC08Skj6AHfjUfYoZ1S59zsb4Y0KASEgBAQAsYIGBX0Nm3agCLIvfQRI0YoceX575UrV2LmzJlg1LgtmUHQs2QGvh2XQoI+bSTCjh9EuqFT4FwtdWqt29IzEV+FgBAQAkLAPASMCjqPrB07dgxubm5gRDtnxTQWZZk2bZpKAGNLZhD0bFmBKWNSRtD9vx6kjq2lHz0LTuVTLqOeLXEXX4WAEBACQiDlCRgV9Bo1auCvv/5CpkyZ1Blv7m17eHiotKwVK1aMLKea8m6apweDoOfIBnw9OmUE3W9cH4RfPov0ExbAqWR58zgurQgBISAEhIAQSICAUUHnuXDuY1PMDTnVO3fujN27d6s66bt27bIpwAZBz5VDg4mj3pxZN+cg/EZ0Rfitq/D8dikcC5UwZ9PSlhAQAkJACAiBeAkYFfSXL1+qPO4sesLjZD179sTFixfh7e2tgtMo9rZkBkHPk0uD8SNSRtB9B7WD7sEdZJj1IxzymDdpjS2xFl+FgBAQAkLAsgQSfWzNz88P6dOnjzdzm2XdT1xvBkHPl1uDccNTSND7fALd8ycqRztztYsJASEgBISAELAEgUQLuiWcSqk+DIJeIJ8GY4akjKD7dG8Kve9reC3+ExrvTCk1FGlXCAgBISAEhEA0AkYF/fbt25g4caJKvRoQEBAL3YULF2wKp0HQC+XX4MvBKSPorzs2BIKD4L1yG+CRzqb4iLNCQAgIASFguwSMCnr79u2RPXt28L/p0sUWJ2ZxsyUzCHqRghqMHJhCgt66lkLivXYfVNJ4MSEgBISAEBACFiBgVNDLlSuHw4cPqz1zezCDoBcrrMHw/ikg6NowvG5bF9A4wHv9fntAJmMQAkJACAgBGyFgVNBr1qypksnwHLo9mEHQixfVYFg/8wu6PsAPPl3eB9w84L16uz0gkzEIASEgBISAjRAwKujLli0Da4izJro9zNINgl6quAaD+6SAoL98Dp/ezaDxygivJbErxNnIOyFuCgEhIASEgA0SiCXojRo1ihyGk5MT7ty5A51Oh6xZs6oUsFFt+3bbmoUaBL1MSQ0G9ja/oOseP4Bv/0/hkDUHMiz4zQZfB3FZCAgBISAEbJVALEFnFjhTrV69eqZeahXXGQS9XGkN+vc0v6AHr1+K4A0r4ZCnADLM+skqxixOCAEhIASEQNogkCbPoZcvo8EXPcwv6D69m0P/8hkcCxWH57fL0sYbJKMUAkJACAgBqyAQp6D/+uuvyJEjB2rXrh3p5OnTp1UJ1UePHoEz88mTJ8d5lM0qRhWPE4YZeoM6DmjTwvxHyl53agQEBcKjx1C4NGxmzSjENyEgBISAELAzAnEKOkul9u/fH4b9dFZXq1+/vjqP/tZbb6la6GXKlFECb0tmEHSKOUXd3Pb609qAXg+vdfuhcTB/++b2V9oTAkJACAgB+yEQp6CXL18ef/zxBwoUKKBG+ueff6o/M+qddu7cOSX4e/bssSkSBkFv29IR9WqbWXBDgvG6QwPAxRXeP9lWFTqbeojirBAQAkJACMRJIE5Br1SpEn777TcUKlRI3dSmTRv06NFDzdJpL168UMvxrLxmS2YQ9PatHfHu2+YVdL3PK/j0+FCOrNnSCyG+CgEhIATsiECcgt6tWzfkypULAwcOxNatW7F8+XLs2LEDDv9fRr5+/boS+ePHj9sUCoOgd2rjiNo1zCvokUfWsudChnm/2BQXcVYICAEhIARsn0Ccgk7Bpqg/fPhQBcctWLAATANrsN9//x0MnFuzZo1NETAIeue2jqj1lnkFPfz2NfgN7wLHAkXgOW2lTXERZ4WAEBACQsD2CcR7bE2v1+P58+fInDlz5MzcMNybN2+CPy9cuLBNETAIetd2jqhZzbyCrr18Fv7j+sCpRDmkn7jQpriIs0JACAgBIWD7BNLkOfTuHRxRvYqZBf3UEfh/MxROFaoj/ZczbP/NkBEIASEgBISATRFIk4Les5MjqlUyr6CH/bsbAbPHwblGPaQbNNGmXgJxVggIASEgBGyfQJoU9N6dHVGlonkFPXT3FgT+8C1c6n4Aj89H2f6bISMQAkJACAgBmyKQJgW9TzcnVCqnMeuDCvn7FwStnAvXJq3g3nmAWduWxoSAEBACQkAIJEQgTQp6v+5OqFDWvIIevHEVgtctgVuLTnBr0yMh7vJzISAEhIAQEAJmJZAmBZ2V1lhxzZwW9PP3CPnjZ7i37Q3XZu3N2bS0JQSEgBAQAkIgQQJpUtBZC5010c1pQctmIWTbRrh3GwzXxi3M2bS0JQSEgBAQAkIgQQI2K+gbNmzAnDlzwMIxDRs2xIQJE+DoaLyCmuEc+uA+TihV3LyCHjj/a4Tu3wqPvqPhUuf9BMHLBUJACAgBISAEzEnAJgX91q1b6NixI9atW4ds2bJhyJAhqFChArp27WqUjUHQh/ZzQomi5hX0gBlfIuzofqQbOhnO1eqY8xlJW0JACAgBISAEEiRgk4K+ePFi+Pr6YujQoWqAly5dwqhRo7Bp0yaTBH14fycUK2xeQff/ehC0Z48h/ZjZcCpXNUHwcoEQEAJCQAgIAXMSsElB//LLL1GlShW0aBGxVx0SEqL+zLKuBgsICIjFibP4ybWHqTzumTKaV9BD9vwF/Yun8Jy8CI5FS5vzGUlbQkAICAEhIAQSJGCTgj548GA0aNAATZo0iRwgl9OvXr0KjSZCqJs1axZr8BcuXMCxitkThJKcCzLM/BEOeQsmpwm5VwgIASEgBIRAognYpKCPHj0a5cuXR+vWrdWA/f39Ub16dZw/f94oAIr+r52Ho0BeB7i5JZqVSTe4NmkNTXpPk66Vi4SAEBACQkAImIuATQo667M/efJE7ZvTzp49C4r85s2bExT0a9eumYudtCMEhIAQEAJCwGoI2KSg379/H23btsXatWsjo9yLFSuGfv36iaBbzasljggBISAEhIAlCdikoBPQli1bMHXqVAQHB6NOnTqYMmUKXFxcRNAt+fZIX0JACAgBIWA1BGxW0JNCkHvosuSeFHJyjxAQAkJACFg7ARF0a39C4p8QEAJCQAgIARMIiKCbAEkuEQJCQAgIASFg7QRE0K39CYl/QkAICAEhIARMICCCbgIkuUQICAEhIASEgLUTEEG39ick/gkBISAEhIAQMIFAmhN0E5jIJUJACNgIATm1YiMPSty0CIE0JegWISqdYP78+ciTJ0+c+fQFT8oQ6NSpk8rFkDt37pTpQFoVAkLA6gmIoFv9I7I9B0XQLf/MRNAtz1x6FALWRkAE3dqeiB34I4Ju+Ycogm555tKjELA2AiLo1vZE7MAfEXTLP0QRdMszlx6FgLUREEG3tidiB/6IoFv+IYqgW5659CgErI2ACLq1PRHxRwgIASEgBIRAEgiIoCcBmtwiBISAEBACQsDaCIigW9sTEX+EgBAQAkJACCSBgAh6EqDJLUJACAgBISAErI2ACLq1PRHxRwgIASEgBIRAEgiIoCcBWlq+5fnz55g6dSoOHDgAZ2dnvPPOOxg/frz6/zqdDpMnT8aWLVvUnz///HO0a9dO4Xr58iWGDRuGs2fPIlOmTCqrWeXKldMyykSPnXzbtm2LokWLYtKkSQlyJeuRI0fi2bNnKFGiBGbOnIls2bIlul+5QQgIAdsgIIJuG8/Jarw8deoUbt26hY8++kgJeO/evVG/fn0l3L/++is2b96MxYsXIzAwEG3atMGsWbNQpkwZDB06VKUlHTBggBJ1/nfbtm1wc3OzmrFZuyPLly/Hvn37kC9fvkhBj48rP6gaNmyoPrb40bVq1SocPnwYixYtsvZhin9CQAgkkYAIehLByW0RBFasWIH79+9j7Nix6NatGzp37ozatWurn61cuRKPHj3CiBEjUKVKFRw6dAju7u7qZ5y9t2rVCvXq1ROUJhDgRxTFm4z//fdfJej8oIqPa+bMmfH111+rjywar61RowZ27twJT09PE3qUS4SAELA1AiLotvbErMzf/v37qxn6xx9/rP67evXqyAIh+/fvV3+msHC2vnfv3kjvp0+fDm9vb/To0cPKRmR97lCMO3TogNGjR+POnTtqpk1Bf/z4cbxcubTO67g9YrCWLVti3LhxKFeunPUNUjwSAkIg2QRE0JONMO02cPDgQcyePRvr16+Hk5MT3n77bfz555/g7JB29OhRzJkzR+2Xc2l+69atkbDmzZunZo1cehczTmDp0qVqC4MfT//880+koN++fTterjly5MDFixcxYcKEyMbbt2+Pfv36oXr16oJcCAgBOyQggm6HD9USQ+I++PDhw9WSe86cOVWXDRo0wLJly5A/f3715127dmHNmjVK0D/55BPwA8Bg/LssWbKgZ8+elnDXZvu4ceOGCmwjR+6LRxX0J0+exMuVgs79dgbCGYyrKBMnTkT58uVtloc4LgSEQPwERNDl7Ug0gcuXL2PQoEGq7nnhwoX/186ZAF01/nH8VyGahMQQRU0yyDoqS9YsLSJb2QtpGVHZhiJ7UaGoLG3I3m5GWYtQlpYRacG0yh4iS1P5z+c3/+f+z3u773tv573vXP9zv78Zc9/cc57zPJ/nvOf7286bOr9Lly7Wvn37VF18xIgRhuiQKm7cuLFNnz7datSo4cd36tTJj6VxS1Y6geHDh3sjW+XKlf2gjRs32qZNm6xevXr+NkFpXGvXru3cJ0+enDqvSZMmvgeUOmQiIALJIyBBT96eVuiKiBhJ/Q4ZMsQaNGhQ4lpTpkyxCRMmpLrc27VrZ/3793fR6d27t0fkPXv29C53UvA0aFWvXr1C55u0waMROmsrjWu1atWsRYsW3qxIkyJd7vAeO3Zs0pBoPSIgAv8lIEHXrbBVBIjMiQxDxMjJVatWdZHGBgwY4KJeqVIl78gOTW/r1q3zFP3cuXM9Sud1qtANv1UTKPKD0wW9LK5kUmC+Zs0az6QMGjTI6tSpU+QEtXwRSC4BCXpy91YrEwEREAERKCICEvQi2mwtVQREQAREILkEJOjJ3VutTAREQAREoIgISNCLaLO1VBEQAREQgeQSkKAnd2+1MhEQAREQgSIiIEEvos3WUkVABERABJJLQIKe3L3VykRABERABIqIgAS9iDZbSxUBERABEUguAQl6cvdWKxMBERABESgiAhL0ItpsLVUEREAERCC5BCToyd1brUwEREAERKCICEjQi2iztVQREAEREIHkEpCgJ3dvtTIREAEREIEiIiBBL6LN1lJFQAREQASSS0CCnty91cpEQAREQASKiIAEvYg2W0sVAREQARFILgEJenL3VisTAREQAREoIgIS9CLabC1VBERABEQguQQk6P+ne9u/f3/7448/7O677y74ChYsWGB9+vSxFStWWJs2bezee+8t+JySOIH169fbYYcdZrNmzbLddtstiUvUmkRABMpBQIIeE95NN91kb7/9tr322mu2yy67lBjlqKOOstGjR9uBBx4Yc/Tsp/2bBP28886zU045xa644gp3MnbeeecSC4DVpEmTSvy/HXbYwXAEKtq47u+//26XXnpp6lKXXXaZdejQwZo3b14hl58wYYLdfPPNW4w9ceJEO/jgg2NfsyIEnXmybw0bNvR54Sw8+OCDNn78+Njz1IkiIAKFISBBj8kdkXrzzTfttNNOs/vuu68ggv7XX3/ZnXfeGXMF+TuNqPH555+3Aw44IOOgsNpxxx3t6quvTn1fqVKlLRyh/M3ofyP16NHDjjzyyBKCjlg1adLE6tatWxGXNAR97Nix7tRFrUaNGrbNNtvEvma+BX3Dhg3u1IwaNSol6N9++61Nnz7dLrrootjz1IkiIAKFISBBj8kdkapfv76NHDnShg8f7gIRLBqhr1692k466SRbtGhRiYf5fvvt5w7BPvvsY0Tb1atX95T13LlzDaG+4IIL7IQTTrB77rnHfvzxR9t+++2tb9++dswxx/hlQoTOsW+88YZVqVLF2rZta7fcckvqOjycb7/9dnv//fdt11139TG7du1qiCniwPhEjddff719/vnnHpWlizIP/UGDBtnLL7/CHcMsAAAI/UlEQVRsv/32mx1yyCE+D4774osv/HqffPKJCzZzYC6ZInRSxDfeeOMWtOG4xx572HXXXZf67uGHH3YWDzzwgM/z6KOP9p8HDx7s/65WrZpf97jjjkud88ILL9iIESPsm2++8fHuv/9+mzJliovrtttua1WrVrVzzjnHz4NTp06d7IwzzvDz582b5zxhsNNOO1m7du3s2muvtcqVK/v3HE9UDyv2E34XX3yxj5HJuCYOTqYot1WrVnb55Zfb+eefnzqV45n7q6++ap999pmvlc9NmzbZ8ccf73Mjo5Eu6NnYcYHSxoMJPLgvw95RKsHhwEF9/fXXU/MbN26cPfbYY862Tp06hpPEOjDE/9lnn7UjjjjCszDcLzhK/fr1SzlMc+bM8TUsWbLE9w4Ha8iQIb4vMhEQgfwRkKDHZMnDFHFDaBF1BG+77bbz0eII+tNPP+1RHQ87hPLMM8+0fffd18aMGeMCNXnyZBs4cKC99957Lig8IDnnrrvustatW/vDtnv37kb6+8orr/R5IBoIAgLy/fffW7du3fxnhD2IAw9iUq6NGjWy3XfffYuH7IABA+zDDz80PhFlxIeH+1tvveVOCHbQQQf5wzykbdORwqo8gk4GAFHHceKaiE3v3r3dUUGoZ8yY4c4CQnT44Ye7M4CzhWPB2nCooin3qKD/9NNPXi5gjtT/v/76a3dw+LlLly4pQcepYn/q1avnos73Tz75pB166KFb3EFlCfrjjz9us2fP9nODMcfGjRv7/qxcudLnz77grOE0sL98xhH0ssbLtHcIdFTQ33nnHWfz0EMP+Vo//vhj50NUz75wPJyYH3uAE4QTumzZMj8Gwwkltd+iRQtbu3atO04nn3xyzN88nSYCIlAaAQl6zHuDh9z+++/v4olIIsQhpRxH0HnIIRjBiB5btmyZGpOHO/VXxKBWrVou6ETz0SjwlVde8SiWKJnvmCPCG+yZZ56xadOmeUQVxIGojIg0kxFtIZDPPfdcCeEiHXv66ad7HTpXQWduweHhHEQUByVblBnmifOCqAeDBU5EgwYN7JJLLrFmzZp59iHdsgn60KFDbf78+Snx4fwPPvjAucMQwwE48cQTrWfPnqnh2XdEiUg93RB0HA6i0WD0WSB+a9as8TQ3zkjNmjXtl19+8XXhpBD9phtOzPLly92hiiPoZY2Xae/SBR1HiExI586dU0MRXRNtMzeOx5Eky4Fzi5Gx4XgcQaxp06bueHLPyERABCqOgAQ9JluEiIiUyISo7uyzz3ZxJd0YR9B5sJMmDkakjXCSFg2WnqYnuiQdHmzp0qV21lln2cKFC4006W233VYi4v7nn3+sdu3anuoP4oDgl1ZLJsqiR4DxomJMOpXmNyKxTKKQjhRWPOyjooDYIWi5CjoNiHvttVdqaCJa0tREiUSAsIum4MOB2QS9V69etvfee3vUGYwmOhwZRJesRUi5R/cCEcOpCFF8dM0I+lNPPeWCF4xyxJ577un/vPDCCz3CZ39feuklz3q8+OKL/t2nn37qGR/Ys1/sMWtFROMIelnj5SLosMWZwGEKxj1DFI/jiKAj1uxP9D7k94H7Bps5c6ZH7zSJUrrAOSLLJBMBEcgvAQl6TJ5RQWcIomsedKRSibhIN/IAy1RD//vvvz3FHa2hp7+ChqATHSHQpQk6aWDqrcEWL17sDgB1U2rKOBjUfTNZLg1WRGFkCtIFnaj+zz//3CpB35qUO5E79f9QQ8/0qlZU0HGgcGyiopOroBOJk57PJujRmjtjZxP00mronMt3ZCzImHTs2NFOPfVUj/S/++47T0vT94Dg4wQ88sgj9uWXX+Ys6FF22cbLRdDJPJH1ibLlvsWBCoKeXnPHsYwKOtchw0RZipIDZQs+WZ9MBEQgfwQk6DFZpgs60RSRF1EXQvToo4+6oP/888/eMEdaN9ScqZHTVFReQf/oo49KvA5GExhRIa/S8R0i9O6773qjV7rlIug8hBFOnBVENRhrRIQoNWQShfRrlVVDp0uf5ihS1MGuueYazwjkKuhwJ+rLFC3DADFCOINFa+gIJnsT7Ugn5U49mzQykWR6E115BZ1sDHNC4OiVIIIlW8H9wN8VoG4djGZBmuMyRejZ2GUbj2uQZSBLEJoh01PulDPIfETZMhea6eilSD+eMTMJelgPjiA9Dfx+kAWRiYAI5I+ABD0my3RBZxjSpAjH5s2bPQIJ76HTmIZAIDxE5zfccIN3NJdX0InwEEJEgdos0SaRXhBaauOIOQ1JCMZXX33lkRJikougsyZq9XQpk3Yl/UzUj9NANoLXsMor6IxH6pxPuq2pW5OWJVLNVdDpCyCq5XgatyiB4DxRk77jjjv839TK2Re6xaMCTSYA54o9gWNoiov2L8QRdGr+pM6jRh09vLZGvZ97AWfmiSee8MMQyXPPPdcjePozqKuTzj722GMzCno2dtnG45qsk3VTDtm4caOXGaIRN/vMPRaa4rgXcDIQc5y9XASdcgL9BtyDlAC4P6dOnZoqQcT8FdRpIiACaQQk6DFviUyCzlAIOelfouUg6HQGE3n9+uuv3pV91VVX2bBhw7zOGl5bi5Ny51yiSx78pC8RA8Q7pDJ/+OEH/6ttRHw0uCFwNHYhlrkKOg95IjLEY926dR7R3XrrrV4yCFaeLnfGR7ToVGfeCBkd3kR5uQo686DUwX+kmalVcy4RIALNK2iUI9q3b++v3KULNCIDJz5xUuBIbT1wjCPo2f6wDILG61/8ERfS68HCfYHjhQiyVzgsmSL0bOwYs6zx+J4MDvtJrZ40Og5Pego9ZH5WrVrl/QaUG3ACsFwEHecFR4DonH4NzqdzXyYCIpBfAhL0/PLUaCIgAiIgAiJQEAIS9IJg10VFQAREQAREIL8EJOj55anRREAEREAERKAgBCToBcGui4qACIiACIhAfglI0PPLU6OJgAiIgAiIQEEISNALgl0XFQEREAEREIH8EpCg55enRhMBERABERCBghCQoBcEuy4qAiIgAiIgAvklIEHPL0+NJgIiIAIiIAIFISBBLwh2XVQEREAEREAE8kvgP2t2vFwqr841AAAAAElFTkSuQmCC" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAEsCAYAAAA1u0HIAAAgAElEQVR4XuydB3hUxdfG3/QCIaGF3pHem3SQqog0AZEuRREQpTdBiqAgAiKg9CJSFPjTpfcmvfcuVWpCGsmW73kn38Y0Npuw2ezdnPM8Pgi5O3Pmd2/2vTNz5hwno9FohJgQEAJCQAgIASGgaQJOIuiavn/ivBAQAkJACAgBRUAEXR4EISAEhIAQEAIOQEAE3QFuogxBCAgBISAEhIAIujwDQkAICAEhIAQcgIAIugPcRBmCEBACQkAICAERdHkGhIAQEAJCQAg4AAERdAe4iTIEISAEhIAQEAIi6PIMCAEhIASEgBBwAAIi6A5wE2UIQkAICAEhIARE0OUZEAJCQAgIASHgAARE0B3gJsoQhIAQEAJCQAiIoMszIASEgBAQAkLAAQiIoDvATZQhCAEhIASEgBAQQZdnQAgIASEgBISAAxAQQXeAmyhDEAJCQAgIASEggi7PgBAQAkJACAgBByAggu4AN1GGIASEgBAQAkJABF2eASEgBISAEBACDkBABN0BbqIMQQgIASEgBISACLo8A0JACAgBISAEHICACLoD3EQZghAQAkJACAgBEXR5BoSAEBACQkAIOAABEXQHuIkyBCEgBISAEBACIujyDAgBISAEhIAQcAACIugOcBNlCEJACAgBISAERNDlGRACQkAICAEh4AAERNAd4CbKEISAEBACQkAIiKDLMyAEhIAQEAJCwAEIiKA7wE2UIQgBISAEhIAQSFWC/tZbb+Hq1aty14WAEBACQkAIOBwBEXSHu6UyICEgBISAEEiNBETQU+NdlzELASEgBISAwxEQQXe4WyoDEgJCQAgIgdRIQAQ9Nd51GbMQEAJCQAg4HAERdIe7pTIgISAEhIAQSI0ENCvoRqMRM2bMwIIFC3D8+HGL7p1EuVuESS4SAkJACAgBDRLQpKBHRESgb9++8Pf3x/r163H06FGL0IugW4RJLhICqYJAcHAwypQpg4MHDyJz5swpNuadO3fi+++/x9atW1PMB+nYMQhoUtCJfu/evahevTrKly+PkydPWnQ3RNAtwiQXCYFUQcBWgt6xY0d06tQJdevWVVxbtGiB1atXRzEWQU8Vj5tNBqlZQScdnU6HihUr2p2gvwoHNu/Qx3sDT7vfwwXXBza5udKJENASgbTPr8M1LDBRLv/apkeiro9+sa0EfeXKlahUqRJy586N69evo02bNjFWFUXQk3wL5YOxCDisoH/wwQdxbvalS5dskinueQAwcGREvA/b3mp7cLWAZKuT30QhYA0CxvKfm23m3Llz+PHHH8E/9Xo9atasie+++w5eXl6ILej8+9ixY5XYPnr0CK9evVJtd+vWDYMHD0Z4eDgmTZqEdevW4eXLlyhVqhRGjhyJokWLquvYbo4cORAaGorZs2ejatWq+Pnnn9GsWTPVRsGCBdWfbNvPz099ZvPmzTh9+rRq98MPP8T8+fMRFBSk2h43bpx6CaCxje7du+O3337D/fv34erqiiFDhiAwMBDz5s1TY8mVKxcmTpyofBBLnQQcVtD5SxXb+Etii9Svj58CQ8dEII03UKemcww3hvutx3n3B6gTWgiZ9WlT51MnoxYC8RDIdmUDPEKe4GWmQtC7eFnEKKEZ+p07d3D79m2UK1cOYWFhSlDff/999WdsQacY8vqffvpJifJHH32E9u3b4+OPP1a+8Od///23+pN77qtWrcKvv/6KHTt2IG3atErQuRVIge/duzfSpUuHTJkyRQl648aNcerUKSXM0eN+OEP/4osvlF98cfDw8MDXX3+tXhoo1iZB599///13ZM2aFStWrMCYMWNQo0YN5S8/M2zYMOX3lClTLGInFzkeAYcV9Phula320B88AkaMj0C2LMDYYW4xXMl3dgluhb/EpeIfo7Bn5Fu6mBAQAkBg/w4w/HMT6SYthnPu/MmCZObMmbh165YS5diC3qRJEwwYMEDN4mmcXd+7d08FrHF2XrZsWSxduhSlS5eO8q1t27Zo2LCh2iOnoG/ZsgXbtm2Dm9t/v/emGbo5Qe/Vq5cSeb4Y0BgX9Nlnn+HIkSNRgl6vXj31okALCAhAhQoVsGzZMvUnbc+ePRg/frzyQSx1EhBBT4b7/s89I0ZP1CFXDid8M8g1qgcetXM7MQt6GBFR7jO4OsWcvSeDK9KkENAMgcDerWH49z7S/fwHnLNkt4rfZ8+exdy5c3Hz5k3w9+/p06cq7oaz2tiC3qBBA4wYMULNek2C/vDhQ7X0zc/z5+fPn4e7u3uUbxTQkJAQfPvtt0rQ2T6Xz6ObJYI+atQoNbs32ZUrV9C8eXPVH41tMLiOAXU0bgeUKFECu3fvjlpi5+pB//79sX//fquwk0a0R0AEPRnu2c07Roz7UYd8uZ0wvP9/gn4nPAh5zv6GLK5eeFi6czL0LE0KAe0SCPi0KYwvnsJ31ho4pc/0xgPhXvW7776Lb775BoypcXFxUbPua9euxSvoFNV///0XU6dOVWLP2ffAgQNRp04dXL58GZxhxxZ0ij2XuU2CTnHnPnxiBT32sbX4BJ3bBPQhuqDv27dPLcHTRNDf+JHRfAOaFvTE0rfVkvvVG0ZM+EmHgvmdMOTL/wR9X9AD1Ly8Bm+n8cfhIh8m1n25Xgg4NIEXnRsCIcHwXfAXnNL4vPFYt2/frsSVS9Em69evnwqOi2+GzgAzLrsbDAakT58erVu3Rrt27dRHuf/OmT2D0nh23WQU/fr16+OTTz5RM/SEBP3MmTPo3LkzTpw4EdVGfFHuIuhvfPtTZQMi6Mlw2y9eMeLHGToULeSE/r3+E/Qlz66gw80daJ2+AFbkb5AMPUuTQkC7BF58XAvQ6+G3dBfgGjP2JCmjunjxoooc5z5z4cKFVeIWBpJVq1YtXkFfu3Yt+N8PP/wAZ2dn+Pj4qGhyk1Gwjx07pvbfmdSKx9G4J8+gOAbAWSLoXJJn9PuSJUvUXjz74VK7zNCTcoflM7EJiKAnwzNx9oIRP83SoURRJ3zV478vhHEPjuPr+0cwKEsZTMhZJRl6liaFgDYJGA16BLSppZz3+8N6e8BMD71o0SI1w+bSOZfg//rrr3gF/fDhw2r2zBk8jWLLgDcee2OQG/NecGZPIedsvmTJkioanXvZNEsEndfNmjULc+bMUXv6fIHgbFwEXZvPrb15LYKeDHfk5FkjZszVoWxJJ/Tq9p+gf3p7N+Y8uYgZuWugZ+bILwExISAEAISG4EWnBoCnF/wWb7M5EiZ86dq1K3755RcUKVJE9c89+C5duqho86ZNm9rcJ+lQCCSWgAh6YolZcP2xkwb8ulCPCmWd0aOzS9QnGlxdj22Bd7GxYCM08s1jQUtyiRBIHQSMAc8R0P0DOKXzg+/cDTYfNIs8McELA+KiG4+TcYmee+ViQsDeCYigJ8MdOnTUgHlL9KhcwRndOvwn6IXPLcWVVwE4X7wNinmmT4aepUkhoE0Chn8fILB3KzhlygLfmatsPghGizMxC8+ZM+Mal9e5NM89dyaQMWVss7lj0qEQSAQBEfREwLL00v2HDVi4TI/qlZ3R+eNIQY9+Bj2kbHd4Of+3FG9pu3KdEHBUAoa7NxHYrwOcs+dGuqlLU2SYnKUzWI2R6gyG49I7Z+jRo9pTxDHpVAhYSEAE3UJQibls134Dfv9Tj9rVnNG+daSgP9KFIuvphcjk6onHpT9JTHNyrRBweAL6G5fwckg3uOR9Cz4TFzj8eGWAQiA5CMQR9Fq1IiNNLbHo5zstuT6lr7HVOfTtewxYvlqPerWc0aZFpKAfCf4Xb19ahfLemXGsaMuURiH9CwG7IqC7eBpB3/SCS+GS8Bn7i135Js4IAa0QiCPoBw4ciPKd6Q55vILFCfLnz6+ObjAP8sKFC1WKQSZh0JLZStA37zBg5To93q3rjJZNIgX9z+fX0frGVnzolx8rCzTUEjbxVQgkOwHd6SMIGtcPriUrIO2ImIFpyd65dCAEHISA2SX3li1bYujQoShfvnyM4bJiENMp8gyllsxWgr5hiwFrNunRuIEzmr0fKeg/PDqFQXcPoX+W0piUs6qWsImvQiDZCUQc2YvgScPgVr4a0gyekOz9SQdCwBEJmBX0YsWKqQpAadKkiTF25jlmGsQLFy5oiomtBJ1iTlFv1sgFjRtGFmDpfWcfZjw+h2m5quML/5Ka4ibOCoHkJhC+fytCpo2BW9U6SPPVmOTuTtoXAg5JwKyg161bV5XrY9Wf6LZ+/Xp1XpMpD7VkthJ0Lrdz2Z3L7Vx2p31wbRM2BNzGuoLv4QPfvFrCJr4KgWQnEL5zA0J+/R7utd+Dd8/hyd5fau2gcuXK2LRpEzJkyKBy1g8aNAjHjx9HlSpVVOnV1xmz27HCW58+fVIrOk2M26yg8xwm98qZe7ho0aIqFSKrDvHMJksEvvfee5oYpMlJWwn6+Ck63LhlRN0PQ3G54GXV/ZwnF3A/IgSni7VGKa+MmuImzgqBZCUQ/gqhS3/Fq01/wqNBc3h165+s3aXmxqMLOr/HZ8+erQrOUNz5/S6Cru2nI8Fja3fu3FG5i2/fvq3OUjPBAqsQaTHRgi0E/VU40GtghHoqin38EP3dYma9elm2G9I6v3nhCW0/duK9EACMIUFKxF9t/APG4JcKiUfjNvDq2FvwJBOB6ILOM/f8fmdCnYRMZugJEbKPnyco6PbhpnW8sIWgh70Ceg+KFPTKX9xF94DNKOrph9bpC8LNyRnDs8UMMLTOyKQVIaAdAsYXzxC2YTlebf0fEBaqHHf2zwb36vXhWqK8+s/RrWbNmqrk6v79+/HkyROUK1dOBRrTGHTMsq/Pnz9Xs+aRI0eC19P+/PNPVT2ONdhZ1z1z5sxgAZqyZcvGi4zX//rrr3B3d1crqsx697///U/FRnGV9eXLl6qe+rRp09QyPDPj8Wfst02bNujevbtqN7qgHzlyBKwDHxQUBCcnJ4wYMQKJOe7s6Pc2JcdnVtC5DLNixQps2LBBFSpgfWEaH0IGxrESkZbMFoIeHAJ8OTQC3l5ApUE3VbnU9hkK4bd8dbWESnwVAlYnYHjyCGFrfkP4rk1ARLhq3yVfIXg2bQ+3Ku8ATk5W75MNhkcALGlsa3N3gyqhHJ8VL14cX375JT799FNV3a1Vq1YYMmQIKlWqpL5rWR0uT548qpY7K7Fx+5PCz5NH3AP39vbGF198gcaNG7/2e5gFZzp06IDVq1cr0WYmPO6T//3330q8+feHDx+qk0w0ztR9fX3Vvjq/31mYhi8dfBGILugsVMMSs4UKFUJAQIASdZaPFUt5AmYFffr06UrM27dvrx4EU1Q7awLzrZEPlpbMFoIeFAx8NSwCadMAhfteQc87e9Ejc3H8kjvyDVtMCKQ2Aob7dxC2aiHCD+wADJGlSV2Ll4Nns/ZwLV0p2XE8fQ4MHhW5amZLy5gemDAq/u01Cjr3sCmsNH6fshwrhT26RUREqBNFnLUzeI2z8fnz56tLKLLcBu3Ro0e8w2IOEb4csMQrLTw8XPVx6NCheAWds3y+QJjEecuWLWo2zxl+dEHv27cv/Pz81AuFyX9bcpW+Xk/ArKDXqFFD1RJmUhk+gOfPn1ctcSmIPzt37pym2NpC0AMCgf4jIpDOB8j2xXl19nxgljKYKPXPNfWsiLNvTkB//ZIS8ohj/1/f3MkJbhVrwvPDTmpmbit7GQQsXKqzVXdR/fikdULntv8VZ4ruAL9P+f3J2S1t1KhRasbLqm6sy7548WI1S6dxAnXmzBk8ffoUzZo1U/k/KKic3bN+e/Xq1eMdG+uzZ8yYUV1nMr4cUKhjz9C5fM799ejf6XyJGD16tBL16ILOXPfz5s1Ty/+sMT9w4MA4R5ttDls6VATMCnqJEiXUw5U2bdoYgs69GwbGnThxQlMYbSHozwOAgSMj4OcLePc4ibEPjmN09ooYma2CpliJs0IgqQR0Z48h7H+/QXfueGQTrq5wr9EQns07wDlrzqQ261Cfiz5Bii7ojRo1Qr169fDHH3+oiRSXvnmkjIJO42yZQsrleO6rU9BfZ5yhc5netKTOpX1+pzMbaGxB50yfRWj27t2rlt1pr5uhm/rjjJ8vIpzRc7tALOUJmBV0BkSUKlVKLa2YHsAXL16gX79+6qZPmTIl5UeQCA9sIeim5b0M6YGIrkcw9d8zmJyzKvpmKZ0IT+VSIaAxAkYjIo7uU3vk+msXI5339IJHvSbwbNIWTn5yVDP6HX2doHPlk/vku3btUvvkPFbGZXbWaqd98MEHatXUkqXuq1evqn1wnlLKkiWLqiTHGbe5PXRO3vgCYNpD79SpE95///0YM3RuvTLpGI2+8AQUtwzEUp6AWUF/8OCBEnMusf/zzz/q7Y6zc5YVnDlzJjJlypTyI0iEB7YQ9CdPgSFjIpApA/C08wHMfXIRc/LURrdMRRPhqVwqBDRCwKBH+P7tCFuzBCyBSnPy8YXHe63g0aglnLzTamQgtnXzdYLOJXculW/cuFEtl3MldPny5WAyLwYpd+vWTQkyo9Z9fHzw4YcfquC61xln+pzVu7i4qOVxrrgyGC6+oDguu3PGzT12T09P1TeX67ktEH3JnUFzvMbDw0MdX54wYYKKthdLeQIWHVtjMAaFnEs2BQsWVJGYWjRbCPq/j4Fh30bAPxNwo91urHh+Dcvy1UebDAW1iEx8FgLxE4gIx6tdG/Fq7e8wPH6ornHOlAUeH3wMj7ofAO4eQs7KBBjtzr3zrl27qkJZ3FOn6FKgtZgXxMp4pLmE9tB5LpJHFHhG0hHMFoL+4BEwYnwEsvgDpz/aho0Bt7GhYCO875vHERDKGFI7gdAQdX48bOMK8Dy5EvKc+eDZrJ06Rw7n+IPAUjs2a4yf0excjuceO+3u3buqEiaPpnEGH93Sp0+vAuvEUhcBszN0Lq1s27ZNvRVy74blUjlD16rZQtDvPzBi5Pc6ZMsC7P1wI/YGPcDuwk1RK212rWITv4UAjEGBeLVhBV5tXqUyvNFcCpVQR8/cKsQfZS3YrEuAabe5JM7odyZ+4bJ4r169VGpuMSFAAgkuuTOSkecleeacxVgYXUlhZ6AEkxVoyWwh6HfvGzFqgg45szth3Qf/w8nQJzhetCXKecsek5aeFfE1koDx+ROErf0dr7avA8JfqX9zLVsZns06wLWoBHrKcyIE7IlAgoIe3VlW22GWOCbzP3jwIK5cuWJPY0nQF1sI+p27Roz5QYfcOZywpNEfuPoqAFdKtMVbHpFHQcSEgBYIGB7eVUfPwvduBvR6wNkZblXrwqtFR7XELiYEhID9EbBY0JlGkLN0nk38999/VTpAHoHQktlC0G/dMeLbH3XIk8sJM+svwUNdKO6X6oRsbt5aQiW+plIC+jvXEbZqESIO7wKMRsDdHR6131dnyJ0y+qdSKjJsIaANAmYFnZV4eHyC//GsIeujc7mdZyUZZak1s4Wg37htxPjJOuTL44Tv31mAIIMOUmFNa09K6vNXd/F0ZDKYU4fV4HnczKNhc1X9jMfQxISAELB/AmYFnefNGXBBEa9fv75N0vuxGtDUqVNV3mH2yVUAnqGMbaaMSfx3ZlTikQ6e2zRnthD0azeM+P4nHQrkc8KwGnOUO8byn9v/kyAepkoCupOHEfq/xdBfisxExgQwno0/gkeDZoCnrCqlyodCBq1ZAmYFneccExJJa4785s2b6Nixo0qk4O/vj/79+6t0hMx2FN1OnjypSg3yOmZT4gsAM9gxAjSlBf3KdSMmTtMhTyEdRlZeiLTOrnhZNrIEoZgQsAsCBgMiDu9G2JrF0N+6plxiSlbPpu3gXus9lapVTAgIAe0RiCPorK5mqbF0nzWNaQ4DAwMxYMAA1ezFixdVGsI1a9bE6Gb37t0q1zGz1dFYWpAR+Kzvm9KCfumqEZOm65CtWCi+rfC72jvnHrqYEEhxAjqdCnJTWd0e3lXuuOQvHHn07O3ayVa+NMXHLQ5YlQAnWJ999hnefvvtOO0uXbpUBUsnNLmyqkNv0BgL0jA2zJJUum/Qjc0+GkfQWc3HUosttJZ+7nXXsR5vhQoV0KJFC3UJo+r597Nnz8b4CJfjmUyB2wHMNc8yr0w/mNAZ+aQuuZ8+b8StO4Z43f7b4xZuuDyJ+llIKMCja2myhGN/1vMo5OGLyyXavika+bwdE+D+MwuS2LPx7Hj4wR1RyWBYvtSj8UdwK1/Nnt0W3wCVfptFWMqXL28XPETQ7eI2xOuExVHuthgCi74wCxIrDpmMIsw3PlOZQdO/M+ENCwIwvzGz2TEJjmu0pcKGDRvGcfnGjRtgwYLE2rwlehw6Gr+gb6+9Dbdz335tk+W8M+F40Zg1jhPbv1xvnwQokqGLpyN8p+WrWik9Eh49Y7EUzszFtEGAhVkKFCigql7ag4mg28NdiN8HiwT90qVLSghZYo+zYFOlHWsPa/jw4ShdurTKT0yLr0Yv/52JbqZNm6Zq8jJb0rhx4xAREYHx48dHucS887GNQX5JEfQZc3U4edaIiuWckTXWyZ3hfutw3v0h6oUWQkb9f79wadM4qeQyud190CVTEWujkvZSmEDEwZ0IWTg1csbr5Q2Phi3g5GrHJz+cXeBerS6cs+VKYXLSvU6nUzFALLLC1UZ+nzLIl9+vLILC7URWO2N2zq+//lrFEJmWuPn/XCZmcRR+PzLR19ixY1X2uAYNGqjyp15eXgoy84Xwu5vfj/EZ22LBlp07d4I1zhmPNHnyZJUZlEafWAud36VcEWXlNVp0fxhnNXjwYPBYc7Zs2VSacFORl4TaYDtcWeVY6QP/zhNULO/KwmBFixZVDMiE48ubN6/aVmWWPHNts447mbCoGK/lxI+lZmksPctxsbgNj14zCJtjdNgl9+g3nkAYmMbiLHxwOEu+deuWEl0Golkbwvz58/Ho0aOo+r2sAUyRj52nmA952bJlVaUhGn8p+JAnVJ89qUvuP87Q4eIVI/r1dEWxwk4xfjeKn1+OC2HPca74RyjumUG+rRycgOH5E4T8OgG6k4fUSN0q1YJ39wFw8k3v4CPX8PDCXyEiBbZEnNw94FqyQhxwjPfhduXPP/+sfsZKlrly5cK6detUidO5c+eqSmr8/uV3bGxBp/ByQkOx4osB87Z/9dVXKg0sRcoU28Q876zExu/G1wk6jx8zFokniTghYr9c4ue+MvfDOWniZKlVq1aqCpwpSNn0gsF+WRiGq6vPnj1T11GUuYeeUBscH3WE2mJ6UeAqxE8//aRWXrn9y6Bs8uDqK18oyKJWrVpm26aG8AWA7e7Zs0edgGKcFV86+GKyevVqleWURW04ZlM5WQ0/4VGum52h9+3bV4n4mDFjopZ7+PY1YsQIBZzgrWksNsDygcuWLYuKci9UqBB69+6tbsz9+/dVMQI+ZOfPn8fEiRPVjd68ebO6OStWrDDrTlIFfdxkHW7eNmJYX1fkzxtT0LOeXohHulA8KNUJWSV5jDUfB/tqy2jEq21rEPr7L0BoiDre5d1jMNzKSR5t+7pRcb0xPHmEwJ6RL/+2NFafSzdzVZwuuYXIQivffvttjDzs/DfGD3GmHd1iCzpXMN999111CQOHBw4cCAYz80WBJ3/mzJmjJkYs5MLvTdOMNrYjbJcCzJcAGvONsA47Z8GxC8HwBYLf+RTw6P4whonZQ9OlS6famDJlCgICApSgJ9QGt0U/+uijKLfYbvSxMTiacQP8zqdxNp89e3Ylyubajj5OvoxUrFgRnLWbuHBCSONEsGTJkmq1w9qTU1s+Z9H7MivofBtjZrgsWbLE8I8PCx8oHh+ztvHB5I3jGxbfxPgGxeUR3gwWJ+DDxhvBXwamn+WbJf3jSweXZMxZUgV95Hc63H9oxJghrsieLaagOx3/RXVpKNcjzj6/tdlIeylDQP/gH4RMHwv91QvKAff6zeDdvqdaahezfwLGwBcI+eU7mzvqlM4P3p8PjbdfrnrOmDFDCe+QIUPUrLZ58+ZKCLkCGt1iCzrLp1arFhnMyM8zhoh1zrmUX7t2bTXT56rmvXv3wEDj1xnbZb1z0wyes1hOjjhRoy+ccbPmOY0ByhRgtmfyp0SJEirS/dy5c1FdcJmfM2GOI6E2ovfNBmL7w7goLpWbVhx++OEHZMqUCZ988onZtsmCleaoIbRjx46Bq71cYeCMn/2ajGJPjUsVgs63L76xxT6L/vjxY/UWmRyCnpy/dUkV9EGjIvDsOTDhGzdkjLaq/tIQgXQn58pZ8+S8aSnZtk6HsDW/IWz1IkCnU2e1vXuPgGuh4inplfTtQAQohhRoigpn2pyhMqGWOUFnoi/TaSR+B3PF1HTcmPvljHPivjC3KzkDNSfo0Y+fRRd0zoA5M+akKrZFf8EwzXBNAXvcRuC+ummGbkkbpvZjB9uZE/TX+cd8JAysZhwCE45xf75KlSpK0DkpfPLkSdSWLmMD+FLCPftUIeiff/65EnM+MKY3Nb718GaFhoZafck9uX9PkyrofYZEgMfRfvrODWmiTcpuhb9EvrNLkMc9LW6V7JDc7kv7NiSgu35JzcoN926rRCs8q+3ZohNgz4FvNuQjXSWdAAO+GMzLvW8KDitXcl+XgWEM0qLwUCAfPnyo9npjz9AZwMZ4I65c9unTB9yW5FI4jUvwXK2kqG7dutWsk7EFNLqgc//7999/V6sIDJLjfjeD9mLv6Zv657Yor2nTpo0SUNMeuiVtJEXQX+cfeXKrgRNRxhowtwnHwJMCDIjmmFeuXKlWdRmvwEykqWYPnQ9Uz549wZzufNvhDeVyCv+foLT2VpNUQe/+VYSqUzFnqhucoq24Hw95jAoXV0KOpiX9y83uPhkagtClv+LV1v+p4iQ83sVZuUtO89s5djcOcchuCTB4l8vsXCJnUBpFhnvJprgkBsxx4sSl9OhL3Fze5rUMCN6+fbtaEue/MaLbFNnOQXMGz7obDAek1P0AACAASURBVIgzZ+YEnZ9jXBJFjyLJlw/GLHFGHv1zXK1llPu1a9dU3BOj5lm8y5RYxpI2kiLo5vzj0jrjATgZ5YoH4wpMgdWcuTPKnVu19JXL8/RRa1r2uvua4LE1ivjRo0eVkPMBLFy4sEr28rpAC7v9LQKQFEHX6YAe/SPAdPKzJsc8lrQ18B80vLoB9dPlxNa3PrDnoYtvFhCIOHFQRbAbXzxVecy92n6mjqPFeIuzoB25RAgkFwGKKZebK1Wq9NouGN/EyHVOvMRSF4EEBd2RcCRF0IOCga+GRaildi65R7flz67h45vb0CZ9QSzLH3Pfy5G4OfpYjAHPETJvcmTJUACuZauoCHbn9JkcfegyPo0RMJfUhUPhUjRnpAwKo3E1gEfbYtsvv/yCnDlzamz04m5CBOIVdB6+594NIy9NxrB/Lq1w/4dLFQy+SJMmTULt29XPkyLoT54BQ0ZHIGN6YMKomII+4/E59L6zDz0zF8eM3JGJC8S0RYBZ3kJ/mwFj8Et1ltz7k75wq1pHW4MQb1MNgdcJOs+yM/qb38kMTOPZcLHURyBeQecxAQY7mM5D8pgY92Tat2+v9mx+/PFHFR1IgdeSJUXQmZd91ASdOq7GY2vRbcyDY/jm/lGMyFYeY7K/fglMS4xSi6/6R/cQMmNcVNlQ9zqN4dWxt6oDLiYEhIAQ0CKBeAWd5yDXrl0bda6b5xr5dyZ0obFYCgWfkYRasqQI+vWbRnw3VacSyjCxTHT78p/9mPbvWUzNVQ1f+pfSEorU66tBj7C1SxG2cgEQEQ5n/+zw7jUcrkVjnv1NvYBk5EJACGiVQLyCzny8DO03BVXwKEL37t3VLJ3GIxFcjr9wITLRhlYsKYJ+/pIRU37RqZSvTP0a3drf3I7fn13Fb/nqon2GQlrBkGr91N+6iuCfx8Lwzw3A2QUeTT6GV6sugJt7qmUiAxcCQsBxCMQr6Ex0wBR7PNvIzEE888jqZqbIdh5RoMgzA4+WLCmCfuK0ETPn61CulBN6do0p6I2ubsRfgXewqeD7eM9X9qzs9lkIC0Xo8jl49defkUfR8hSE9xcj4JK7gN26LI4JASEgBBJLIF5Bp2BT1Jk7ncFxPJjPrHEmYxYiBs4xeb+WLCmCfvCIAfN/16NKRWd0be8SY7hvX1yFIyH/4nCRFng7Tcz0uFri4si+Rpw+otJ+Gp89Bjw84fVRd3g0agX8f8UmRx67jE0ICIHUReC1x9Z4/pxp8ng4P/aZc9YV589Zo1dLlhRB37nXgKWr9HinhjPatYwp6AXP/Y7rrwJxtURbFPTw1RIKh/eV+btDF05D+P7IbFmupSrC+7PBcM6c1eHHLgMUAkIgdRKQc+gJ3PdN2wxYvUGP9+o548MPYgp6+lPz8EIfjmdluiC9S2QRA7GUJxC+d7MSc2NQIJx8fOHV+Uu414hZwSrlvRQPhIAQsBYBrhazip0pQ5212tVaOyLoZu7Y1RtG/G+DHleuG9HsfRc0buCsrj4Z8gRrX9zE6AeRMQTG8p9r7b4nq7+Gf+8jfPdfydrH6xrXXT4L3f/Xvnav2RBenb+CU1qfFPFFOhUC1iDA+uSdO3dWpUStaVxpZbpZFnOxB+PxaJYyja8gTEL+pbSgv4nvCY0tMT8XQTdDa8NWA9Zs1KsrPv7QBXVrRgr6xIcnMfjeYfX/mVw98bj0J4lh7tDXGh4/xMuRPWF8+m+KjdMpUxak6TFELbOLCQGtE2BhEW5vmiqaWWs8LFPN2ChTPXRrtZvUdnbv3g3+l5RZdkoL+pv4nlRe8X1OBN0MzfVbDFi7SY9CBZzwUXMX5MkVWZnlizv7MP3xOTTyzY2G6XKjj//rSxRa82bZe1sU8Zff9AZn6C55C8Ktwn+ZBm3lOxPDeDRoBrjLFoitmEs/iSPAmhhMx8oqX5zZFStWTBUMYVzSrFmzVOlPFkT54IMP8PXXX8eptsb65ZzJBgUFIU+ePKo4C4u5MBHY3r17owq1sDb5pUuXVFbP2MZiJazK5uPjg3Tp0mHKlCmqHWaio9Czf1Z/Y+Uy+moqw0rfeFyZosvsoUwhmy1bNty6dUvFXPHzLVq0UN1xBWDkyJGqDgirdS5cuFDlNmG/e/bsQUREBMqUKaMSlfFarkQEBASo9hiUzfGTC4OwWeq0Q4cO6NSpk2qbR6eZ2Ixt83oetSYPcy8DrK3ObHr79+9XvvIz0dPixtfX9OnTVS34/v37q36ZXC1fvnyKldKCL75QY1ixYkUc35mnZdKkSVH36dtvv43K4JeQL4l7ov672qygs/wei7HwoaHt27dPHWHLkSOHqt3r66utQLDEBsWt2aTHhi0GNH3PBR+8Gzk7pzW7/hfWvriFFfnro3V6+1iuSuoDYK3PGV48RdDwz8AZunOu/Eg7ejqc06azVvPSjhBIMoFQgw47Xt5L8ueT+kEvZxfU9YmbL33Hjh1gRTWmaKUxbWuuXLnABF6sbjZ37lwltCxHGrtcKQWTZUGnTZumgpUpSKyExiPGvXr1UrNtZvqksRY5K67xBSA+o0ixdrhphs622efUqVOjvvMTEvRWrVqpE08UNYpsw4YNcfDgQVXNjGVh2T/bZ7vUC/rM/PKmU1Pt2rVT2wm8JvrLAv1lXnrOvJnQjOLPvlhJjX1xvExv269fP1V1jj9jbhRzgl68eHHlz6effqpeEPgZVr1joZvX9cV+J0+ejGXLlilhZlU8voTxGDetatWqqhY9q9+ZXnRM97Rt27aqBC395PFv3m++SJGBOV+S+rzxc2YFnZD5VsG9G5bE483iGwkd59sk36y0ZIkVdAbDMSiu+fsueP//9885XpZMZenUA0Wao2oaiZo2BD5H0PAeMDy6B+fsuZH2219FzLX0i+Hgvt4JD0Kes7/ZfJR53NPiVskOcfpl8BYrpvG7lYJgMv4bZ7emlNumf49dD50lQVlRjcb655xcUVT4osDCLKyn/ujRIzW75kz4dZUx4xN0fsdTtEyWkKAPHToUrKNuMn6e/VP8Bg0apPwyZ9QQvpBwjLEFnTzYP186aHyJ4Z4/xZwvBJxpc3WBxhUGzu4TEnROSk2lUrl6wJUHCvvr+mL5cN4jvqRwxYKrKpcvX1b9sPQt68CzVGts3znx5bFvrrCYjC84P/zwg1qRoaC/zpc3eVDNCjo7ZfIY1trlWwqXKcaPH6/A1a9fH0eOHHmTvm3+2cQK+sp1emzeYVDR7YxyN1nW0wvxSBeKOyU7IJd76s79rcR8ZC8Y7t+Bc5YcSDvuVzinS2/zeysdCoHXEXisC0XXW7ZPU53Z1Qvz8r4Tr1vHjx9X+T0ovJwlcnbZvHlzJRRMvR3dYgs6l6OrVaumLuHnWTeddb25lF+7dm010+dM8N69e6qe+ussPkHn7DX6jD62oHNpmS8RpiV31kiPno+Ek0AuU9+5c0etNpjShZt8CA0NVeM+d+6cetG4ffu2Wkno1q1bHFEkD86+uVxP49I3Xxg4y2ZNEbZhMm4vcPk9IUHnZ5ycIrdOeW2hQoXAmfTr+iI/LvVzJYBj54sUJ7QUcz8/P7WlMWLEiDi+UyczZcqkVgNMxvvItt555x0l6K/z5U1+k80KOm8s37C4xEMnCI0AuF/DmujRgb6JE7b6bGIF/Y81emzdZUCrpi5oWCdS0HVGA9xOzFL/byjXI+rhsNUY7KkfQ1Aggr7u8Z+Yj50JZ7+M9uSi+CIE7JoAv0Mp0Fu2bFEzbc6+OVkyJ+hNmjRBs2bN1CUnT55UgmKaCXO/nFHr3HcePnx41N53fBAGDBig0nlHX3L/7LPPlFiajLN1iprpJYN75nyJMAk6Z5xcVjaZSdBDQkLU5/hiEd2+//578GecHbu6uqol9MyZMytB59L9+fPno0SZs2aKfXxR75xZM47AFCjI5Wwu+Sck6GzfZNEF3VxffEHx9PRUy+6cjXO/n35z756rB1xRie27aZXE3Az9db68yQNrVtC58c9CLFzmYCpYLnmYHiK+VfIh1JIlVtCXr9Zj+x6DCoirXztS0G+Fv0S+s0uQwy0N7pbqqKXhW9VXY0gQXo7oqfKiM1lL2nGzRMytSlgac1QCLEFNgeBSM4PPuBS7evVqtaS7atUqtWRNoXr48KHK1Bl7hk5B5JKuu7u7KpLFSRaXoWmcPTPojOLGGChzxiV/+sC9d1p8pVm5bE4x5143J3IU+LJlyyYo6Iy74myaOsEXFC7Bc2ZMEeX3MGeufDHg7Ng0Q+e+NGf1ixYtUv5wX5svC5zRczbMfXhu9XLJ3DRuLnnz35mKvEqVKkkWdHN9HT16VAXBZcmSRd0bGl+EuMJAIadvsX3nCgWZcRLMQEBqJWMT+EJg2kO3uaBzCYcOU9C59GJa+uBSO28Q66JryRIr6EtX6rFznyHGkbX9QQ9Q4/IavJ3GH4eLfKil4VvNV4p50Og+0N+8AqcMmeFDMc/ob7X2pSEh4MgEGBRGoeP3K5duKaQUSn7P/vTTTypgjuLJpXTOcmMLOgWVQVhcjuZsmmLDbVGTcQZPweHStDnjTJN7xAwQY7+MyI49Q+eSOFcOOJtmH+ybW68JzdB5zI7L0QzaYxtc5eXyOwPK+vbtq8aeM2dOJcIUes7Q+TMWAWPEPF8yuFqxYMECJfJ88eHLB5f4OTt//PixinJnmnJ/f3+lRYzzSuoMnZxe1xf9YhwZ7xlFmsbYAa6umFYg4vOdMQ30l9sMDIzjCxTFncYld5sLuqP9UiVW0Jf8ocfuAwa0a+WCd6pHztCXP7uGj29uw4d++bGyQENHQ5TgeIxhIQj6pvd/Yj5mJpz9syX4OblACAiBNydAcefyMCOzX2fc5505c2ZUtcw371Va0AqBBM+h8w2IUX18Q4ptfIPSkiVW0Bev0GPvQQM6fOSCWlUjBX3So1MYePcQvvIvhSm5IgNTUosZX4VFzsyvXYCTb4bImbmIeWq5/TJOOyAQ37J4dLe4dMxI98WLF6t/5mpA9LPWpmu5F84ZsqNZahtv7PtnVtB5HpLr/jyLzj2f2BY9GEILD0ZiBX3hUj32/21ApzYuqFElUtC/+mc/fvr3LCblrIL+WcpoYdhW8dEY/gpBY7+C/vJZOPn4qWh2l6yO94VgFVjSiBBIJgKvE3SeZWfSlDRp0qjzzlziFUt9BMwKOo9SmDb1HQFNYgWdZVNZPrVLOxdUrRQp6C2vb8GqFzewPH99fJRKkspQzIO/Gwjd+RORYj5mBlxyRCYbEhMCQkAICAH7IGBW0HlUjenrHMUSK+hzFuvx93GDqoPOeui0ypdW4e/gf1NNUhmjLgLB4/pHinkaH5U0RsTcUX4jZBxCQAg4EgGzgs6IR56RNBeAoSUYiRX0WYv0OHrCgE87uaBSuUhBz3lmMe5FBON2yQ7I7eBJZYx6HYK/Hwzd6b8BrzTwGTsTLrkLaOmWi69CQAgIgVRDwKyg87gBj04wzR4P0TM/b3RjNhwtWWIF/dcFOhw7ZUSPzi6oUNZZnYF0PvGrGnJEuc/g6vRf9jgtcbDEVyXmk4ZDd/yAEvO030yDa/7ClnxUrhECQkAICIEUIGBW0Jm3nXmHq1evHm9QHM8nWtuYWIGBeDzXx4QEo0ePjvMiwT6ZXIFZingekwf1mZEndoal2L4lVtBnzNPh5BkjenZxRbnSTrgbEYRcZ35Ddjdv3CsVWfXHEc1o0CP4h2GRYu7hpQqtiJg74p2WMQkBIeBIBMwKOpMW8HC8tevwvg7gzZs30bFjR3XsgskCmGuYlXUY2RnbeBazaNGiKjECkzNYYokV9J/n6HD6nBG9u7miTEknHA5+hCqXVqOStz/+LuqYSWWMBgNCpoxExN+7VQlSNTN/q7gleOUaISAEhIAQSEECZgWd2YYo6Lay2bNnIzAwEMwxTGMaQ2bkYeak6MYMRMxTzNl8Yiyxgv7TLB3OXjCiz6euKFXcCSufX0erG1vRwi8fVhWIrHbkSKbEfPpYROzfFinmX0+Ba5FSjjREGYsQEAJCwGEJmBX0WbMii5DwfCPzBie3Mc0hi76whCCN1XX4d+aTj25MmsCKN0w/ywo7TKfH5AnMe2zOLBX0B4+AIyf0+OnZKbx4FYHK5Z3hn9kJx0IeY2PAbbtKKhNxdJ/K2mYN09+6iohj+wE3d6Qd+gNcS5S3RrPShhAQAkJACNiAgFlBZ4T73r17lZizIk5sUU8o+X9i/WeJOlavadSoUdRHKcLcxzeVvOMPuHfOjEjMdlSkSBGV65eFDViwwGTx7aczR/DVq1cTdOvoSQNmLdRjUduF0Lnq4lxvT0llgicOiRRhK5qamZeqaMUWpSkhIASEgBBIbgJmBZ0iac6sXZyFy+is7GNKKcsZOEu4xi7TytrsDIQzVRhicQHO5Jn2L7rwx/bd0hn6oaMGzFuix7yOc1UTA/0qwPu/2gdonj4/SnvZR5nQl0O7QX/9EtzrN4Oz75vXIXctVhauJcol93Mn7QsBISAEhICVCSSYy93K/ZltjjNsltTjvjntzJkzaq88dk1dVoA7ffq0ql5DY0Q8q/YcP37cbPuWCvq+QwbM/yMcC9svgLuTM16V+8yWGBLVV0CPZjA+ewLfX1bDSSqeJYqdXCwEhIAQcCQCZgWd5fxWrFiBDRs2KKHlETHa/v37VbEW1ru1pt29e1fVx2UheVOUO2v9subtnj17cP/+fVU7NyAgAKwoxHJ8xYoVA/f6WYrOVK/9dT5ZKui79hswf20IlrT5DX4u7nhepqs1h2m1tnguPuCjGqo936W74eTqarW2pSEhIASEgBDQFgGzgj59+nQl5u3btweTyDAQjXbs2DGMHDlS7WNb29jfhAkTVD3gWrVqqX65d8/C8qz6xpq9NO7tc4bOF4sSJUpg3LhxyJQpk1Vm6Nt2G7Bg80ssa7UU2dy8cd9Oz5wbA54joPsHcErnB9+5G6x9K6Q9ISAEhIAQ0BCBBIuzLFq0SNXVjV6Q/fnz52Dhlth72/Y+bktn6Jt3GDB/53P82eIP5HdPh+slI4va25vpb13Dy0Gd4Zw7P9JNiiyXKCYEhIAQEAKpk4BZQefM9/DhwyqxTHRBZ410Bq4xCE1LZqmgb9hiwPyDT/C/JqtQwjMDzhb/yC6HqTt1GEHjB6iIdEamiwkBISAEhEDqJWBW0Lt3767yuDMFrEnQX7x4AR4v8/X1xZQp2hIRSwV9zSY9Fhx7hHXvr0VF78w4UrSlXT4h4bs2IuSX7+Be6z149xpulz6KU0JACAgBIWAbAmYF/cGDB0rMucT+zz//qL1qzs559nvmzJkJ7lnbZgiW92KpoK9cp8eCc/ewqeFG1EqbHbsLN7W8ExteGbZ6McKWz4ZHs/bwatvDhj1LV0JACAgBIWBvBCw6tsbjYBRynvcuWLCgZsupWiroy1frsfDabWypuwXvpsuFv95qbG/3TfkTOn8KXm1eBa/OX8KjUSu79FGcEgJCQAgIAdsQsEjQbeNK8vdiqaD//qceC+5cx47aO9DcLx9W22ne9uAfhyPi7z1I89UYuFWtk/wApQchIASEgBCwWwJxBH3EiBEWOzt27FiLr7WHCy0V9EXL9Vjw8Ar21NiNdhnewpJ89ezB/Tg+vPy6B/RXziHt6BlwLVraLn0Up4SAEBACQsA2BOII+nfffWdxz6aMbhZ/IIUvtFTQmfZ1wYsLOFBlP7plKoo5eWqnsOfxdx/YuxUM/z5AumnL4Zw1p136KE4JASEgBISAbQjIkns8nGct0mNhyFkcrnQIffxL4qdc1W1zNxLZy4uPawF6PXwXb4OTZ7Rk84lsRy4XAkJACAgB7RNIUNBDQ0Oxbds2FeXOwid58uRRFdE8PDw0N3pLZ+gz5+mwQH8Kx8ofxeCsZfF9jsp2N1Zj8EsEfPIe4OkNv8Vb7c4/cUgICAEhIARsS8CsoDO6/fPPP0eGDBlUdDtzuzP9KkX+119/VWfUtWSWCvpPs3RY5HYcJ0ufwKjsFfFNtgp2N0zD3VsI7NdeLbVzyV1MCAgBISAEUjcBs4LepEkTNG/eHJ988kkMSjNmzFCz9jVr1miKnqWCPnmmDgvT/I2zJc5gYs4qGJiljN2NU3fuOILGfKmC4RgUJyYEhIAQEAKpm4BZQS9atKgqSert7R2D0suXL/H2229HFWvRCkJLBX3iNB0WZjyAi0Uu4Odc1dHbv6TdDTF831aE/Bx5XI3H1sSEgBAQAkIgdRMwK+j169dXJUpz584dgxKTzPTq1QtbtmzRFL2EBD0kFPh9XwAWPrmIy5nu4GnGp5iX5x10yVTEbsZpuHsT4Qd3QnftIpjL3eP91vDq1Mdu/BNHhIAQEAJCIGUIxBH0x48fK0+cnZ1x6NAhLFmyBD179kTevHnB+tvXr19XaV+ZEpblTbVkCQn6nbtG9FhyB3/V/68s7LJ89dEmQ0G7GWb49rUImf1DlD9e7T6HR1P7rAZnN9DEESEgBIRAKiAQR9ApepZYrly5sHPnTksutZtrEhL0cxeN6L/+JrbW3YLsunTo6F8IHbMVRFHP9HYzhrA/5iFs5QK4ligP1yKl4FahOlzyF7Yb/8QRISAEhIAQSBkCcQQ9ODjYYk/SpElj8bX2cGFCgn7oqAEj9jLl63a08MuHVXaY8jVk9kSEb18H708Hwr2efRaNsYd7LT4IASEgBFIbgQTPoTsSkIQEfctOAyacvopdNXeiTfqCWJa/vt0NP3jCYEQcP4A0g75Xs3MxISAEhIAQEAIkkKCgnzp1CrNnz8bVq1fVHjrPo3ft2hUVK1bUHMGEBJ1lU3++eRl7q+9Bx4yFsChvXbsb48uh3aC/fgk+382FSwH7CdazO1DikBAQAkIglREwK+ibNm0Ci7V07NgRxYsXV5nizp07h8WLF+Obb74Bz6lryRIS9AVL9Zj/7CL2V9mH7pmKYrYd5nAP6NEcxmeP4fvLajhl9NcSfvFVCAgBISAEkpGAWUFv0KABhg8fHieafffu3Rg/fjy2btVWytGEBJ0Z4v7Qn8fBtw+iV+YSmJ67RjKiT3zTXCEJ+CjSJ98V+9QLlpgQEAJCQAgIgQSX3JlY5tixY4gd/BYUFIRKlSo5XGKZb3/UYUOas/i74mH09S+Fybmq2dVTYgx8gYBujeGUzg++czfYlW/ijBAQAkJACKQsAbMz9Lp162LcuHGoXDlmcZL9+/eDtdAdLbHM4FER2JX9NI7aaVEW/e1reDmwM1xyF4DPpEUp++RI70JACAgBIWBXBMwK+vLlyzFlyhQVBFesWDEVFHfhwgWVPY5L8U2bauvYVEJL7p/1jcCxEidwoswJjMhWHmOyV7Krm6U7fQRB4/rBtXQlpB0+2a58E2eEgBAQAkIgZQkkGOW+a9cuJeDMEKfT6VC4cGEl8O+8807Kep6E3s0J+qtwoNfACJwqfxzHi5/E2OyV8HW28knoJfk+Er77L4TMHAf3Wu/Bu9fw5OtIWhYCQkAICAHNEUhQ0DU3IjMOmxP0J0+BIWMicK7qEfxd0D6rrIWt+Q1hS2fBo1l7eLXt4Ui3RsYiBISAEBACb0jArKAz8G3t2rXIli3bG3ZjHx83J+g3bhsxfrIOF+scxsGc5zA1VzV86W9f9d5DF0zFq79Wwqvzl/Bo1Mo+oIoXQkAICAEhYBcEzAp67dq1MW3aNJQqZV/CllRy5gT99Dkjfp6jw5V3D2Cf/0XMzF0Tn2cuntSukuVzwZNHIOLwLqTpOwZuVeokSx/SqBAQAkJACGiTgFlBZ/GVWbNmYcKECaramtbNnKDvP2zAwmV6XG26H3t9L2FuntromqmoXQ05aGRP6C6dQdoxM1VhFjEhIASEgBAQAiYCZgWdZVMvXryIu3fvImvWrPDy8opBLjkSy6xatQpTp05FeHg4WI999OjRcHFxee0d27dvH7p06YKDBw8ic+bMZu+sOUHftM2A1Rv0uNZyD/Z4X8XivHXRIWMhu3pSAvt8BMPDe0g3bTmcs+a0K9/EGSEgBISAEEhZAgnO0M25V6eOdZd9b968qdLM8ricv78/+vfvjzJlyijBjs+Y4IbXh4WFYdGiRW8k6Cv+p8e23QZc+3gX9rhdx4r89dE6vf3UQef4X3xcC9Dr4bt0N5xcXVP2yZHehYAQEAJCwK4I2FWUO4vABAYGYsCAAQoSVweGDh2KNWvWxAuNP6tataoqHjN//vw3EvQ5i/X4+7gB1zruwB7cxP8KvItmfvns52aFhuBFpwaApzf8Fmsr5a79QBRPhIAQEAKOS+C1gs7CLNxD1+v1aNy4MZg1Lrlt2LBhqFChAlq0aKG6evXqlfr72bNn43S9Z88e/Pnnn5g+fTree+89VTAm+pK7wWCI8xmeoWfVuBcBwJ6DevXzK27/4rjbHdx7YERwCPC8zA3cMgZgU8H38Z5v7uQeskXth61aCOPLQLza9Aecs+dGuqlLLfqcXCQEhIAQEAKph0C8gk6hHDVqFFq2bKkKgHCGzGIsjRo1SlYy/fr1Q7169WL0w33vK1euxChE8vLlS7Rr1w4LFy5EhgwZ4hX0hg0bxvH1xo0bStBv3DJi/BSd+vm5oudU7vbYtr3QB6jrk/L71IaHdxHYp02Ue67FyiLtqJ+T9T5I40JACAgBIaA9AvEKOlO6tm/fHq1aRZ513rFjByZNmoS//vorWUfIdLKlS5dG69atVT/cI2ceeZZsjW6DBw8Gj9RxZk6Lb4Yen6OmoLgr142YOE2HjBmAx7XPYUHawygSngWlw3OgQF5nuLkBn2QqgjzuPsk6Xksaf7X1fwid+yNc8heBW7kqcMmZF25Vk3+1xBLf5BohIASEgBCwHwLxCjoD0SjepoQyTPlaokQJtfTtRrVLJuM++KNHj9S+Oe3MmTMqZ/z69etj9Mja7O7u7lH/FhwcrCrCMSLeXI12k6BfuGzE5Jk6FCvshIgWZzHk3mEMzloW3+eIWYQmmYaZjhU6oAAAIABJREFUqGaDJw1DxJG98O4xBO51Gifqs3KxEBACQkAIpB4C8Qo6he/UqVMxyqaWL18e3FfPkiVLstHh8bi2bdti2bJlUVHuhQoVQu/evcE98/v37+Pjjz+O039iZ+hnzhsxbbYOJYs5IbjpGQy/9zeGZS2HcTneTraxJaVhVf+8Y33gVRjSzVwF50zJxz4p/slnhIAQEAJCwH4IvFbQP/nkkxizcR4L45569NroAwcOtPpINmzYoBLZ8CharVq11N49Z+Nz5szB5cuX1dJ/bEusoJ84bcTM+TqULeWEp41O4Zv7R+2yupr+ynm8/PozCYSz+lMmDQoBISAEHI9AvII+aNAgi0Y6ceJEi66zl4tMS+5HThgwe5EeFcs54379Exjz4BhGZ6+Ikdkq2Iuryg9Gt4etmAuPdz+EV5e+duWbOCMEhIAQEAL2RcCuzqEnNxqToB88YsD83/WoUtEZN985hnEPT+Db7JUw3M7KpQZ90wu6i6eRZuB3cKtYI7nxSPtCQAgIASGgYQKpUtD3HTJg0XI9alRxxqUaR/H9w5P4LsfbGJK1nN3cSmNYKAI6v6v88V24GU6eMdPu2o2j4ogQEAJCQAjYBYFUKei79hnw+0o93qnujNNVjuCHR6cwMWcVDMxSxi5uCp3QnTiEoO8HwqVQCfh8+6vd+CWOCAEhIASEgH0SiCPozAxnrhiKfQ7DMq9MS+7bdhmwYo0e9Wo540jFw5jy7xn8mLMq+mUpbVlDNrgqdOE0lRnOs+Un8Gzd1QY9ShdCQAgIASGgZQJxBJ3Z4H777TdkzJhRJZSxRcpXWwE0Cfpf2w1YtV6Pd+s6Y1/ZQ5j271lMzVUNX/rbT0nSwH4dYLh7Ez5jZsJFSqXa6hGRfoSAEBACmiUQR9BLlSqFI0eOwNPTExUrVsTRo0c1O7jYjpsEff0WA9Zu0qNxQ2dsL3EQMx6fw/TcNdArcwm7GKsh4DkCu38AeHhG7p+7SGU1u7gx4oQQEAJCwI4JxBF0lip1dXVVVcwmT54Mc2fNO3ToYMdDi+uaSdDXbNRjw1YDmjVywcai+/Hr4/P4JXdN9Mhc3C7GE753M0Kmfwu3CtWRZtD3duGTOCEEhIAQEAL2TSCOoD979gzz5s3DtWvXsG/fPpVL/XXGVK1aMpOgr1ynx+YdBrRs4oLVBfdizpOLmJ2nFrpnKmYXwwmZPhbhe7fA65Ov4PFeS7vwSZwQAkJACAgB+yZgNsq9W7dumDt3rn2PIBHemQR9+Wo9tu8x4KPmLliedw/mP72EeXneQZdMRRLRWvJdGtCtMYyBL5Buyu9wzpEn+TqSloWAEBACQsBhCJgV9PDw8BhFULQ+apOgL/lDj90HDGjX0gULc+3C4qdXsDBvHXTKWDjFh2j45yYC+3eAUzo/+M7dkOL+iANCQAgIASGgDQIJnkNnkZbZs2erOuIsFlKwYEF07dpVBcxpzUyCvnCZHvsPG9CpjQtmZd2J359dxZJ8ddEuQ6EUH9KrjX8gdNE0uNduBO+ew1LcH3FACAgBISAEtEHArKCzutqIESPQsWNHsGSpk5OTqk2+ePFifPPNN2ZLldrj8E2CPm+JHoeOGtC1vQumZdyB5c+vYVm++miToWCKu81kMkwqk6bPN3CrXj/F/REHhIAQEAJCQBsEzAp6gwYNVD1yVj2Lbrt371ZV0LZu3aqNUf6/l6os7OmrmDBNh/sPjPisswsGeK/D3qAH+CN/A7RKX8Bm4zE8uo/wPX/F6S9s/TJVLtV33kY4+fjazB/pSAgIASEgBLRNwKygFy1aFMeOHYtRMpXDDQoKQqVKlXDhwgVNjZ6Cvv/AVQwfF6H87tXVFe9jMR5EhGB1gXfR3C+fzcYTcXQfgn8YGm9/LnkLwmfiQpv5Ih0JASEgBISA9gmYFXRmiRs3blyco2v79+/H2LFjsWXLFk0RoKDv3nsF33yvQzofYHAfN+S7OxuhRj0uFG+Dop7pbTae8N2bEDJzPFzyvqXOm0c3l/yF4/ybzRyTjoSAEBACQkCTBMwK+vLlyzFlyhQVBFesWDEVFMdZOc+pcym+adOmmho0BX37zisYO0mHPLmcMLy/C1xO/AonAIbyn9t0LMzTznztHo1awavzlzbtWzoTAkJACAgBxyOQYJT7rl27lIBfv34dOp0OhQsXVgL/zjvvaI4GBX3z1iv4bqoO+fM6odsXEchyeiEyu3ri39Kf2HQ8YX/OB//zbNkZnq272bRv6UwICAEhIAQcj0CCgu5IQ6agb9h0BT9M16FQASc0/ywYhc4txVsevrhSoq1Nh2qqpubV8Qt4NP7Ipn1LZ0JACAgBIeB4BFKdoK9ZfwVTftGhWGEn1Oj8DJUurkIF78w4WtS2KVa5f859dO8eQ+Bep7HjPVkyIiEgBISAELApgVQn6CvXXMHPs3UoVdwJRds8RIOr61HPJye2FfrApuCDJw1DxJG9SNN/HNzejnks0KaOSGdCQAgIASHgEARSnaCvWHkFM+frUK6UE/xb3EarG1vRMn1+/Jm/oU1vaNCYPtCdO4G0I3+Ca4nyNu1bOhMCQkAICAHHI5DqBP33FZcxe5EeFcs5w+X9K+h+eze6ZiqCuXlsG+T3cnAX6G9egc/3c+GS3z6Kwjje4y0jEgJCQAikHgJmBd1gMGDFihXYsGEDHj16hO3btysyPIceHByMhg1tO6t909vCoLhFv1/G/N/1qFLRGS/qn8WAu4fQP0tpTMpZ9U2bT9TnA79oDWaLSzdtBZyz5kjUZ+ViISAEhIAQEAKxCZgV9OnTpysxb9++vUr1asoMx+xxI0eOBHO9a8ko6PMWXcbiFXrUqOKMazWP49sHxzEme0WMyFbBpkMJ6NIIxqBAVVGNldXEhIAQEAJCQAi8CQGzgl6jRg0sWrQI+fPnV8VZzp8/r/p6/vw5+DMWatGSUdBnzb+MpSv1eKeGMw5XOojpj89hWq7q+MK/pE2H8uKjGoDRCN/le+Hk7GzTvqUzISAEhIAQcDwCZgW9RIkSOHz4MNKmTRtD0K9du4bWrVvjxIkTmiJCQZ85+zJWrNGjfm1nbCyzG789u4LFeeuiQ0Yblk4NC8WLjvUBD0/4/Ra5jSEmBISAEBACQuBNCJgV9O7du6NUqVL44osvogT9xYsX6NevH3x9fVVaWC0ZBX3aL5exar0e79Z1xuJiW7A+4DbWFngPTfzy2mwoxmePEdCjOZzSZ4LvrDU261c6EgJCQAgIAcclYFbQHzx4oMScS+z//PMPOGPn7LxIkSKYOXMmMmXKpCkyFPTJ0y9j7SY9Gjd0xpQC61Xp1D2Fm6Jm2uw2G4vh7k0E9usA55x5kW7yEpv1Kx0JASEgBISA4xKw6Nja8ePHlZDr9XoULFhQlU5NLlu1ahWmTp2K8PBw1K9fH6NHj4aLi0uM7p48eYIJEyZg3759cHNzQ82aNTFq1Cj1/+aMgj5x6iVs3GpAs0YuGJ5rJc6EPsWpYq1R2itjcg0pTrv6y2fxcsTncClUHD7fzrJZv9KREBACQkAIOC4Bs4K+ePFiNG/eHD4+PjYhcPPmTXTs2BGs8ubv74/+/fujTJky6NKlS4z+T548CV7bpEkT8Ghdjx49wFKv7dq1S1DQx0+6hC07DWjZxAWf+f+OO+FBuFWyPfK422aMdFB34hCCvh8I1zKVkXbYJJuwlU6EgBAQAkLAsQmYFXRGtm/duhU5ctjmnPTs2bMRGBiIAQMGKOoXL17E0KFDsWaN+X3mBQsW4O7duxgxYkSCgj52wiVs32NAmxYuaOm7AAH6cLwo0xW+Lu42u9MR+7cheNpouFWrhzRfjrJZv9KREBACQkAIOC4Bs4L+1VdfoWTJkqpcqi1s2LBhqFChAlq0aKG6e/Xqlfr72bNnzXbfp08fNUOPXp89IiIizmdY0731F6fwV9qzKFXMGYvcjqtrjFasha67dAa6M0fN+ssMcRHHD8C9QTN4d4t8eRETAkJACAgBIfAmBMwKOpe2v/76axQtWhRvv/02vLy8YvTVuLF1q4Qxer5evXpo1KhRVD/c975y5QqcnJziHSez1jHanhntXF1do66J3obpH69evYoyHx/CyqZ/Rl3HmTln6NaysD/mIWzlAoua82zWAZ5tP7PoWrlICAgBISAEhIA5AmYFvVmzZmbpJbQUnlj0w4cPR+nSpdUZd1pQUBAqV6782gQ2Z86cwaBBg8Al92zZsiXYHV8OSrU9gNVNViGTkxd6ZS2OdC7u6JeldIKftfSC0CUz8WrdUriWqgjXQiXMfsy1ZAW4FrVe35b6KNcJASEgBISA4xGwKMrdVsOeP3++yhnPfXMaBZsiv379+jguXLp0CX379gXT0xYoUMAiFynoxTvsxdr316C8d2YcS4Ya6KHzp+DV5lXw6tIXHu9+aJFfcpEQEAJCQAgIgTclYFeCzsC2tm3bYtmyZVFR7oUKFULv3r2xZ88e3L9/Hx9//DGuX78O7pv/9NNP6hidpUZBL9JpFza8tx5V0mTBwSKRe/XWtJBfvkP4ro3w7jEE7nWsuyVhTT+lLSEgBISAEHAsAmYF/caNG/juu+/UHjYD1KIbz4YfOHDA6jRYDIZnzMPCwlCrVi1VFMbd3R1z5szB5cuXMWnSJDUz53XO0XKge3h4qBm9OaOgF/pkBzY13IhaabNjd+GmVvc/+KdRiDiwHWn6fAO36vWt3r40KASEgBAQAkIgPgJmBb1NmzagCHIvffDgwUpcef574cKF+PHHH8GocS0Zx1Kg61Zsqb8ZDdLlxJa3PrC6+8EThyDi2H6kGTAebpVqWr19aVAICAEhIASEQKIFnUfWjh49Ck9PTzCinbNiGouyTJw4USWA0ZJR0PN9uhnb6mxFY988WF/wv2h6a40j6Nu+6tha2uGT4Vo6+TLqWctfaUcICAEhIAQcg4DZGXqVKlWwceNGZMiQQZ3x5t62t7e3SstatmzZqHKqWkFBQc/TYyN21N6BFn75sKrAu1Z3/eXIntBfOoO0o2dIBLvV6UqDQkAICAEh8DoCZgWd58K5j00xN+VU79y5M3bu3KnqpO/YsUNTZCnoOXtuwO6aO9EmfUEsy2/9Pe6Xg7uAiWN8vp8Ll/xFNMVHnBUCQkAICAHtEjAr6M+ePVN53Fn0hMfJPv30U1y4cAF+fn4qOI1iryWjoGf/Yi32VtuDjhkLYVHeulZ3P7BvOxju3Ua6yb/BOWc+q7cvDQoBISAEhIAQiI9Aoo+tvXz5EmnTpn1t5jZ7xkxBz/Llahyosh/dMhXFnDy1re5uYM8PYXjyCOmm/wFnf9uVZLX6QKRBISAEhIAQ0BSBRAu6pkYXy1kKeuZ+K3Go0kH0ylwC03PXsPpwAro1hjHwBXxnr4OTXwarty8NCgEhIASEgBBI9Az91q1bGDNmjEq9GhwcHOfz58+f1xRVCnrG/ivwd8W/0de/FCbnqmZ1/190rA+EhcJv4RbAO43V25cGhYAQEAJCQAgkWtDbt2+PLFmygH+mSRNXnJjFTUtGQfcbuAzHyh/F4Kxl8X2OylZ3/0Xr6qpNv2V7ABcXq7cvDQoBISAEhIAQSLSglypVCgcPHlR75o5gFPR0Q5bgRJkTGJGtPMZkt/I5cV0EXrR9B3Byht+KvY6ATMYgBISAEBACGiFgdg+9atWqKpkMz6E7glHQ0wxbjNOlTmFs9kr4Olt5qw7LGPwSAZ+8B3h6w2/xVqu2LY0JASEgBISAEDBHwKygz5s3D6whzprojjBLp6B7fb0QZ0ucwcScVTAwSxmrPh3GZ08Q0KMZnHzTw3dO3ApxVu1MGhMCQkAICAEhEI1AHEFv0KBB1I9dXV1x+/ZtGAwGZM6cWaWAjW5bt2prFkpB9/hmHs4XPY+puarhS/9SVn0YDA/vIbDPR3DOnBXpZqy0atvSmBAQAkJACAiBRM3QmQXOUqtTp46ll9rFdRT0F9PH40mmJ/gld030yFzcqn6F/TEPYSsXwDlnXqSbvMSqbUtjQkAICAEhIAQSJeiOjIuCfm15PzXEeXneQZdM1k3NyuV2Lru75C8Mn+/nOTJKGZsQEAJCQAjYGYF499D//PNPZM2aFTVq/Jd45dSpU6qE6oMHD8CZ+bhx4+I9ymZn44vhDgXdZ+hvyJ/HCSOqFkRpr4xWddd0ZM27xxC412ls1balMSEgBISAEBACiZ6hs1Rqnz59YNpPZ3W1unXrqvPob7/9tqqFXqJECSXwWjIKeq1GF9CmhQvq1XK2ruuvwvCiQz3A3QN+S7RVtMa6IKQ1ISAEhIAQSAkC8c7QS5cujbVr1yJv3rzKp3Xr1qm/M+qddvbsWSX4u3btSgmfk9ynSdDbtnRBnRrWFXTjk0cI6PkhnDL6w/eX1Un2UT4oBISAEBACQiApBOIV9HLlymHlypXInz+/arNNmzbo3r27mqXTnj59qpbjWXlNS2YS9PatXVC7mnUFXX/rGl4O6gyXvAXhM3GhlrCIr0JACAgBIeAABOIV9K5duyJ79uz46quvsHnzZsyfPx/btm2Ds3OkCF67dk2J/LFjxzSFwCTondq4oEYV6wq67txxBI35Eq4lyiHtyGma4iLOCgEhIASEgPYJxCvoFGyK+v3791Vw3IwZM8A0sCb73//+BwbOLV26VFMETILeua0Lqr9tXUGPOLQTwVNGwq3yO0jTb6ymuIizQkAICAEhoH0Cr80UZzQa8eTJE2TMmDFqZm4a7o0bN8CfFyhQQFMETILepZ0LqlayrqCHb12DkLmT4F6/Gby7D9AUF3FWCAgBISAEtE8g1dVDZ5R7tw4uqFzBuoIetnoRwpbPgWeLjvBs86n2nwwZgRAQAkJACGiKQKoU9E87uaBSOesKeujin/Fqwwp4dfwCHo0/0tRDIM4KASEgBISA9gmkSkHv0dkFFcpaV9BDZoxD+J6/4N1zONxrv6f9J0NGIASEgBAQApoikCoFvWdXV5Qr5WTVGxX8/SBEnDiINIMnwK18Nau2LY0JASEgBISAEEiIQKoU9N7dXFGmpHUF/eXXn0F/5Tx8vv0VLoVKJMRdfi4EhIAQEAJCwKoEUqWg9/nUFaWKW1fQA7/8GIYH/yDd1KVwzp7bqjdJGhMCQkAICAEhkBCBVCnoX/VwRYmi1hX0gK7vw/gyAL7zNsLJxzch7vJzISAEhIAQEAJWJaBZQV+1ahWmTp0KFo6pX78+Ro8eDRcXF7NwTOfQ+/V0RbHC1hN0nskP+CiyMp3vin1wcrJe21a929KYEBACQkAIOCwBTQr6zZs30bFjRyxfvhz+/v7o378/ypQpgy5dulgk6AN6u6LIW9YTXWPQSwR0eQ9OaXzgu+Avh31YZGBCQAgIASFgvwQ0KeizZ89GYGAgBgyIzMh28eJFDB06FGvWrLFI0Af1cUWhAtYTdMPDuwjs0wbOWXMg3bQV9nu3xTMhIASEgBBwWAKaFPRhw4ahQoUKaNGihboxr169Un9nWVeTBQcHx7lpnMWPqzFQ5XHPkN6Kgv7iKcK3r4PLW8XhM26Wwz4sMjAhIASEgBCwXwKaFPR+/fqhXr16aNSoURRZ7o9fuXIlav+6WbNmcaifP38eR8tmSba74Vq2MtIOnZRs7UvDQkAICAEhIAReR0CTgj58+HCULl0arVu3VuMKCgpC5cqVce7cObN3mqL/Z+dByJvLGZ6e1n8oXHIXgFvl2tZvWFoUAkJACAgBIZAAAU0KOuuzP3r0SO2b086cOQOK/Pr16xMU9KtXr8pDIQSEgBAQAkLA4QhoUtDv3r2Ltm3bYtmyZVFR7oUKFULv3r1F0B3uEZUBCQEhIASEgCUENCnoHNiGDRswYcIEhIWFoVatWhg/fjzc3d1F0C2563KNEBACQkAIOBwBzQp6Uu4E99BlyT0p5OQzQkAICAEhYO8ERNDt/Q6Jf0JACAgBISAELCAggm4BJLlECAgBISAEhIC9ExBBt/c7JP4JASEgBISAELCAgAi6BZDkEiEgBISAEBAC9k5ABN3e75D4JwSEgBAQAkLAAgKpTtAtYCKXCAEhoBECcmpFIzdK3LQJgVQl6DYhKp1g+vTpyJkzJ+LLpy94kodAp06dVC6GHDlyJE8H0qoQEAJ2T0AE3e5vkfYcFEG3/T0TQbc9c+lRCNgbARF0e7sjDuCPCLrtb6IIuu2ZS49CwN4IiKDb2x1xAH9E0G1/E0XQbc9cehQC9kZABN3e7ogD+COCbvubKIJue+bSoxCwNwIi6PZ2R8QfISAEhIAQEAJJICCCngRo8hEhIASEgBAQAvZGQATd3u6I+CMEhIAQEAJCIAkERNCTAE0+IgSEgBAQAkLA3giIoNvbHRF/hIAQEAJCQAgkgYAIehKgpeaPPHnyBBMmTMC+ffvg5uaGmjVrYtSoUer/DQYDxo0bhw0bNqi/f/7552jXrp3C9ezZMwwcOBBnzpxBhgwZVFaz8uXLp2aUiR47+bZt2xZvvfUWxo4dmyBXsh4yZAgeP36MIkWK4Mcff4S/v3+i+5UPCAEhoA0CIujauE924+XJkydx8+ZNNGnSRAl4jx49ULduXSXcf/75J9avX4/Zs2cjJCQEbdq0weTJk1GiRAkMGDBApSX98ssvlajzzy1btsDT09NuxmbvjsyfPx979uxB7ty5owT9dVz5QlW/fn31ssWXrkWLFuHgwYOYNWuWvQ9T/BMCQiCJBETQkwhOPhZJYMGCBbh79y5GjBiBrl27onPnzqhRo4b62cKFC/HgwQMMHjwYFSpUwIEDB+Dl5aV+xtl7q1atUKdOHUFpAQG+RFG8yfjQoUNK0PlC9TquGTNmxLfffqtesmi8tkqVKti+fTt8fHws6FEuEQJCQGsERNC1dsfszN8+ffqoGXrTpk3Vn4sXL44qELJ37171dwoLZ+u7d++O8v6HH36An58funfvbmcjsj93KMYdOnTA8OHDcfv2bTXTpqA/fPjwtVy5tM7ruD1ispYtW2LkyJEoVaqU/Q1SPBICQuCNCYigvzHC1NvA/v37MWXKFKxYsQKurq6oVq0a1q1bB84OaUeOHMHUqVPVfjmX5jdv3hwF6+eff1azRi69i5knMHfuXLWFwZenv/6vvTOBtmps4/hThmglIVZFEqVlSFhK5qkIIaUiEUqxFGVoKUMDiWRIyZAoJUOarEWmImOGWIpEWppE5jJbDd/6Pet7z7fv6dx7Tvue63z2+T9rWffezt7vft/fu+/+P9O+Zs5MCfrSpUtL5VqrVi1buHChDRo0KDV4586drWfPnta8eXMhFwERSCABCXoCN/WfWBJ18L59+3rKvXbt2n7JFi1a2NixY61evXr+86xZs2zSpEku6O3atTMcgGD8W82aNa179+7/xHT/tddYsmSJN7bBkbp4VNBXr15dKlcEnXo7jXDByKIMHjzYmjRp8q/loYmLgAiUTkCCrrtjswksWrTI+vTp4//f87322it1fo8ePaxjx46puviYMWMM0SFV3LRpU5s9e7ZVr17dj+/WrZsfS+OWrHQCo0eP9ka2ypUr+0Hr1q2z9evXW/369f1tgtK41qlTx7lPnz49dV6zZs18Dyh1yERABJJHQIKevD2t0BURMZL6HTFihDVo0KDEtWbMmGFTpkxJdbl36NDBhg4d6qLTv39/j8h79+7tXe6k4GnQqlatWoXON2mDRyN01lYa16pVq1qrVq28WZEmRbrc4T1hwoSkIdF6REAE/ktAgq5bYbMIEJkTGYaIkZOrVKniIo0NGzbMRb1SpUrekR2a3tauXesp+nnz5nmUzutUoRt+syZQ5AenC3pZXMmkwHzVqlWeSRk+fLjVrVu3yAlq+SKQXAIS9OTurVYmAiIgAiJQRAQk6EW02VqqCIiACIhAcglI0JO7t1qZCIiACIhAERGQoBfRZmupIiACIiACySUgQU/u3mplIiACIiACRURAgl5Em62lioAIiIAIJJeABD25e6uViYAIiIAIFBEBCXoRbbaWKgIiIAIikFwCEvTk7q1WJgIiIAIiUEQEJOhFtNlaqgiIgAiIQHIJSNCTu7damQiIgAiIQBERkKAX0WZrqSIgAiIgAsklIEFP7t5qZSIgAiIgAkVEQIJeRJutpYqACIiACCSXgAQ9uXurlYmACIiACBQRAQl6EW22lioCIiACIpBcAhL05O6tViYCIiACIlBEBCToRbTZWqoIiIAIiEByCUjQ/6V7O3ToUPv999/tpptuKvgK5s+fb9ddd50tW7bMTjvtNBsyZEjB55TECfz222924IEH2ltvvWU777xzEpeoNYmACJSDgAQ9Jry+ffvaq6++ai+88ILtsMMOJUZp3ry5Pfzww7bvvvvGHD37af9Pgn7WWWdZixYt7KKLLnIno0aNGiUWAKtp06aV+Ldtt93WcAQq2rjur7/+auedd17qUueff7516dLFTjjhhAq5/JQpU+zaa6/dZOypU6da48aNY1+zIgSdebJve++9t88LZ+HOO++0p59+OvY8daIIiEBhCEjQY3JHpF5++WU78cQT7dZbby2IoP/55582aNCgmCvI32lEjY8//rjts88+GQeF1XbbbWeXXXZZ6vNKlSpt4gjlb0b/G+mKK66wQw45pISgI1bNmjWz3XffvSIuaQj6hAkT3KmLWvXq1W3LLbeMfc18C/rff//tTs3YsWNTgv7NN9/Y7NmzrVOnTrHnqRNFQAQKQ0CCHpM7IrXnnnvaQw89ZKNHj3aBCBaN0FeuXGnHHXecffrppyUe5g0bNnSHoF69eka0Xa1aNU9Zz5s3zxDqs88+24455hi7+eab7fvvv7dtttnGbrzxRjv88MP9MiFC59iXXnrJtthiC2vTpo3169cvdR0ezgMGDLA333zTdtppJx/zkksuMcQUcWB8osarrrrKFi5c6FFZuijz0B8+fLg988wz9ssvv9gBBxzg8+C4xYsX+/U++ugjF2yfeb/ZAAAI5klEQVTmwFwyReikiK+55ppNaMOxVq1aduWVV6Y+u+eee5zFHXfc4fM87LDD/Pu7777bf65atapf96ijjkqd88QTT9iYMWPs66+/9vFuu+02mzFjhovrVlttZVWqVLG2bdv6eXDq1q2btW7d2s//4IMPnCcMtt9+e+vQoYNdfvnlVrlyZf+c44nqYcV+wu/cc8/1MTIZ18TByRTlnnLKKXbhhRda+/btU6dyPHN//vnn7eOPP/a18nX9+vV29NFH+9zIaKQLejZ2XKC08WACD+7LsHeUSnA4cFBffPHF1PwmT55s999/v7OtW7eu4SSxDgzxf+yxx+zggw/2LAz3C47SLbfcknKY3n//fV/DZ5995nuHgzVixAjfF5kIiED+CEjQY7LkYYq4IbSIOoK39dZb+2hxBP3RRx/1qI6HHUJ5+umn2x577GGPPPKIC9T06dPt9ttvtzfeeMMFhQck5wwePNhOPfVUf9j27NnTSH937drV54FoIAgIyLfffmuXXnqpf4+wB3HgQUzKdf/997dddtllk4fssGHD7J133jG+IsqIDw/3WbNmuROC7bfffv4wD2nbdKSwKo+gkwFA1HGcuCZi079/f3dUEOpXXnnFnQWE6KCDDnJnAGcLx4K14VBFU+5RQf/hhx+8XMAcqf9/9dVX7uDwfY8ePVKCjlPF/tSvX99Fnc/HjRtnTZo02eQOKkvQH3jgAXv77bf93GDMsWnTpr4/y5cv9/mzLzhrOA3sL1/jCHpZ42XaOwQ6Kuhz5sxxNnfddZev9b333nM+RPXsC8fDifmxBzhBOKFffvmlH4PhhJLab9Wqlf3444/uOB1//PExf/N0mgiIQGkEJOgx7w0eco0aNXLxRCQR4pBSjiPoPOQQjGBEjyeffHJqTB7u1F8Rg5o1a7qgE81Ho8Bnn33Wo1iiZD5jjghvsIkTJ9rMmTM9ogriQFRGRJrJiLYQyEmTJpUQLtKxJ510ktehcxV05hYcHs5BRHFQskWZYZ44L4h6MFjgRDRo0MA6d+5sRx55pGcf0i2boI8aNco+/PDDlPhw/ty5c507DDEcgGOPPdZ69+6dGp59R5SI1NMNQcfhIBoNRp8F4rdq1SpPc+OM7Ljjjvbzzz/7unBSiH7TDSdm6dKl7lDFEfSyxsu0d+mCjiNEJqR79+6poYiuibaZG8fjSJLlwLnFyNhwPI4gduihh7rjyT0jEwERqDgCEvSYbBEiIlIiE6K6M88808WVdGMcQefBTpo4GJE2wklaNFh6mp7oknR4sM8//9zOOOMM++STT4w06Q033FAi4t64caPVqVPHU/1BHBD80mrJRFn0CDBeVIxJp9L8RiSWSRTSkcKKh31UFBA7BC1XQacBcdddd00NTURLmpookQgQdtEUfDgwm6D36dPHdtttN486g9FEhyOD6JK1CCn36F4gYjgVIYqPrhlBHz9+vAteMMoRtWvX9h/POeccj/DZ36eeesqzHk8++aR/tmDBAs/4wJ79Yo9ZKyIaR9DLGi8XQYctzgQOUzDuGaJ4HEcEHbFmf6L3Ib8P3DfYa6+95tE7TaKULnCOyDLJREAE8ktAgh6TZ1TQGYLomgcdqVQiLtKNPMAy1dD/+usvT3FHa+jpr6Ah6ERHCHRpgk4amHprsEWLFrkDQN2UmjIOBnXfTJZLgxVRGJmCdEEnqv/jjz82S9A3J+VO5E79P9TQM72qFRV0HCgcm6jo5CroROKk57MJerTmztjZBL20Gjrn8hkZCzImF1xwgbVs2dIj/dWrV3tamr4HBB8nYOTIkfbFF1/kLOhRdtnGy0XQyTyR9Ymy5b7FgQqCnl5zx7GMCjrXIcNEWYqSA2ULvrI+mQiIQP4ISNBjskwXdKIpIi+iLoTovvvuc0H/6aefvGGOtG6oOVMjp6movIL+7rvvlngdjCYwokJepeMzROj111/3Rq90y0XQeQgjnDgriGow1ogIUWrIJArp1yqrhk6XPs1RpKiD9erVyzMCuQo63In6MkXLMECMEM5g0Ro6gsneRDvSSblTzyaNTCSZ3kRXXkEnG8OcEDh6JYhgyVZwP/B3BahbB6NZkOa4TBF6NnbZxuMaZBnIEoRmyPSUO+UMMh9RtsyFZjp6KdKPZ8xMgh7WgyNITwO/H2RBZCIgAvkjIEGPyTJd0BmGNCnCsWHDBo9AwnvoNKYhEAgP0fnVV1/tHc3lFXQiPIQQUaA2S7RJpBeElto4Yk5DEoKxZMkSj5QQk1wEnTVRq6dLmbQr6WeifpwGshG8hlVeQWc8Uud8pduaujVpWSLVXAWdvgCiWo6ncYsSCM4TNemBAwf6z9TK2Re6xaMCTSYA54o9gWNoiov2L8QRdGr+pM6jRh09vLZGvZ97AWfmwQcf9MMQyXbt2nkET38GdXXS2UcccURGQc/GLtt4XJN1sm7KIevWrfMyQzTiZp+5x0JTHPcCTgZijrOXi6BTTqDfgHuQEgD353PPPZcqQcT8FdRpIiACaQQk6DFviUyCzlAIOelfouUg6HQGE3mtWbPGu7Ivvvhiu/fee73OGl5bi5Ny51yiSx78pC8RA8Q7pDK/++47/6ttRHw0uCFwNHYhlrkKOg95IjLEY+3atR7RXX/99V4yCFaeLnfGR7ToVGfeCBkd3kR5uQo686DUwX+kmalVcy4RIALNK2iUIzp27Oiv3KULNCIDJ77ipMCR2nrgGEfQs/1hGQSN17/4Iy6k14OF+wLHCxFkr3BYMkXo2dgxZlnj8TkZHPaTWj1pdBye9BR6yPysWLHC+w0oN+AEYLkIOs4LjgDROf0anE/nvkwERCC/BCTo+eWp0URABERABESgIAQk6AXBrouKgAiIgAiIQH4JSNDzy1OjiYAIiIAIiEBBCEjQC4JdFxUBERABERCB/BKQoOeXp0YTAREQAREQgYIQkKAXBLsuKgIiIAIiIAL5JSBBzy9PjSYCIiACIiACBSEgQS8Idl1UBERABERABPJLQIKeX54aTQREQAREQAQKQkCCXhDsuqgIiIAIiIAI5JfAfwBhjvNcVITxeAAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" @@ -159,7 +159,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAEsCAYAAAA1u0HIAAAgAElEQVR4XuydBZiUZffG792ZLXbpbkS6WxppRZBQOqRREKS7SwkpBenyIwWkDDpFpbu7G7Zr4n/dD//BZdmZnV1mdmdmz7kuLz/kfZ/4ve839/uc5zznuBmNRiPEhIAQEAJCQAgIAacm4CaC7tTPTwYvBISAEBACQkAREEGXF0EICAEhIASEgAsQEEF3gYcoUxACQkAICAEhIIIu74AQEAJCQAgIARcgIILuAg9RpiAEhIAQEAJCQARd3gEhIASEgBAQAi5AQATdBR6iTEEICAEhIASEgAi6vANCQAgIASEgBFyAgAi6CzxEmYIQEAJCQAgIARF0eQeEgBAQAkJACLgAARF0F3iIMgUhIASEgBAQAiLo8g4IASEgBISAEHABAiLoLvAQZQpCQAgIASEgBETQ5R0QAkJACAgBIeACBETQXeAhyhSEgBAQAkJACIigyzsgBISAEBACQsAFCIigu8BDlCkIASEgBISAEBBBl3dACAgBISAEhIALEBBBd4GHKFMQAkJACAgBISCCLu+AEBACQkAICAEXICCC7gIPUaYgBISAEBACQkAEXd4BISAEhIAQEAIuQEAE3QUeokxBCAgBISAEhIAIurwDQkAICAEhIARcgIDTCrrRaMTs2bOxZMkSHDt2zAUehUxBCAgBISAEhED8CTiloEdGRqJPnz7IkCEDtmzZgiNHjsSfgNwpBISAEBACQsAFCDiloJP7/v37UblyZZQuXRonTpxwgUchUxACQkAICAEhEH8CTivonLJOp0PZsmVF0OP//OVOISAEhIAQcBECLivoP//881uPqG3bti7y2GQaQkAICAEhIATeJOCygr58+fK3nvW4ceNw5coVeQeEgBAQAkJACLgcAZcV9JieVN68eUXQXe4VlgkJASEgBIQACYigy3sgBISAEBACQsAFCIigu8BDlCkIASEgBISAEHBqQY/r4xOXe1yJyfVCQAgIASHgLARE0J3lSck4hYAQEAJCQAhYICCCLq+HEBACQkAICAEXICCC7gIPUaYgBIRA3AkEBwejRIkSOHToENKnTx/3Bmx0x+7du/Hdd99h+/btNmpRmkmqBETQk+qTl3kLgSROIKEEvV27dvjiiy9Qs2ZNRbxJkybYsGHDa/oi6En8RbTh9EXQbQhTmhICQsB5CCSUoK9btw7lypVDjhw5cO3aNbRo0eKNglIi6M7zzjj6SEXQHf0JyfiEgBCIN4GzZ8/i+++/B/+t1+tRtWpVfPvtt/Dx8UF0QeefmU2S1RsfPXqE8PBw1W/nzp0xaNAgREREYOrUqdi8eTMCAwNRrFgxjBw5EgULFlTXsd2sWbMiNDQU8+fPR8WKFfHDDz+gUaNGqo08efKof7PtVKlSqXv+/PNPnDp1SrX72WefYfHixQgKClJtT5gwQX0E0NhGly5dwJTW9+/fh1arxeDBgxEQEIBFixapuWTPnh2TJ09WYxBLmgRE0JPmc5dZC4EkQeD27du4desWSpUqhbCwMCWon3zyifp3dEGnGPL6mTNnKlFu3rw52rRpg5YtWypW/Pt///1X/Zt77uvXr8fcuXOxa9cu+Pn5KUFnFUgK/Ndff40UKVIgXbp0rwW9fv36OHnypBLmqCWfuULv2bOnGhc/HLy8vDB8+HD10UCxNgk6/7xixQpkypQJa9aswdixY1GlShU1Xt4zdOhQNe7p06cniWcrk3ybgAi6vBVCQAgkGQJz5szBzZs3lShHF/RPP/0U/fv3V6t4GlfX9+7dUwFrXJ2XLFkSK1euRPHixV/zatWqFerWrav2yCno27Ztw44dO+Dh4fH6GtMK3ZKg9+jRQ4k8PwxoLAndrVs3HD58+LWg16pVS30o0Pz9/VGmTBmsWrVK/Zu2b98+TJw4UY1BLGkSEEFPms9dZi0EkgSBM2fOYOHChbhx4waMRiOePXumSi5zVRtd0OvUqYMRI0aoVa9J0B8+fKhc37yff3/u3Dl4enq+ZkcBDQkJwfjx45Wgs326z6OaNYI+evRotbo32eXLl9G4cWPVH41tMLiOAXU0bgcUKVIEe/fufe1ip/egX79+OHjwYJJ4tjLJtwmIoMtbIQSEgEsS4F71Rx99hFGjRqFBgwbQaDRq1X316tUYBZ2i+vjxY8yYMUOJPVffAwYMQI0aNXDp0iVwhR1d0Cn2dHObBJ3izn34uAp69GNrMQk6twk4hqiCfuDAAeWCp4mgu+RrHKdJiaDHCZdcLASEgLMQ2LlzpxJXuqJN1rdvXxUcF9MKnQFmdLsbDAakTp0azZo1Q+vWrdWt3H/nyp5BaTy7bjKKfu3atdGhQwe1Qo9N0E+fPo327dvj+PHjr9uIKcpdBN1Z3jLHGqcIumM9DxmNEBACNiJw4cIFFTnOfeb8+fOrxC0MJKtUqVKMgr5p0ybwnylTpsDd3R3JkydX0eQmo2AfPXpU7b9nyJABPI7GPXkGxTEAzhpBp0ue0e//+9//1F48+6GrXVboNnroSbwZEfQk/gLI9IWAKxOYPXs2li1bplbYdJ3TBf/HH3/EKOj//POPWj1zBU+j2DLgjcfeGOSm0+nUfRRyruaLFi2qotG5l02zRtB53bx587BgwQK1p88PCK7GRdBd+S1MuLmJoCcca+lJCAgBByXAhC+dOnXCTz/9hAIFCqhRcg++Y8eOKtq8YcOGDjpyGZYQ+I+ACHoivA27A++h5uXNidCzdCkEXIuAsfRXNpnQkiVLVIIXBsRFNR4no4uee+ViQsDRCYigJ8ITWvfiGppel0IMiYBeunQxArYSdEaLMzELz5kz4xrd63TNc8+dCWRMGdtcDJ9Mx8UIiKAnwgOd9+Qcvry9H13TFcK8nNUSYQSJ3+XSVToc/McIby9gxAAtMqZ3S/xByQiSNAGu0hmsxkh1BsPR9c4VetSo9iQNSCbv8ARE0BPhEX378DiG3vsXQzKVwsSsHyTCCBK3y137DVi1Xg83N6D/1xrkz+OeuAOS3oWAEBACLkDgLUGvVs36FWPU853OwCJv3ry4cuVKog+1/91D+P7RKUzJVgH9M/53pjXRB5YAA7h4xYDvZ+thNALtW2lQ+QMR8wTALl0IASGQBAi8Jeh//fXX62kz3SGPV7A4Qe7cudXRDeZBXrp0qUoxyCQMzmSOIugdb+7BkmcXsThXdXRI+yqiNinYw8dGjJ+qQ1g4UKuaO1o00SSFacschYAQEAIJQsCiy/3zzz/HkCFDULp06TcGw4pBTKfIM5TOZI4i6A2v/oHN/jex8f2P0DDVe86EMN5jDQ4xYtwUHZ4+Bwrld0PvLzVwd5d983gDlRuFgBAQAtEIWBT0QoUKqQpAvr6+b9zGPMdMg3j+/HmnAuoogl7l0q84GPQQB/I3QmW/zE7FMD6DNRiMmDRLj2s3jMiUERjRTwsvLxHz+LCUe4SAEBAC5ghYFPSaNWuqcn2s+hPVtmzZos5rMuWhM5mjCHqhc6twIewlzhVugULeqZ0JYbzGaopo9/MFRg7UIk0qEfN4gZSbhMA7Eihfvjx+//13pEmTRuWsHzhwII4dO4YKFSqo0qvmjNntWOGtV69e7zgCud2eBCwKOs9hcq+cuYcLFiyoUiGy6hDPbLJE4Mcff2zPsdm8bUcR9EynluKRLhQPi7dHRq2PzefpSA2aItq1GmBwbw1y5ZAgOEd6PjKWpEUgqqDzd3z+/Pmq4AzFnb/vIujO/T7Eemzt9u3bKnfxrVu3VO5hJlhgFSJnTLTgKILufuwnGAEYSn8FV16rRo1o/6qDBqVLiJg798+FjN7ZCUQVdJ655+87E+rEZrJCj42QY/x9rILuGMO0zSgcQdADDZFIcWIh/Ny1CCzZxTYTc8BWoka0f/qxBp9+JGLugI9JhpRIBKpWrapKrh48eBBPnz5FqVKlVKAxjUHHLPv64sULtWoeOXIkeD3tl19+UdXjWIOddd3Tp08PFqApWbJkjDPh9XPnzoWnp6fyqDLr3a+//qpio+hlDQwMVPXUZ82apdzwzIzHv2O/LVq0QJcur36jogr64cOHwTrwQUFBcHNzw4gRIxCX486JhDxJdGtR0OmGWbNmDbZu3aoKFbC+MI0vIQPjWInImcwRBP1WRCBynfkfcnr64WbRts6Ez+qxRo1oL1XcDd07/leC0upG5EIhYCMCEZHAhcv0iSWseXoABfPF7IMrXLgwvvnmG3Tt2lVVd2vatCkGDx6McuXKqd9aVofLmTOnquXOSmzc/qTw8+QR98CTJUuGnj17on79+mZ/h1lwpm3bttiwYYMSbWbC4z75v//+q8Sbf3748KE6yUTjSj1lypRqX52/7yxMw48OfghEFXQWqmGJ2Xz58sHf31+JOsvHiiU+AYuC/uOPPyoxb9OmjXoRTFHtrAnMr0a+WM5kjiDox0OeoPSFdSjpkw7HCzV1JnxWjTVqRHvO7G5q39xD68obC1ZhkYsSkcCzF8Cg0ZEJPoK0qYFJoz1i7JeCzj1sCiuNv6csx0phj2qRkZHqRBFX7Qxe42p88eLF6hKKLLdBv/zyyxj7YA4RfhywxCstIiJC9fH333/HKOhc5fMDwiTO27ZtU6t5rvCjCnqfPn2QKlUq9UFhGn+Cw5UOYyRgUdCrVKmiagkzqQxfwHPnzqlG6Ari3509e9apsDqCoO8MuIvaV7agVvJs2JGvgVPxs2awpoj21ClfRbQn9xMxt4abXGM/AoFBwNKVOvt1YKZlvvvMhhiT8feUv59c3dJGjx6tVrys6sa67MuXL1erdBoXUKdPn8azZ8/QqFEjlf+DgsrVPeu3V65cOcY+WJ89bdq06jqT8eOAQh19hU73OffXo/6m8yNizJgxStSjCjpz3S9atEi5/1ljfsCAAW8dbU5w2NKhImBR0IsUKaJeLj8/vzcEnXs3DIw7fvy4U2F0BEFf8+IqWlzfgWap38ea3HWcil9sg925z4DVG/Tw9Hx11jxzJhHz2JjJ3ydNAlEXSFEFvV69eqhVqxbWrl2rFlJ0ffNIGQWdxtUyhZTueO6rU9DNGVfodNObXOp07fM3ndlAows6V/osQrN//37ldqeZW6Gb+uOKnx8iXNFzu0As8QlYFHQGRBQrVky5Vkwv4MuXL9G3b1/10KdPn27zGTBog2fc+bLUrl1bfSFqNG9/5ZpebA6ALz73mfg1askcQdB/enIO3W/vx1fpC2NOjleBLq5gpoh2zoVZ4AoXkCA4V3iuMgf7EDAn6PR8cp98z549ap+cx8roZmetdlqDBg2U19QaVzfrVnAfnKeUMmbMqCrJ8ffU0h46F2/8ADDtoX/xxRf45JNP3lihc+uVScdoHAtPQHHLQCzxCVgU9AcPHigxp4v9zp076uuOq3OWFZwzZw7SpUtn0xkwd3y7du2wevVqZMiQQZ2B51cjX8qoduLECRURyuv40vMDgB8a/Fp0dEEf/+AYRtw/jGGZSmG8i1RaixrRzvzszNMuJgSEgHkC5gSdLne6yn/77Te1QKEnlL9zTObFIOXOnTsrQWbUevLkyfHZZ5+p4DpzxpU+Fz9cFNE9To8rg+FiCoqj252/odxj9/b2Vn3TXc9tgagudwbN8RovLy91fHnSpEkq2l4s8QlYdWyNwRgUcrps8uTJoyIx7WH8Gg0ICED//v1V8xcuXFBfixs3bnyju7179yqXFD8qaIwAZdY6HsNwdEHve+cvTH98GtOyVUSfjMXtgTFB24wa0V6pnBs6tJaI9gR9ANJZkiFALyT3zjt16qQKZXFPnaJLgXbGvCBJ5sEl4EQtCjpXwTyiwDOSCWE8NlGmTBk0adJEdcdUg/zzmTNn3uie7ngex2AGO24JMBqfX4n82HB0Qf/i5i4sf3YZS3PVwBdp8ycEVrv1ETWiPd/7bqq2uRRcsRtuaTiJE2A0O93x3GOn3b17V1XC5G8hV/BRLXXq1CqwTixpEbAo6HSt7NixQ30Vcu+G5VJjE813wce9eb6sDAwxGfe9L1++/Doa1PTfOS7u29ANxY8OjlWr/W91GFMlOK7837Ueep9hkWDUbGy28ZNf8SztM7OX1d5dBznu5oitGaf4+0wZgGH9PODj7RTDlUE6IAHdyX8QtnkldGfjFmibau1BB5yNfYbEtNt0iTP6nYlf6Bbv0aOHWtiICQESiNXlztUwz0vyzDnd2oyupLAzUILJCmxpw4YNQ/HixZUbiRbTUQr+d46HmY14dIIvNbMW8bxm1OICP/zww1tD4z3vKuhfD4xU9bxjs18bbMDz1M/NXlb/zwbI+DhjbM04/N/7+ACjBnggneV4RIefhwwwEQjo9Yj4a4cScsPt6/EaQFIS9HgBkpuSFIFYBT0qDbrAmSWOyfwPHTqkVs62NCZMYCIE0zELHtWgyEd3JzFRApMgMCCExo8OnqGM7RidLaLcu/SOhNEIzJvmgRiC71/jKHxuNc6HvUgyFdVs+R5IWy5OICwE4Ts2Iey3tTA+f/Jqsj7J4FWrIbw/aQ63NLYNtnVxmjI9IfCagNWCzjSCXKXzbOLjx49VOkAegbClcU+IUZ7MVWyKcmeyBZZwZQaj+/fvqz0jrsyZ5Gby5MnKzf7nn3+qwBCmqbVk7yroej3QrW8kmAtiwYyYM0CZ+s9/diUuh/vjUpGWyOeVypaYpC0h4JQEjC+fKREP37ERCAlWc3BLnQ7e9ZrCq3YjIJmvU85LBi0EHIWARUFnJR4en+A/PGvI+uh0t/OsJKMs7WFMNcsAN+4TMeE/3eg8osEkCdxDYiQ7V+Tjx49XXgIex+AZSxYVyJUrl10FPTQU6Dk4El5ewOzJluef5+wKXAsPwLUirZHbS/Ic2+NdkTadg4Dh/m2EbVqBiAPbAN2rjG3u2XLBu0FLeFapC0SJfXGOGckohYBjErAo6DxvzoALijiTvPj6OvcX9Luu0P0DgH4jIpHcD5g+wbKg5zrzM25FBOFm0TbI6ZncMZ++jEoI2JGA7sIphG9agcjjh173oi1YHF6ftoJH6Up27FmaFgJJk4BFQec5x9iyrzkTtncV9KfPgMFjI2Gp6IKJR7bTy3EvMhh3i7VDVg/n/hBypmcsY01kAkYjIg/vVyty/dXzrwbj5gaPclXh3agtNO8XSOQBSvdCwHUJvCXodHlbayzd50z2roJ+/4ERI7/TIXNGYNxQyyv0TKeW4pEuFA+Lt0dGrY8zYZKxCoG4E4iMQMSe3xG2dRUMD++9ut/TE57V6sH701Zwz5gl7m3KHQ5JgJk7u3Xrhg8++OCt8a1cuVIFS8eWtdNRJsZgasaGWZNK11HGbGkcbwk6q/lYa9EzuFl7X2Jd966CfvO2EeO/1yFHNjeMHGA5I1r6U0vwVBeGp8U7IK1WDmgn1jOXfu1LwBgUiPA/1yP8z3UwBrx8tSD3SwGvuk3gVa8p3JK/KvQhFn8CTL/NIiylS5eOfyM2vFME3YYwbdyU1VHuNu43UZp7V0G/fM2IybN0yPMe63xbFvTUJxfhpT4CL0p0RCqNV6LMVzoVAvYiYHjyEOFbViF891Yg4lViBvcMmeFVvwW8atQHPOWdtxV7FmZ5//33VdVLRzARdEd4CjGPwSpBv3jxokrIwhJ7zBRnqrTjuNOKeWTvKujnLhox/ScdCuV3Q9/ulgU9+YkFCDLoEFiyM/zc7XMiwNn4y3idn4D+9jWEbViGyH/2AgaDmpAmd37lVvcoXx1wl8I8sT1lnU6nikuxyApP7PD3lAVU+PvKIiisU8FqZ8zOyZwbUQWU/5tuYhZHYeItJvoaN26cOhVUp04dVf7Uh9meAJUvhL/dTLwVk7EtFmzZvXs3WOOcha6mTZumMoPSOCbWQmcND6aXZeU1WtTxMM5q0KBB4LHmzJkzqzThpiIvsbXBdniiiXPlGPhnnqBieVcWBitYsKBiQCacH08x8ZQTs+RZapt13MmERcV4LTOKstQsjaVnOS+enOLRa1b35Bxd1uUe9cETCCuesTgLXxxW3bl586bK5sYKZ84G4V0F/cRpI2Yv0qF4ETf07GJZ0H2Oz0eYUY/QUl3h7fZ2+dfY/k8vfy8EHImA7uS/CNu84o3UrNoSHygh1xZxDFewWV4R4Yg8czTBcbp5ekFbtMxb/TLjJrcrTdksWckye/bs2Lx5sypxunDhQlVJjb+//I2NLugUXma9pFjxw4B523v37q3SwFKkTLFNzNnBSmz8ADAn6Dx+zCJXPP7LI8Lsly5+7itzP5w5P5iFs2nTpqoKnKn6pWkPnf2yMAzTdj9//lxdR1HmHnpsbXB+1BFqi+lDgV6ImTNnqpTe3P5lUDZ5MN8IPyjIgseZLbXN5GT8AGC7zF/CojYs4MWPDn6YbNiwQWU5Ze4SztlUTjbBXxA7dGhxhd6nTx8l4jzjbXL38OtrxIgRCjjBO5O9q6D/e8yABcv1KFvSHd3aWxZpj2NzoYMRkaW6QesmqxZnek9krP9P4P9Ts4ZvXgWuzJVpNPCsVAvejdrAPdt7ToHK8PQRArq/yiqZkOaeLiNSzFn/VpcMGmOhFebSiJqHnf+Nham40o5q0QWdqbE/+ugjdQkrUg4YMAAMZuaHAkutMmcHRY2FXChophVt9IGwXQowPwJozDfCOuxcBUcvBMMPCP7mU8CjjofFsZg9NEWKV7k2pk+fDn9/fyXosbVRt25dNG/e/PWw2G7UubH2BuMG+GFC42o+S5YsSpQttR11nvwYKVu2LLhqN3Gh14NG70jRokWVt8PZFqfm3mOLgs6vMWaGY+KWqMaXhS8U65I7k72roB/8x4Clq/So9IE7OrSyLOhux35SaIylv3ImRDJWIQAwNevOza9Ssz57/IqIN1OzNoB3/ZZOl5qVwXohP32b4E/WLUUqJPtqSIz90us5e/ZsJbyDBw9Wq9rGjRsrIaQH1JKgs3xqpUqvzvHzfhanYp1zuvI//PBDtdJnuux79+6BFSzNGQWU9c5NK3iuYpl1kws1joUrbtY8pzHtNwWY7ZkEvUiRIirS/ezZs6+7oJufK2HOI7Y2ovbNBqKPhwW36Co3eRymTJmCdOnSoUOHDhbbJgtWmuMqnXb06FEwjTg9DFzxs1+TUeypcUlC0Pn1xS+26GfRnzx5or4ik5qg795vwMr1elSv7I7WTc0LugFGaI7NBdflehH0BP8hlQ7jR0ClZv39F0Rs3whjyKuSgm6p0sKr3ufwrtNEUrPGD6vFuyiGFGiKClfaXKEyiZclQWeiL9NpJP4G02NqOm7M/XLGOXFfmHUwuAK1JOhRj59FFXSugLkypns7ukVdoZtWuCYPLrcRuK9uWqFb04ap/ejBdpYE3dz4Xr58qSp2Mg4hd+7can++QoUKStC5Qn/69OnrWiGMDeBHCffsk4Sgf/XVV0rM+cKYvtT41cOHFRoamuRc7n/uMmDdZj3qVHdHs0bmBT3CaIDX8XnwdHNHeKludvgZkCaFgO0IGB7eRdivP7+ZmjVrzlepWasyNasEddqONlTAF6tEcu+bgsPKldzXZWAYg7QoPBTIhw8fqr3e6C53BrCxkBUDu3r16gXWu6ArnEYXPLdIKarbt2+3OOzoAhpV0LlHvWLFCuVFYJAc97sZtBd9T9/UP+tt8JoWLVooATXtoVvTRnwE3dz4yJNbDVyIMtZg/vz5ag48KcDAbs553bp1yuvMeAXWI0kye+h8obp37w7mdOfXDh8o3Sn83wTlbF817+py3/KnAZv+0KN+XXc0qmde0EMMOvieWIBk7loEl+xiy98CaUsI2IyASs26eSUij/31uk1NgWKvItaZmpVViMRsToBVIelmp4ucQWkUGe4lm+KSGDDHhRNd6VFd3HRv81pWmty5c6dyifO/MaLbFNnOwXIFz7obDIizZJYEnfcxaIyiR5HkxweLYXFFHvU+emsZ5X716lVVUItR8yzeZUosY00b8RF0S+Oja53xAFyM0uPBuAJTxU6u3BnlziBAjpXueY7R2bTM3HON9dgaRfzIkSNKyPkC5s+fH2XKlDEbaGHzt9+GDb6roHN1zlV6k/oa1KttPtAt0BCJFCcWIoW7B/xLdrbhDKQpIfCOBEypWTevhP7KuVeNMTVr2SrwbtxOUrO+I157304xpbu5XLlyZrtifBMj17nwEktaBGIVdFfC8a6Cvmq9Hrv2G9C8sQa1PzQv6C/04UhzcjFSa7zwvERHV0Ioc3FWAkzNuvd3hG1ZDbrYlXkwNevH8G7YWlKzOslztZTUhVOgK5orUgaF0egN4NG26PbTTz8hW7ZsTjJrGaa1BGIUdB6+594NIy9NxrB/ula4/0NXBYMvnK362rsK+rLVehz424C2zTWoVtG8oD/RhSLDqaVIr/XG4+IdrH0Wcp0QsDkBlZp123qE/xE1NWtyeNVpAq9PmklqVpsTt2+D5gSdZ9kZ/c3fZAam8Wy4WNIjEKOg85gAgx1M5yF5Xo97Mm3atFF7Nt9//72KDqTAO5PFVdAp3n8feZUNi/bwsREBgUCnNhpUKGte0HcF3kWty1uQxSMZ7hV7lV1JzPkJRP69G+HbNjjVRHRXzgOREWrMbukyqkA3lZrVS+oLONWDlMEKASsIxCjoPAe5adMmlWqPxnON/DOzBtHOnDmjBJ+RhM5kcRX0Fev02HPgP0E3zbV7Ry1KFTcfMPTj4zPoeecgcnj64VbRts6ESMZqhkDEjo0IWTDVKflocuZR++MeFWs45fhl0EJACFhHIEZBZz5ehvabgip4FKFLly5qlU7jkQi648+f//96x9b1lehXxVXQ5y3T48hxAz79WIP87/8n4FmzuMHPQonzAXf/xtRHJ9EvY3FMzVYx0ectA3g3AmHrliJs7UJVcCRZt0FwT5Pu3RpMwLvdvLyhyVMoAXuUroSAEEgsAjEKOhMdMMUezzYycxDPPO7YseN1ZDuPKFDkmYHHmSyugj5tjg7nLxlVIRYWZLHWml3fjl9eXMPq3LXRPJwKR48AACAASURBVHUea2+T6xyMAE94hC6ejohtG+CWzA++o2ZB+14+BxulDEcICAEh8IpAjIJOwaao379/XwXH8WA+s8aZjFmIGDjH5P3OZHEV9LFTdLh914gR/bXImd16QS9/cT3+DX6Mvwo0RkXfTM6ESMb6/wSMeh1CfhiHyEO7wBSefmNmQ5P1VREJMSEgBISAIxIwe2yNqxOmyePh/OjJ/a9fv66SzLBGrzNZXAV90OhIPHsBfDfKA+nSWD/TrKeX4X5kCO4Ua4tsHo5Rw9j60cuVxohwBE8eDN3pI3BPnwl+o35Qtb7FhIAQEAKOTEDOoVt4Oj0GRiI8HPhhkgd8rAwK1hkN8Dw+T7XKPO7Wr+sd+TVJOmMzBgciaHxf6K9dgHuWHGpl7p4yddIBIDMVAk5IgN5iVrEzZahzwinYZMgi6GYw0gPRpbdO/e3Cmdbnsr4REYDcZ1ZIhLtNXs+EbcTg/wJBo3rAcP82NLnywm/ULLj5Jk/YQUhvQiAaAdYnb9++vSolakujp5XpZlnMxRGMx6NZyjSmgjCxjS+xBf1dxh7b3OLy9yLoZmj5BwD9RkQiuR8wfYL1gr4v6D4+vLQJlf0y4UD+xnF5FnJtIhIwPH6AoDE9YXjyENrCJeE7aDLcvH0ScUTStRB4RYCFRbi9aapoZisurC/O2ChTPXRbtRvfdvbu3Qv+E59VdmIL+ruMPb68YrpPBN0MzfsPjRj5rQ6ZMwLjhlov6D8/u4x2N3ehZZo8WPnem2UQbfngpC3bEdDfvoagsd+AdbO1pSrCt/9EuGm1tutAWhICUQiwJgbTsbLKF1d2hQoVUgVD6BWcN2+eKv3JgigNGjTA8OHD36q2xvrlXMkGBQUhZ86cqjgLi7kwEdj+/ftfF2phbfKLFy+qrJ7RjcVKWJUtefLkSJEiBaZPn67aYSY6Cj37Z/U3Vi7jWE1lWDk2Hlem6DJ7KFPIZs6cGTdv3lQxV7y/SZMmqjt6AEaOHKnqgLBa59KlS1VuE/a7b98+REZGokSJEipRGa+lJ8Lf31+1x6Bszp9cGITNUqdt27bFF1+8StTFo9NMbMa2eT2PWpOHpY8B1lZnNr2DBw+qsfKeqGlxY+rrxx9/VLXg+/Xrp/plcrX33ntPsaJxzJzDmjVr3ho787RMnTr19XMaP3786wx+sY0lvv+HsSjoLL/HYix8aWgHDhxQR9iyZs2qavemTJkyvv0myn1xCYq7fM2IybN0yPOeGwb3tv7HfcKDYxh+/zAGZSqJ77KWT5R5SqfWE9BdPI2gif2AsFB4VKyJZL1Gwc3dfBZA61uWKx2FQKhBh12B9xJ8OD7uGtRM/na+9F27doEV1Ziilca0rdmzZ1cJvFjdbOHChUpoWY40erlSCibLgs6aNUsFK1OQWAmNR4x79OihVtvM9EljLXJWXOMHQExGkWLtcNMKnW2zzxkzZrz+zY9N0Js2bapOPFHUKLJ169bFoUOHVDUzloVl/2yf7VIvOGbmlzedmmrdurXaTuA1UT8WOF7mpefKmwnNKP7si5XU2Bfny/S2ffv2VVXn+HfMjWJJ0AsXLqzG07VrV/WBwHtY9Y6Fbsz1xX6nTZuGVatWKWFmVTx+hPEYN61ixYqqFj2r35k+dEzPtFWrVqoELcfJ49983vyQIgNLY3mXF9WioBMyvyq4d8OSeHxY/CLhwPk1yS8rZ7K4CPqJ00bMXqRD8SJu6NnFekHvdmsf5j89jx9zVEGP9EWcCU+SG2vkqcMInjQI0EXCs24T+HTsAzcpGepy78HtiCDkPPNzgs8rp6cfbsaQKZLBW6yYxt9WCoLJ+N+4ujWl3Db99+j10FkSlBXVaKx/zsUVRYUfCizMwnrqjx49UqtrroSjn1IytRuToPM3nqJlstgEfciQIWAddZPxfvZP8Rs4cKAalyWjhvCDhHOMLujkwf750UHjRwz3/Cnm/CDgSpveBRo9DFzdxyboXJSaSqXSe0DPA4XdXF8sH85nxI8UeizoVbl06ZLqh6VvWQeepVqjj50LXx77pofFZPzAmTJlivLIUNDNjeVdXlSLgs5OmTyGtXb5lUI3xcSJExW42rVr4/Dhw+/Sd4LfGxdBZx53FmOpWM4dHVubr30efRIfX9mKPwPuYHOej9Eg5avUuWKORyDir53qnDkMeng36wzvz9s73iBlRDYhwGJJnW4mfJrq9FofLMpVPcY5HDt2TOX3oPBylcjVZePGjZVQMPV2VIsu6HRHV6pUSV3C+1k3nXW96cr/8MMP1UqfK8F79+6peurmLCZB5+o16oo+uqDTtcyPCJPLnTXSo+Yj4SKQburbt28rb4MpXbhpDKGhoWreZ8+eVR8at27dUp6Ezp07vyWK5MHVN931NLq++cHAVTZrirANk3F7ge732ASd95g+2nltvnz5wJW0ub7Ij65+egI4d35IcUFLMU+VKpXa0hgxYsRbY6dOpkuXTnkDTMbnyLaqV6+uBN3cWN7lpbco6Hyw/MKii4eDIDQC4H4Na6JHBfoug0ioe+Mi6Kx7zvrndaq7o1kj6wW9yLnVOBf2AicKNUUJH+dJEZpQz8AR+gn/c73KAEfz6ToQXrU+dYRhyRiSIAH+hlKgt23bplbaXH1zsWRJ0D/99FM0atRIXXLixAklKKaVMPfLGbXOfedhw4a93vuOCW3//v1VOu+oLvdu3bopsTQZV+sUNdNHBvfM+RFhEnSuOOlWNplJ0ENCQtR9/LCIat999x34d1wda7Va5UJPnz69EnS67s+dO/dalLlqptjHFPXOlTXjCEyBgnRn0+Ufm6CzfZNFFXRLffEDxdvbW7nduRrnfj/Hzb17eg/oUYk+dpOXxNIK3dxY3uX/BhYFnRv/LMRCNwdTwdLlYXqJ+FXJl9CZLC6CTjGnqDf+RINP6li/p5rs+HyEGvV4VqIj0mhefVmKOQ6BsFXzEPbrz4C7Bsl6joBnpVfuPDEhkFAEWIKaAkFXM4PP6IrdsGGDcumuX79euawpVA8fPlSZOqOv0CmIdOl6enqqIllcZNENTePqmUFnFDfGQFkyuvw5Bu6902IqzUq3OcWce91cyFHgS5YsGaugM+6Kq2nqBD9Q6ILnypgiyt9hrlz5YcDVsWmFzn1pruqXLVumxsN9bX4scEXP1TD34bnVS5e5ad50efO/MxV5hQoV4i3olvo6cuSICoLLmDGjejY0fgjRw0Ah59iij50eCjLjIpiBgNRKxibwg8C0h57ggk4XDgdMQafrxeT6oKudD4h10Z3J4iLor2ufN9OgWiXrBP2lPhypTy6Gj5sGIaX+c7U4EyNXHSt/CELmTEDkvj8BrQd8B02CR/FyrjpdmZcDE2BQGIWOv6903VJIKZT8nZ05c6YKmKN40pXOVW50QaegMgiL7miupik23BY1GVfwFBy6pi0ZV5rcI2aAGPtlRHb0FTpd4vQccDXNPtg3t15jW6HzmB3d0QzaYxv08tL9zoCyPn36qLlny5ZNiTCFnit0/h2LgDFinh8Z9FYsWbJEiTw/fPjxQRc/V+dPnjxRUe5MU54hQwalRYzziu8KnZzM9cVxMY6Mz4wiTWPsAL0rJg9ETGNnTAPHy20GBsbxA8pUwZQu9wQX9MT4/wS/UPklQ0D8shszZoyKmIxu/Eqlu4cvNr946NqI7qqKfk9cBH3OIh2Onzbiy/YalClpnaCfDn2G4ufXooB3Klwo3DIx8EmfMRAw6nQImTESkYf3qzrgfsOmQVvgv9oEAk0IOAsBijvdw4zMNmfc550zZ87rapnOMjcZ57sTiPUcOr+AGNXHL6Toxi8oW9qNGzfQrl07FanJry4GbfCIAl/i6MaXumDBguoLk1+51lhcBJ1H1nh0rV8PLQrmsy6B61b/W2hw9XfUTpEN2/M2sGZIco2dCRjDQhE8aSB0507AzS8FfEfMkIppdmYuzduPQExu8ai90XXM38/ly5er/0xvQNSz1qZruRfOFbKrWVKbb/TnZ1HQeR6Sq2WeReeeT3SLGgxhixdj/vz5CAgIAIM1aNwPomuDLqioRlcOAz64mo+LxUXQR36nw/0HRowcqEWOrNYJ+pwnZ9Hj9gF0SlcAC3PGHN0al/HKte9GwBDoj+BxvaG/eQVuqdLCb+xsaDK53o/Yu1GSu52JgDlB51l2Jk3x9fVV553p4hVLegQsCjqPUpg29RMCDfeLGD1vyjTEYwr8MwPzohq/Pnl0gPv4PKrAfQl+hTKAxJLFRdCZ9pXpXyeP9kAaK2tzDL73DyY9PIHRWcpiVOYyCYFM+jBDwPDiKYJG9oDh0b1XFdNYZCVdRuElBISAEHBZAhYFnUfVmL4uoYxn/XgMoF69eq+7pAgzEUPUhB/cO6driW6jAgUKqKAJRogy8tNkPLQf3fh1e+XKFYvTOXHGiB179MrdTpszxQOenpYJMHc77XL4SzyIDMHiXNXRIW2BhMIWr34iD+5A+M5X43ZF09+7BaP/C2hy5oHfiBmqprmYEBACQsCVCVgUdEY88oykpQAMW8KhG51HJEx781yB8yx89PPuTHLDQDjTUQ1GaXIlz/0Tk/AzmC66UfhjE3TT+XPTvdZUWnM79tMbXe3K9ylqJM9qSzQ2b4sZ0iKP/WXzdh2pQU2+wvAbMlUqpjnSQ5GxCAEhYDcCFgWdxw14dIJp9niIPnq0ObPh2NK4wubZRO6b006fPq32yqMnJ+BROlYg4jEAGiPiefyB2ZcsmTUu9w1b9fh9hwHVKrqjQll35Mltef88xKCD74kF8HXXYmueT1T3ZXzTw8/dukA9W/KLS1sv29VW+ct5fMtVq4pp8xRSUe1iQkAICIGkQMCioDNvO93dlStXjjEojucTbWl3795ViQaYkccU5c6kCUwewJzEzI3LJARMPcujGTzXyLy4rFDEM32mxDfmxmSNoK/4RY89Bw1o/bkG1avEflzthT4caU4uVklkmEzGGUx34ZSq++2e7T2kmJbwOa6dgZGMUQgIASHgbAQsCjqTFvBwvK3r8FqCxBSGLN/HxApM+UcvADMiMUMPj88x+QGNZQK5QudxuiJFiqgSgcyd+64r9AXL9fj3mAGd22pQvkzsgv5IF4pMp5Yio9YHD4s7Rz7wsLULEbZuKbzqNYNP+17O9s7KeIWAEBACQiAGAhYFndmGKOiuYtas0GfN1+H0OSN6dtWieOHYj6vdiQhCjjM/I7uHH24Xa+sUqAKHd4P+8jn4Dp4Mj1L/VXtyisHLIIWAEBACQiBGAhYFna5sGs83cpXs7GaNoJsSygzspUW+92MX9OvhAXj/7Aq875UCV4u8SgvoyMZEK/7cP3fXIOXSP112/9yRn4GMTQgIASFgDwIWBZ0R7nRtU8xZESe6qMeW/N8eA36XNq0R9NGTdLh734hRA7XIbkVCmYthL1Hw3CqnSfcaeeQAgqcMUalP/cbOeReccq8QEAJCQAg4EAGLgs6z3ZbMFYuzDBoTiWfPge9GeSBdmtif1JnQZyh2fi2K+aTFqUK2TYUbe+9xv4JlQ1k+VGqAx52d3CEEhIAQcGQCseZyd+TBx3Vs1qzQew2OREgoMPNbD/gmi72HYyFPUObCOpROlh5HC34e+w2JfEVA71Yw3L+N5OPnQpOvSCKPRroXAkJACAgBWxGwKOgs57dmzRow8pznw1nZjHbw4EEVXc56t85k1gh6l96RMBqB+dO1cHePfQ/9n+BHqHBxAyr4ZsShAk0cGofB/wUCujRQZ7NTLt/xRvY9hx64DE4ICAEhIARiJWBR0H/88Ucl5m3atFHHx5g/nXb06FGMHDlSpV91JotN0MPDgR4DI+HlCcyeYl1imP1B91Ht0iZU9cuMffkbOTSOiL2/I2TORHiUqQzfgd859FhlcEJACAgBIRA3ArEWZ1m2bJmqqxu1IPuLFy/Awi3RU7LGreuEvzo2QX/pD/QfGYlUKYGpY60T9F2Bd1Hr8hbUSp4NO/I5dsnU4FljwBzuPh37wOujzxL+AUiPQkAICAEhYDcCFgWdCVv++ecflVgmqqCzRjrzrTN3ujNZbIL+4BEwYmIkMmcExg21TtD/8L+Neld/w8cpcuD3vK9Svzqq+XeuD2PAS6SYsRLuWaS8oqM+JxmXEBACQiA+BCwKepcuXVQed6aANQn6y5cvwapoKVOmxPTp0+PTZ6LdE5ugX79pxMTpOuTO6YahfbVWjXPzy5toeO0PNEyVCxvf/9iqexLjIv2tqwgc0F5VHUu5cGtiDEH6FAJCQAgIATsSsCjoDx48UGJOF/udO3dUilWuzlmydM6cObGmWrXjuOPVdGyCfvaCETPm6lC4gBv6fGWdoK97cQ1Nr2/H56lz45fcjhskGL51NUKX/wjPD+shWfeh8eInNwkBISAEhIDjErDq2BqrmFHIWaY0T548CVZO1dbYYhP0IycMmLdUjzIl3fFle41V3a96fgWtbuxEqzR5seK9WlbdkxgXBU3sB93Jf5Gs10h4Vq6TGEOQPoWAEBACQsCOBKwSdDv2n6BNxybo+w8ZsHyNHlUquOOLFtYJ+rJnl9D+5m58kTY/luaqkaDzsbYzo14H/7a1AV0kUizYAveUqa29Va4TAkJACAgBJyHwlqCPGDHC6qGPGzfO6msd4cLYBH3bbgN+2aRH3RruaNrQOkFf+PQCutzaiy7pCmJ+zg8dYZpvjUF3/gSCRveEJsf7SD51mUOOUQYlBISAEBAC70bgLUH/9ttvrW5xyJAhVl/rCBfGJugbf9dj6zYDGtXToH7d2Eunck5znpxFj9sH0D19YczOUdURpvnWGMJWz0fYhuXwqt8cPu16OuQYZVBCQAgIASHwbgTE5f7//Fat1+P4KQNe+AOtPtOgRlXrBL365U3YG3gfvTMUw/Tsld7tabzj3cbnT8Cz5tFNf+cGjIH+8Bv6PbQlPnjHXuR2ISAEhIAQcEQCsQp6aGgoduzYoaLc3dzckDNnTtSqVQteXl6OOB+LY7K0Qv92hg7XbhjV/R1ba1CxnHWCnv30ctyNDMbAjCUwKVuFRGUS/ttahC6bZXYMqX7eqdK+igkBISAEhIDrEbAo6Ixu/+qrr5AmTRoV3c7c7pcuXQJFfu7cueqMujOZJUGf8L0ON24b0baZBqWKuyO5n3UzS3tyMZ7rw3GmUHMU8bGiPJt1zcbrqsDh3aC/fA4+7b6G5r18b7Th5uUNTZ5C8WpXbhICQkAICAHHJ2BR0D/99FM0btwYHTp0eGMms2fPVqv2jRs3Ov4Mo4zQkqCPnazD7XtGjBygRY5ssRdlMTXrc3w+wox6hJbqCm836wLp7AHN8PQRArp/Bnj7IOXiP+Cmte4cvT3GIm0KASEgBIRAwhOwKOgFCxYEV+nJkr1ZRzQwMBAffPDB62ItCT/s+PVoSdBHfafDvQdGjB6kRbYs1gu627Gf1GCMpb+K36BsdFf45pUI/d8ceFb7GMl6DLNRq9KMEBACQkAIOAsBi4Jeu3ZtLFq0CDlyvJn3m0lmevTogW3btjnLPNU4LQk6c7gzlztzuDOXuzUWYtDB98QC+LhpEFKqqzW32O2awMGdoL9+CX6Dp0BbKnH38u02SWlYCAgBISAEzBJ4S9CfPHmiLnZ3d8fff/+N//3vf+jevTty5coFo9GIa9euqbSvTAlbrVo1p0JrSdCHjY/EoyfAhOEeyJjeumk904Uh3aklSKvxwtMSHa27yQ5Xmdztbr7JkWLRVri5J57r3w7TkyaFgBAQAkLACgJvCTpFzxrLnj07du/ebc2lDnONJUEfPDYST58B3470QPq01g35bmQQsp/+Gdk8fHGnWDvrbrLDVWG//oywVfPgWaM+kn052A49SJNCQAgIASHg6ATeEvTg4GCrx+zr62v1tY5woSVBHzg6Es9fAJNGeyCtlZlRL4e/RP6zq5DXKyUuF2mVaFNkFTVWU/MbPh3aYmUTbRzSsRAQAkJACCQegVjPoSfe0GzfsyVB7zciEv4BwNSxHkiV0rq+T4U+Q4nza1HcJy1OFmpm3U02vkr/8C4Ce7WAuNttDFaaEwJCQAg4GYFYBf3kyZOYP38+rly5ovbQeR69U6dOKFvW+VaClgS9z7BIBAYB08Z7IEVy657iP8GPUOHiBpT3zYi/CzSx7iYbXxW2bgnC1i6CZ62GSNZ1gI1bl+aEgBAQAkLAWQhYFPTff/8dLNbSrl07FC5cWGWKO3v2LJYvX45Ro0aB59SdySwJ+jdDIhEcAsz81gO+b57SMzvF3YH3UPPyZlRPngW78zVMFBQBPZvD8Oge/EbOgrZIqUQZg3QqBISAEBACiU/AoqDXqVMHw4YNeyuafe/evZg4cSK2b9+e+DOIwwgsCXrPQZEIDQN++M4DPj7WNfqb/y3Uv/o76qXMgd/yfGLdTTa8ynDnBgL6tYVbytRIMX+z+uASEwJCQAgIgaRJINbEMkePHkX04LegoCCUK1fOpRLLdB8QiYgIYPYUD3h5WvcyrHtxDU2vb8fnqXPjl9x1rbvJhleFrVmIsPVL4VW3CXw69bVhy9KUEBACQkAIOBsBi4Jes2ZNTJgwAeXLl39jXgcPHgRrobtSYpkv+0ZCpwfmfu8Ba7OmLn92CV/c3I22afJh+Xs1E/zZv3a3j5kNbcHiCd6/dCgEhIAQEAKOQ8CioK9evRrTp09XQXCFChVSQXHnz59X2ePoim/YMHH2jeOLz5LLvUvvSBiNwPzpHnC3rtAa5j05hy9v70fXdIUwL2fCJtnR37yKwIHtxd0e35dB7hMCQkAIuBiBWKPc9+zZowScGeJ0Oh3y58+vBL569ep2QbF+/XrMmDEDERERYOrZMWPGQKMxn/nswIED6NixIw4dOoT06S2neLMk6J2/iVTzWTjTw+p5zXh8Gn3u/JUotdDDVs5D2Maf4VWvGXza97J6zHKhEBACQkAIuCaBWAU9Iad948YNFVFPz0CGDBnQr18/lChRQgl2TMa9fF4fFhaGZcuWxVvQDQaga59IMKZswQzrBf3bh8cx9N6/GJKpFCZm/SAhUcH/qyYwPnuM5OPnQpOvSIL2LZ0JASEgBISA4xGwKOgMfNu0aRMyZ86cICPnefeAgAD0799f9XfhwgUMGTLEbJlW/l3FihXVOfnFixfHW9B1OuDLfpHQaoC506wX9BH3D2P8g2MYm6UsRmQukyCM2In+2kUEDukMt7QZkPKnDQnWr3QkBISAEBACjkvAoqB/+OGHmDVrFooVK5YgMxg6dCjKlCmDJk1eJWkJDw9Xfz5z5sxb/e/btw+//PILfvzxR3z88cfqbHx8Xe7hEUCPAZHw9ATmTLFe0PvfPYTvH53C1GwV0C9jiQRhxE5YJpXlUr0atIRP2x4J1q90JASEgBAQAo5LwKKgs/jKvHnzMGnSJFVtzd7Wt29f1KpVC/Xq1XvdFfe9L1++/MYZa9Zjb926NZYuXYo0adLEKOhMgBPdGjdurDLeRbcLl434frZOnT/nOXRr7O/gh2h6bTvuRQZjTo6q+Cp9YWtus/qa4BmjYHz5LMbrdTevACHBSP7dQmhyF7C6TblQCAgBISAEXJeARUFn2VS6ve/evYtMmTLBJ1rGFVsnlmHkfPHixdGs2au86Nwj55G56OI8aNAg0HvAlTktphV6796933pqv/32W4yC/u8xAxYs18PPF5gx0TpBX/viKppf36H6WJKrOtqnta2w+neuD2PAS7NvnnuGzEjx4y+u+2bKzISAEBACQiBOBGJdoVtqrUaNGnHqLLaLuQ/+6NEjtW9OO336tDoet2XLljduZRpaT/rH/99YIY7JbxgRbykdrbko97/+NWDJSj1KFnVDj87a2Iap/n7x04vodGsPPkmZE4tzVUcGrZXp5axqHXjZthYQHga/od8DHm9/ZLinTAP3bPb3mlg5XLlMCAgBISAEEpmAQ0W50xPQqlUrrFq16nWUe758+fD111+De+b3799Hy5Yt30L2rnvo+w4Z8PMaPapWdEe75uaPyEXteNbjM/jmzkH0ylAUM7NXtvljfNnsVZup1h60edvSoBAQAkJACLgeAbOCzsIs3EPX6/WoX78+mDUuIWzr1q1qz55H0apVq6ZyxnM1vmDBAly6dAlTp061uaDv3m/AyvV6VK/ijtafWyfodj2yFhaKl+1qA17eSPXzzoTALn0IASEgBISAkxOIUdAZPT569Gh8/vnnKhht48aNSlijBqs547zNudy37zFg7UY9an/ojuaNrRP04ff+xYSHxzE+SzkMy1zapjiM/i/g36UB3FKkQsqFW23atjQmBISAEBACrkkgRkFnStc2bdqgadOmata7du1SK+M//vjDqSmYE/Q/dhqwfoseH9V0x+efWifove8cxMzHZzA9eyWVKc6WZnh0HwE9m0EC32xJVdoSAkJACLg2gRgFndnZKN6mhDJM+VqkSBF1HtwjhgAtZ0FkTtC3bDNg0+961K/jjkafWCfoXW7txcKnF7Ag54fonK6gTRHob19DYP8v4J4jN1JMXW7TtqUxISAEhIAQcE0CMQo6he/kyZNvlE0tXbo0uK+eMWNGpyVhTtA3/q7H1m0GNKynQYO61lVmaXVjB1Y9v4qV79VCyzR5bcpEf/kcAod3gyZvYSSfMM+mbUtjQkAICAEh4JoEzAp6hw4d3liNM1c699Sj1kYfMGCAU1ExJ+jrNuvx5y4DmtTXoF5t6wS94dU/sNn/Jja9/zE+TWXb42O6M0cRNK43tEVKw2/kTKdiLIMVAkJACAiBxCEQo6APHDjQqtFMnjzZqusc5SJzgr5mox479hjQrJEGdapbJ+g1L2/G7sB72JmvAWomz2bTKUYeOYDgKUPgUaYyfAd+Z9O2pTEhIASEgBBwTQIOdQ7d3ojNCfrKdXrsPmBAy880qFnVOkEvf3E9/g1+jH8KNMEHvrbdhog4uB0hs8bCo3Jt+PYaZW8s0r4QmF/mBgAAIABJREFUEAJCQAi4AAERdEAllWFymbbNNKhWyTpBL3puDc6GPceZQs1RxCeNTV+FiJ2bETJ/MjxrNkCyboNs2rY0JgSEgBAQAq5JQASdudhX6sH0r+1balC5vHWCnvvM/3AjIhDXi7bGe54pbPp2hP+2FqHLZsGrXjP4tO9l07alMSEgBISAEHBNAm8JOjPDaTTWHd1yNiTmXO4Lf9bjn6MGdGqjQYWy1gl6hlNL8EQXhkfF29s8j3vY+qUIW7MQ3k3awbtFV2fDLOMVAkJACAiBRCDwlqAzG9zPP/+MtGnTqoQyCZXyNSHmbk7Q5y7V4+gJA7p9oUHZUtYJuu+JBQgx6BBcsguSuVtX0MXaOYaunIvwjf+Dd6tu8G7U1trb5DohIASEgBBIwgTeEvRixYrh8OHD8Pb2RtmyZXHkyBGXwWNO0Gcv0uHEaSO6d9KiVDE3q+brduwndZ2x9FdWXR+Xi0IXT0f4n+vh06E3vD7+PC63yrVCQAgIASGQRAm8JegdO3aEVqtFxYoVMW3aNFg6a962rXOtHs0J+sx5Opw5b0TPrloULxy7oAcbdPA7sQC+7loElexi81cn5KdvEbHnNyT7cjA8a9S3efvSoBAQAkJACLgegbcE/fnz51i0aBGuXr2KAwcOoHz58mZnzfrlzmTmBH3aHB3OXzKiz1daFC4Qu6A/0oUi06mlau+ce+i2tuDpIxH592749h4Dj4oJU+XO1nOQ9oSAEBACQiBhCViMcu/cuTMWLlyYsCOyY2/mBH3KDzpcumpE/6+1KJA3dkG/Hh6A98+uQG7PFLhWtLXNRxz03QDojv8N38GT4VGqos3blwaFgBAQAkLA9QhYFPSIiAhVi9xVLCZBf+EPjJwYidAwYPA3WuTJHbOg7w28j9H3X8UThBgicSTkCYr5pMWpQs1siidi+0aErpoHY3Ag/Eb/AG2hkjZtXxoTAkJACAgB1yQQ6zl0FmmZP38+rly5AqPRiDx58qBTp04qYM7ZLCZBv3zNiMmzdGoqw/pp8V6OmAV9/tPz6HZr3xtTruCbEYcKNLEpBqZ8ZepXWvJvF0LzfgGbti+NCQEhIASEgGsSsCjorK42YsQItGvXDoULF4abmxvOnj2L5cuXY9SoUfj000+dikpMgn74uAHzl+mVq71nFy28vGKe0oQHxzD8/mG0SZMPnf6/XGoqrSdK+KSzKYOAb1rC8OAOknUfBs/yHwLePjZtXxoTAkJACAgB1yRgUdDr1KmDYcOGoVq1am/Mfu/evZg4cSK2b9/uVFRiEnRWWWO1tVrV3NGiifmEOr3vHMTMx2cwNVsF9MtYwi7zNuoi4d+6JmA0IOXKPXDTetilH2lUCAgBISAEXI+ARUEvWLAgjh49+kbJVCIICgpCuXLlcP78eaciEpOgr1qvx679BjRtqEHdGuaTyrS5sRMrnl/B0lw18EXa/HaZt/7WVQQOaA/3TNmQYtZqu/QhjQoBISAEhIBrErAo6MwSN2HChLeOrh08eBDjxo3Dtm3bnIpKTII+Z5EOx08b0fULDcpZyBJX98oWbA+4i9/y1EO9lDntMu/IgzsQPGsMPMpWge+Ab+3ShzQqBISAEBACrknAoqCvXr0a06dPV0FwhQoVUkFxXJXznDpd8Q0bNnQqKjEJ+oRpOty4ZcSgb7TIaybCnZMsfeEXHA95isMFP0PZZBnsMu+w1QsQtmEZvBu3hXfLbnbpQxoVAkJACAgB1yQQa5T7nj17lIBfu3YNOp0O+fPnVwJfvXp1pyMSk6D3HxmJl/7Ad6M8kM5CFdScZ37G7Yggu1RXM4EMnjoMkYf3IVmvkfCsXMfp+MqAhYAQEAJCIPEIxCroiTc02/ccXdDpcejS+9WRtXnTtNBozCeV8To+DxFGAwJLdoafu32C1QJ6t4Lh/m0kn7wUmlx5bA9AWhQCQkAICAGXJZCkBZ1JZQaMjESK5MC08eZFmlXVWF3N080d4aXs4wo3GvTwb0mvhxEpV+yWCHeX/b+cTEwICAEhYB8CSVrQr98yYuI0HXJmd8OI/uZLoNLVTpd7Ng9f3CnWzi5PwnD7OgL6t4N75uxIMXOVXfqQRoWAEBACQsB1CSRpQT9+yog5i3UoUdQNX3c2L+jHQp6gzIV1KOmTDscLNbXL2xB5aDeCZ4yUCHe70JVGhYAQEAKuTyBJC/rOfQas3qBH9SruaP25+aQy2wLu4KMrW1E7RTZsz9vALm9F2NqFCFu3FN5N2sG7RVe79CGNCgEhIASEgOsSsCjoBoMBa9aswdatW/Ho0SPs3LlTkeA59ODgYNStW9epyEQPimOGOGaKa1Jfg3q1zSeV+d/zy2h7YxdapcmLFe/Vssucg6cNR+Q/e+HbaxQ8Kte2Sx/SqBAQAkJACLguAYuC/uOPPyoxb9OmjUr1asoMx+xxI0eOBHO9O5NFF/QFy/X495gBndpoUKGseUGf8fg0+tz5C99kKIoZ2SvbZcoBfdvAcPcmkk9ZCk1OiXC3C2RpVAgIASHgwgQsCnqVKlWwbNky5M6dWxVnOXfunELx4sUL8O9YqMWZLLqgs8oaq60N+FqL/BbqoA+/9y8mPDyOcVnKYXjm0jafskS42xypNCgEhIAQSHIELAp6kSJF8M8//8DPz+8NQb969SqaNWuG48ePOxWw6II+ZGwknjwDJg73QIb05qfCsqksnzo3R1V0S1/Y5nM23L2BgL5tJcLd5mSlQSEgBIRA0iFgUdC7dOmCYsWKoWfPnq8F/eXLl+jbty9Spkyp0sLa2tavX48ZM2YgIiICtWvXxpgxY6DRvBmw9vTpU0yaNAkHDhyAh4cHqlatitGjR6v/bcmiC3rXPpEwGGJPKvPZtT+x4eUNrMtdF5+lzm3rKSPynz0InjYCHuWqwrf/RJu3Lw0KASEgBISA6xOwKOgPHjxQYk4X+507d8AVO1fnBQoUwJw5c5AunW1rgd+4cUPVXmcO+QwZMqBfv34oUaIEOnbs+MaTOHHiBHgt67EzcO/LL78EC8m0bt3aakEPCgZ6D42EbzJg5reWPwSqXdqI/UEPsC9/Q1T1y2LztyJs3RKErV0E7yZfwLtFF5u3Lw0KASEgBISA6xOw6tjasWPHlJDr9XrkyZNHlU61h82fPx8BAQHo37+/av7ChQsYMmQINm7caLG7JUuW4O7duxgxYoTVgn7nnhFjJuuQLYsbRg8yfwadDRY6twoXwl7ifOEWKOid2uZTD54+EpF/74bvN6PhUck+UfQ2H7Q0KASEgBAQAg5FwKKgL1++HI0bN0by5MkTZNBDhw5FmTJl0KRJE9VfeHi4+vOZM2cs9t+rVy+1Qo9a/e3+/ftv3VOtWjUsXHpJRbaHhAJ37xuRs2QodlXYY7H9fUGv2npavAPSar3jxcIY8BI8mhaT6W5eAUKCkWLqcrjnsL1LP14DlpuEgBAQAkLAqQhYFHRGtm/fvh1Zs2ZNkElxb75WrVqoV6/e6/6473358mW4ucVcOIVn4rmXz/PyWu1/K2267qPb33//jfGTL2LHXsPrv8pU8zEmZN1s1fyMpb+y6rqYLtJfOYfAYZbzwKdaezDe7cuNQkAICAEhkLQJWBT03r17o2jRoqpcakIYa6wXL15cRdDTgoKCUL58ebPH406fPo2BAweCLvfMmTPHOkR+HIz+9iL2HDCgVjV3lCzqjv1e19D1yQ7USJ4VIzKXMduG1s0Nlf1i78NcA6bAN22BYvBu3vmty9y0HtDkLxrrHOQCISAEhIAQEAIxEbAo6Aw+Gz58OAoWLIgPPvgAPj4+b7RRv359m1JdvHixykjHfXMaBZsiv2XLlrf6uXjxIvr06QMmv3n//fetGgcFffi4izjwtwFtm2lQrZI7pjw6iYF3/7Zr0hgOLnzraoQu/xFedZvAp1Nfq8YrFwkBISAEhIAQsJaARUFv1KiRxXZiC1azdhCm6xjY1qpVK6xatep1lHu+fPnw9ddfY9++feC+eMuWLXHt2jVw33zmzJkqSM9ao6APGX0Rhw4b0L6VBpU/cMc3dw5i1uMzmJytAgZkLGFtU3G+LnTpTIT//gt8Wn0Jr0Zt4ny/3CAEhIAQEAJCwBIBq6LcExIhU83yjHlYWBgYxMaUs56enliwYAEuXbqEqVOnqpU5r3N3/y9dq5eXl1rRWzIK+sARF99I92o6Y77yvVpomSav3aYaPHUoIg/vl1ztdiMsDQsBISAEkjYBhxN0ez4OCnrfIRdw7JQR3dprULakO8pfXI9/gx9jf/5GqPIOe+SxjTtwcGfor1+E39g54D66mBAQAkJACAgBWxKwKOjXr1/Ht99+q6LMeYQsqjF7219//WXLsdi9LQr6N4Mu4OQZI3p00qJkMTdkO70c9yKDca1Ia+T2SmG3Mfh3rg8eXUsxZz3c02W0Wz/SsBAQAkJACCRNAhYFvUWLFqAIci990KBByv3NDG1Lly7F999/j0KFCjkVNc6lR78LOHvBiF5dtSha2A2aYz/BCCCyVDdo3cxXXHuXiRr1Ovi3/FA1kXLVXrhpLCeyeZe+5F4hIASEgBBImgQsCjqPrB05cgTe3t5gRDv3rWksyjJ58mSVotWZjIL+Ze8LuHDZiL7dtUiZO0St0NNpvfGkeAe7TcXw8C4CerWAW5r0SDn3V7v1Iw0LASEgBIRA0iVgUdArVKiA3377DWnSpFFZ2Bh9nixZMlU4pWTJkq/LqToLPgp6l54XXpVM7anFy8yPUf7iBpTwSYsThV6dfbeH6c4eR9DYXtDkK4zk4+fZowtpUwgIASEgBJI4AYuCzsxtjDSnmJuqnrVv3x67d+9WddJ37drlVPgo6B2+uoDrt4wY0luLU6lv4LNr21A/ZU5syfNfdjpbTypi7x8ImTMBHhVrwLf3WFs3L+0JASEgBISAEIBFQX/+/LnK486ypEz40rVrV5w/fx6pUqVSx8co9s5kFPS2XS/g9l0jhvfTYrP3WXUOvVu6Qpib035zCVu/FGFrFsKrQUv4tO3hTMhkrEJACAgBIeAkBOJ8bC0wMBB+fn5mc6s78rwp6K06XcC9B0ZVYe0Hwz+Y/OgkxmUph+GZS9tt6CHzJiFi1xb4dOgNr48/t1s/0rAQEAJCQAgkXQJxFnRnRkVBb9b+PB49BsYN9UD/kJ1Y+fwKluSqjvZpC9htakET+0F38l/49p8Ij3JV7daPNCwEhIAQEAJJl4BFQb958ybGjh2riqMEBwe/RencuXNORY6C/lmb83j6HJg4wgNNn23E/qAH2J63AWqnyGa3uQT0bQPD3ZtI/t0iaHLnt1s/0rAQEAJCQAgkXQIWBb1NmzbImDEj+G9fX9+3KDHPujOZOlPf8jxe+AOTR3ug3L0VuBYegPOFW6Cgd2q7TeVl6xpAZARSLtwKtxSp7NaPNCwEhIAQEAJJl4BFQS9WrBgOHTqk9sxdwSjo9ZudR2AQMG28B9JengsdjPAv0QkpNJ52maIxOBD+HT4G3DVItXqfXfqQRoWAEBACQkAIWBT0ihUrqmQyPIfuCkZB/+iz8wgNBUaM0yPXlSVI5q5FcMkudpue/vY1BPb/Au6ZsiHFLOdKxGM3KNKwEBACQkAI2JyARUFftGgRrly5omqiu8IqnYJeu9F5REQA3cYGoNzVtSjonQrnC7e0OVhTg5HHDyH4u4HQFikNv5Ez7daPNCwEhIAQEAJJm8Bbgl6nTp3XRLRaLW7dugWDwYD06dOrFLBRbfv27U5Fj4KefMjPasxFqgfj5+eXUSt5NuzI1yBO8whbu8jq6/U3ryDy6EF4flgPyboPtfo+uVAICAEhIASEQFwIvCXozAJnrdWoUcPaSx3iOgr61dV93xhLh7QFsDhXdavHZwwKhH/Hj62+3nSh9+ft4d2sc5zvkxuEgBAQAkJACFhDIMmdQ6eg54/MgBY5cig+lfwyx+nImvHlc/h3/RTw9oF3/RbWMFbXeJSqCE2eglZfLxcKASEgBISAEIgLgRgF/ZdffkGmTJlQpUqV122dPHlSlVB98OABuDKfMGFCjEfZ4tJ5Ql9rWqH3y1gcU7NVjFf3xqeP4N/9M7ilzYCUP22IVxtykxAQAkJACAgBWxOIUdBZKrVXr14w7aezulrNmjXVefQPPvhA1UIvUqSIEnhnMpOgD8pUEt9lLR+voRse3kNAr+Zwz5AFKX5cG6825CYhIASEgBAQArYmEKOgFy9eHJs2bUKuXLlUf5s3b1Z/ZtQ77cyZM0rw9+zZY+vx2LU9k6APy1QK47N+EK++DPduIaBPa7hnyYEUM1bGqw25SQgIASEgBISArQnEKOilSpXCunXrkDt3btVfixYt0KVLF7VKpz179ky541l5zZnMJOijMpfB6Cxl4zV0/a2rCBzQHu45ciPF1OXxakNuEgJCQAgIASFgawIxCnqnTp2QJUsW9O7dG3/++ScWL16MHTt2wN3dXfV/9epVJfJHjx619Xjs2p5J0MdmKYsRmcvEqy/99YsIHNxZ5WRnbnYxISAEhIAQEAKOQCBGQadgU9Tv37+vguNmz54NpoE12a+//goGzq1c6VwuZ5OgT8z6AYZkKhUv/vrLZxE4/Eto8hZG8gnz4tWG3CQEhIAQEAJCwNYEzB5bMxqNePr0KdKmTft6ZW7q/Pr16+Dfv//++7Yej13bMwn65GwVMCBjiXj1pTt/EkGjv4a2YHH4jZkdrzbkJiEgBISAEBACtiaQJM+hT8tWEX0yFo8XS93pIwga30dSucaLntwkBISAEBAC9iKQJAV9VvbK6JmhaLyY6k78g6Bv+0Nbojz8hk6NVxtykxAQAkJACAgBWxNIkoI+O0cVdE9fJF4sI48cQPCUIfAoUxm+A7+LVxtykxAQAkJACAgBWxNIkoI+L2c1dE1XKF4sI//Zg+BpI+BR/kP49h0frzbkJiEgBISAEBACtiaQJAV9Uc7q6JiuQLxYRhzcjpBZY+FRqRZ8vxkdrzbkJiEgBISAEBACtiaQJAV9Wa4aaJc2f7xYRuz9AyFzJsCz2sdI1mNYvNqQm4SAEBACQkAI2JpAkhT0Fe/VQqs0eePFMmLnZoTMnwzPGvWR7MvB8WpDbhICQkAICAEhYGsCTivo69evx4wZM8DCMbVr18aYMWOg0Wgs8jGdQ1+duzaap84TL5bh2zYgdNE0eNVpDJ/O/eLVhtwkBISAEBACQsDWBJxS0G/cuIF27dph9erVyJAhA/r164cSJUqgY8eOVgn6utx18VnqV3nq42rhv61F6LJZ8KrXFD7tv4nr7XK9EBACQkAICAG7EHBKQZ8/fz4CAgLQv39/BeXChQsYMmQINm7caJWgb3z/IzRM9V68gIZvXonQ/82B16et4NOme7zakJuEgBAQAkJACNiagFMK+tChQ1GmTBk0adJE8QgPD1d/ZllXkwUHB7/Fiqv4q6v74tcHWnwU8qrQTFxNd/EUdGePw7tJO3i36BrX2+V6ISAEhIAQEAJ2IeCUgt63b1/UqlUL9erVew2F++OXL1+Gm5ub+m+NGjV6C9i5c+eUoK9fuwc1btx/J6DeTTuC/4gJASEgBISAEHAEAk4p6MOGDUPx4sXRrFkzxTAoKAjly5fH2bNnLTKl6Def0x+tgzR4L/KV8MfXtEXLqAItYkJACAgBISAEHIGAUwo667M/evRI7ZvTTp8+DYr8li1bYhX0K1euOAJ3GYMQEAJCQAgIAZsScEpBv3v3Llq1aoVVq1a9jnLPly8fvv76axF0m74e0pgQEAJCQAg4CwGnFHTC3bp1KyZNmoSwsDBUq1YNEydOhKenpwi6s7x5Mk4hIASEgBCwKQGnFfT4UOAeurjc40NO7hECQkAICAFHJyCC7uhPSMYnBISAEBACQsAKAiLoVkCSS4SAEBACQkAIODoBEXRHf0IyPiEgBISAEBACVhAQQbcCklwiBISAEBACQsDRCYigO/oTkvEJASEgBISAELCCQJITdCuYyCVCQAg4CQE5teIkD0qGmSAEkpSgJwjRROxk7Nix+PDDD1G1atVEHIX9u+7SpQtYoOe99+JXMc/+I7RND6xVwAqCseVXsE1vidMKMz6yNsOKFSsSZwDSqxBwIQIi6C70MEXQXehhAqr4kAi6az1TmY0QsCcBEXR70k3gtkXQExi4nbsTQbczYGleCLgYARF0F3qgIugu9DBlhe5aD1NmIwQSgIAIegJATqguRNATinTC9CMr9IThLL0IAVchIILuKk9S5iEEhIAQEAJJmoAIepJ+/DJ5ISAEhIAQcBUCIuiu8iRlHkJACAgBIZCkCYigJ+nHL5MXAkJACAgBVyEggu4qT1LmIQSEgBAQAkmagAi6kzz+s2fPYvLkybh06RKSJUuGTp06oU2bNmr0BoMBEyZMwNatW+Hh4YGvvvoKrVu3Vn/3/PlzDBgwAKdPn0aaNGkwceJElC5d2ilmPXXqVGzfvl39E9tcOL/BgwfjyZMnKFCgAL7//ntkyJDBoef5119/Yfr06WC2tGzZsmHVqlVqvJbm4mzz3LNnD/gcw8LCkCJFCowaNQolSpSIdZ7r16/HjBkzEBERgdq1a2PMmDHQaDQO/TxlcEIgsQmIoCf2E7Cyf/7AMdVpqVKl8PjxYzRp0gRLlixB3rx58csvv2DLli2YP38+QkJC0KJFC0ybNg1FihRB//79kTVrVnzzzTdKKPjvbdu2wdvb28qeE+cyjpU/6Hfv3n0t6Obmwo8Y/uiPHj1apb1dtmwZDh06hHnz5iXO4K3o9eTJkxgyZIiaY/78+V/fodfrzc7F0t9Z0WWCXxIZGYnKlStj7dq1yJkzJ/7++2/waOUff/wBS3O5ceMG2rVrh9WrV6uPsn79+qmPgI4dOyb4HKRDIeBMBETQnelpRRnrl19+qUS9Tp06arXevn17VKlSRV2xdOlSPHjwAIMGDUKZMmXAlaCPj4/6O67emzZtiho1ajjszLkq40cJV2X8MecKnV4Ic3NJmzYtxo8frz5saLy2QoUK2LlzJ5InT+6Q8+zevTuaN2+OatWqvTG+U6dOmZ3L9evXnWqeQUFB6uPk4MGDanVNb1HDhg1x4MABWJonPRUBAQHqY5R24cIF9fHDNLhiQkAImCcggu6Eb4fJDckfvixZsqBmzZpYvny5WonT9u/fr/5MkaMw7t279/Usp0yZglSpUoEFThzVuLWQOXNmfPLJJ2r8FPSHDx+anQtXcVyRT5o06fWUPv/8c4wcORLFihVzyGmWLVsWffr0UatXfoC0bNlS/bNp0yazc+HK1dnmyS2e+/fvo23btpg7dy4+++wz1K9f3+I8uTLnxxs/WGnh4eHqz2fOnHHIZymDEgKOQkAE3VGeRBzGwX3X4OBgDB8+XN1VqVIlbN68GVyp0g4f/r/2zgToqjGM408JSZaSJkt2GUvCkGQrhex7yBalGEWihlIpqVBo0aKipMhSmEGWIlEqMbYkjIqsrXYmMr9n5r3Od7v3u9fpNOd+M/9nxnzl3vMuv/d0/s92ap6ncnmYEslPmzYtM/rQoUNdQEi9l6KRimZ/ZBlWr16dEfQlS5bk3UudOnVs4cKFHtEHo7+gQ4cO1qhRo5LbJgJVv359a9eunXXs2NHPslWrVjZgwADvkci3l6VLl1aofQKerAIZpMqVK7vzOXjwYO/lmDx5ct694OQ0b97c/3GaYJSWFi9ebJUqVSq589SCRKBUCEjQS+UkilzHpEmTPGKlXh7+WU0efmPHjvU6JTZ9+nTjewg6EREpz2D8v1q1armYlJohdESpQ4YM8SYxUrQhQqdxLN9eEPSZM2d6I1wwUrvUaxs0aFBq2/RGL2rCOC/hDIcNG+YNjWQm8u0FQa9I+1y5cqW1bNnSRowYYfXq1bMpU6bY6NGjPTrHycy3FwSdc+NajNQ9jhmNoTIREIH8BCToFejumDp1qqdox4wZY1tvvXVm5e3bt/d6bKiL89BEALt3726kdmfMmOEdxljbtm39u9Q2S83mz5/vjU9VqlTJLI3olb3SwY9I59oLkR97DTXWdevWWcOGDf27lBdK0eh3oNExdOLTxFijRg1fd769LF++vELtk0ZN6uWUUILRv0EmZf369Xn3gvBz/1I3x2iQhAnjyURABCToFf4eoDOYujhiXb169TL7IeJBHEKXO5FN//79Xcy7devmEXmnTp38wUgKnmax7DFKEVA0Qmd9+fbCa3wtWrSwHj16eGMgXe7sccKECaW4LV8TZQVqy6TZwz6HDx/uby3k2wulkoq0TyLqzp07uxOKY7Vs2TIvLXAv46Tl2wtvNvA9ekRClzsRPiUUmQiIgAS9wt8DjRs3thUrVpSpISJeROsYURCiTo2RmmVoeqNbuGvXrrZgwQKP0nm1K3TDlzqUbEEvby+LFi3yfSKSe++9t7/7XLdu3ZLdIu9l0wPBGwg4JHS9U1LAyttLRdsnTtXEiRM9IudVSQQ+dPaXtxcyMjQ5wonvUyoK5YmSPVQtTARSJqCUe8oHoOlFQAREQAREIAkCEvQkKGoMERABERABEUiZgAQ95QPQ9CIgAiIgAiKQBAEJehIUNYYIiIAIiIAIpExAgp7yAWh6ERABERABEUiCgAQ9CYoaQwREQAREQARSJiBBT/kANL0IiIAIiIAIJEFAgp4ERY0hAiIgAiIgAikTkKCnfACaXgREQAREQASSICBBT4KixhABERABERCBlAlI0FM+AE0vAiIgAiIgAkkQkKAnQVFjiIAIiIAIiEDKBCToKR+AphcBERABERCBJAhI0JOgqDFEQAREQAREIGUCEvSUD0DTi4AIiIAIiEASBCToSVDUGCIgAiIgAiKQMgEJesoHoOlFQAREQAREIAkCEvQkKGoMERABERABEUiZgAQ95QOIO33//v3tt99+szvuuCPuEIld98EHH1j37t1t6dKldsYZZ9idd96Z2Nga6D8Cv/76qx1yyCH/wqAHAAAK30lEQVQ2e/Zs23HHHYVGBERABMoQkKDHvCG6du1qr7/+ur300ktWo0aNMqM0atTIHnroITvggANijl74slIS9PPPP9+aN29uV111lTsZ22+/fZkNwGrq1Kll/t9WW21lOAKb2pj3l19+scsuuywz1eWXX25XXHGFNWvWbJNM//TTT9stt9yywdhTpkyx+vXrx55zUwg66+Tc6tWr5+vCWbj33nvtqaeeir1OXSgCIpAOAQl6TO6I1KuvvmonnXSSDRgwIBVB/+OPP6x3794xd5DcZUSNjz32mO2///45B4XVNttsY9ddd13m80qVKm3gCCW3ov9GuuGGG+zwww8vI+iIVcOGDW233XbbFFMagj5hwgR36qK27bbbWpUqVWLPmbSg//XXX+7UjB07NiPo3333nc2YMcNatWoVe526UAREIB0CEvSY3BGpvfbay8aMGWPDhw93gQgWjdC//vpra9q0qX3yySdlHub77ruvOwS77767EW1Xr17dU9YLFiwwhPqiiy6y448/3vr27WsrVqywqlWrWs+ePa1x48Y+TYjQ+e4rr7xim222mZ199tl26623Zubh4dyrVy976623bIcddvAxr7nmGkNMEQfGJ2q86aabbOHChR6VZYsyD/2BAwfac889Zz///LMdfPDBvg6+99lnn/l877//vgs2a2AtuSJ0UsRdunTZgDYc69SpY507d858NmTIEGcxaNAgX+dRRx3lv77//vv999WqVfN5jz322Mw1jz/+uI0ePdq+/fZbH++uu+6yZ5991sV18803ty233NLOPfdcvw5Obdu2tdNPP92vf/fdd50nDLbbbjtr2bKlXX/99Va5cmX/nO8T1cOK84TfJZdc4mPkMubEwckV5Z566ql25ZVX2gUXXJC5lO+z9mnTptlHH33ke+Xn33//bccdd5yvjYxGtqAXYscE+caDCTy4L8PZUSrB4cBBffnllzPre/LJJ23kyJHOtm7duoaTxD4wxH/ixIl22GGHeRaG+wVHqV+/fhmH6Z133vE9fPrpp352OFiDBw/2c5GJgAgkR0CCHpMlD1PEDaFF1BG8LbbYwkeLI+iPPPKIR3U87BDKM8880/bYYw97+OGHXaCeeeYZu+eee+zNN990QeEByTV9+vSx0047zR+2HTp0MNLfbdq08XUgGggCAvLDDz/Ytdde679G2IM48CAm5XrQQQdZ7dq1N3jI3n333TZ37lzjJ6KM+PBwnz59ujsh2IEHHugP85C2zUYKq40RdDIAiDqOE3MiNt26dXNHBaF+7bXX3FlAiA499FB3BnC2cCzYGw5VNOUeFfSVK1d6uYA1Uv9fvny5Ozj8un379hlBx6nifPbcc08XdT4fN26cNWjQYIM7qDxBHzVqlM2ZM8evDcYajzjiCD+fZcuW+fo5F5w1nAbOl59xBL288XKdHQIdFfSZM2c6m/vuu8/3On/+fOdDVM+58H04sT7OACcIJ/TLL7/072A4oaT2W7RoYatWrXLH6YQTToj5J0+XiYAI5CMgQY95b/CQ22+//Vw8EUmEOKSU4wg6DzkEIxjR4ymnnJIZk4c79VfEoFatWi7oRPPRKPD555/3KJYomc9YI8Ib7NFHH7UXX3zRI6ogDkRlRKS5jGgLgZw0aVIZ4SIde/LJJ3sdulhBZ23B4eEaRBQHpVCUGdaJ84KoB4MFTsQ+++xjl156qR1zzDGefci2QoI+bNgwe++99zLiw/Vvv/22c4chhgPQpEkT69SpU2Z4zh1RIlLPNgQdh4NoNBh9FojfN99842lunJGaNWvamjVrfF84KUS/2YYTs2TJEneo4gh6eePlOrtsQccRIhPSrl27zFBE10TbrI3v40iS5cC5xcjY8H0cQezII490x5N7RiYCIrDpCEjQY7JFiIhIiUyI6s455xwXV9KNcQSdBztp4mBE2ggnadFg2Wl6okvS4cEWL15sZ511ln388cdGmrRHjx5lIu7169fbzjvv7Kn+IA4Ifr5aMlEWPQKMFxVj0qk0vxGJ5RKFbKSw4mEfFQXEDkErVtBpQNxll10yQxPRkqYmSiQChF00BR++WEjQb7zxRtt111096gxGEx2ODKJL1iKk3KNngYjhVIQoPrpnBH38+PEueMEoR+y0007+24svvtgjfM73iSee8KzH5MmT/bMPP/zQMz6w57w4Y/aKiMYR9PLGK0bQYYszgcMUjHuGKB7HEUFHrDmf6H3InwfuG+yNN97w6J0mUUoXOEdkmWQiIALJEpCgx+QZFXSGILrmQUcqlYiLdCMPsFw19D///NNT3NEaevYraAg60RECnU/QSQNTbw22aNEidwCom1JTxsGg7pvLimmwIgojU5At6ET1v//++/8S9P+Tcidyp/4faui5XtWKCjoOFI5NVHSKFXQicdLzhQQ9WnNn7EKCnq+GzrV8RsaCjEnr1q3txBNP9Ej/+++/97Q0fQ8IPk7A0KFD7fPPPy9a0KPsCo1XjKCTeSLrE2XLfYsDFQQ9u+aOYxkVdOYhw0RZipIDZQt+sj+ZCIhAcgQk6DFZZgs60RSRF1EXQjRixAgX9NWrV3vDHGndUHOmRk5T0cYK+rx588q8DkYTGFEhr9LxGSI0a9Ysb/TKtmIEnYcwwomzgqgGY4+IEKWGXKKQPVd5NXS69GmOIkUdrGPHjp4RKFbQ4U7UlytahgFihHAGi9bQEUzOJtqRTsqdejZpZCLJ7Ca6jRV0sjGsCYGjV4IIlmwF9wN/rwB162A0C9IclytCL8Su0HjMQZaBLEFohsxOuVPOIPMRZctaaKajlyL7+4yZS9DDfnAE6WngzwdZEJkIiEByBCToMVlmCzrDkCZFOP755x+PQMJ76DSmIRAID9H5zTff7B3NGyvoRHgIIaJAbZZok0gvCC21ccSchiQE44svvvBICTEpRtDZE7V6upRJu5J+JurHaSAbwWtYGyvojEfqnJ90W1O3Ji1LpFqsoNMXQFTL92ncogSC80RN+vbbb/ffUyvnXOgWjwo0mQCcK84EjqEpLtq/EEfQqfmTOo8adfTw2hr1fu4FnJkHH3zQv4ZInnfeeR7B059BXZ109tFHH51T0AuxKzQec7JP9k05ZN26dV5miEbcnDP3WGiK417AyUDMcfaKEXTKCfQbcA9SAuD+fOGFFzIliJh/BHWZCIhAFgEJesxbIpegMxRCTvqXaDkIOp3BRF5r1671ruyrr77aHnjgAa+zhtfW4qTcuZbokgc/6UvEAPEOqcwff/zR/9Y2Ij4a3BA4GrsQy2IFnYc8ERni8dNPP3lEd9ttt3nJINjGdLkzPqJFpzrrRsjo8CbKK1bQWQelDv4jzUytmmuJABFoXkGjHHHhhRf6K3fZAo3IwImfOClwpLYeOMYR9EJ/sQyCxutf/CUupNeDhfsCxwsR5KxwWHJF6IXYMWZ54/E5GRzOk1o9aXQcnuwUesj8fPXVV95vQLkBJwArRtBxXnAEiM7p1+B6OvdlIiACyRKQoCfLU6OJgAiIgAiIQCoEJOipYNekIiACIiACIpAsAQl6sjw1mgiIgAiIgAikQkCCngp2TSoCIiACIiACyRKQoCfLU6OJgAiIgAiIQCoEJOipYNekIiACIiACIpAsAQl6sjw1mgiIgAiIgAikQkCCngp2TSoCIiACIiACyRKQoCfLU6OJgAiIgAiIQCoEJOipYNekIiACIiACIpAsgX8B9pw1iXzdWaIAAAAASUVORK5CYII=" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAEsCAYAAAA1u0HIAAAgAElEQVR4XuydB3RU1dfFd3qAhE7oTZHem4hUKSqCFKVIEykKiEjvvfcOAtJRASnSlN4RpSO9994TkkCSKd/al2/yT52SzExmJuesxdJk3rvld19mv3vvuee46fV6PcSEgBAQAkJACAgBpybgJoLu1OMnjRcCQkAICAEhoAiIoMuDIASEgBAQAkLABQiIoLvAIEoXhIAQEAJCQAiIoMszIASEgBAQAkLABQiIoLvAIEoXhIAQEAJCQAiIoMszIASEgBAQAkLABQiIoLvAIEoXhIAQEAJCQAiIoMszIASEgBAQAkLABQiIoLvAIEoXhIAQEAJCQAiIoMszIASEgBAQAkLABQiIoLvAIEoXhIAQEAJCQAiIoMszIASEgBAQAkLABQiIoLvAIEoXhIAQEAJCQAiIoMszIASEgBAQAkLABQiIoLvAIEoXhIAQEAJCQAiIoMszIASEgBAQAkLABQiIoLvAIEoXhIAQEAJCQAiIoMszIASEgBAQAkLABQiIoLvAIEoXhIAQEAJCQAiIoMszIASEgBAQAkLABQiIoLvAIEoXhIAQEAJCQAiIoMszIASEgBAQAkLABQiIoLvAIEoXhIAQEAJCQAiIoMszIASEgBAQAkLABQiIoLvAIEoXhIAQEAJCQAiIoMszIASEgBAQAkLABQiIoLvAIEoXhIAQEAJCQAiIoMszIASEgBAQAkLABQiIoLvAIEoXhIAQEAJCQAgkK0F/7733cOXKFRl1ISAEhIAQEAIuR0AE3eWGVDokBISAEBACyZGACHpyHHXpsxAQAkJACLgcARF0lxtS6ZAQEAJCQAgkRwIi6Mlx1KXPQkAICAEh4HIERNBdbkilQ0JACAgBIZAcCTitoOv1esyePRuLFy/G8ePHzRo78XI3C5NcJASEgBAQAk5IwCkFPSIiAt27d0dAQAA2bdqEo0ePmoVeBN0sTHKREEgWBEJCQlCyZEkcOnQImTJlSrI+7969G+PGjcP27duTrA1SsWsQcEpBJ/r9+/ejUqVKKFOmDE6ePGnWaIigm4VJLhICyYKAvQS9devW+Prrr1GjRg3FtVGjRli3bl0kYxH0ZPG42aWTTivopKPRaFCuXDkRdLs8Komv5NxFPa7e0CW+IClBCPw/gfqfeiSYhb0Efc2aNShfvjxy5cqFa9euoVmzZtFWFUXQEzyEcmMMAi4r6PXq1Ys12BcvXpRIcUn4JzB7gQYnz+iTsAVStasRWDDdy2iXzp49i8mTJ4P/1Wq1qFKlCsaOHYsUKVIgpqDz55EjRyqxffToEcLCwlTZ7du3R9++fREeHo5JkyZh48aNePXqFYoXL44hQ4agUKFC6jqWmz17drx+/Rrz589HxYoVMXPmTDRo0ECVkS9fPvVflp02bVp1z9atW/Hff/+pcr/44gssWrQIwcHBquzRo0erlwAay+jQoQOWL1+O+/fvw9PTE/369UNQUBAWLlyo+pIzZ05MmDBBtUEseRJwWUHnH1VM4x+JhH5Nuge9z7AIPH8B1KrmDl/fpGuH1Ow6BEzN0G/fvo1bt26hdOnSePPmjRLUzz77TP03pqBTDHn99OnTlSg3bdoULVu2xFdffaWA8fPDhw+r/3LPfe3atZg7dy527doFPz8/JejcCqTAd+nSBalTp0bGjBkjBb1u3bo4deqUEuaofj+cof/www+qXXxx8PHxwaBBg9RLA8XaIOj8+ddff0WWLFmwatUqjBgxApUrV1bt5T0DBgxQ7Z46darrDLD0xCICLivocVGQPXSLng2rXhwaqkfX/hp4uAM/TfaEu7ubVcuXwoSAOQTmzJmDmzdvKlGOKeiff/45evXqpWbxNM6u7927pxzWODsvVaoUfvvtN5QoUSKyqubNm+Pjjz9We+QU9G3btmHHjh3w8vrfyoFhhm5M0L///nsl8nwxoNEv6LvvvsORI0ciBb1mzZrqRYEWGBiIsmXLYsWKFeq/tH379mHMmDGqDWLJk4AIevIcd7v3+vwlPabM0SBvbjcM7OFp9/qlwuRJ4MyZM1iwYAFu3LgBHnV99uyZ8rvhrDamoNeuXRuDBw9Ws16DoD98+FAtffN+fn7u3Dl4e3tHwqSAhoaGYtSoUUrQWT6Xz6OaOYI+bNgwNbs32OXLl9GwYUNVH41l0LmODnU0bgcULVoUe/fujVxi5+pBz549cfDgweQ52NJriKDLQ2AXAlt36bBmoxZVP3RHqyYJd2SyS2OlEpcgwL3qTz75BEOHDgV9ajw8PNSs++rVq3EKOkX18ePHmDZtmhJ7zr579+6Njz76CJcuXQJn2DEFnWLPZW6DoFPcuQ9vqaDHPLYWl6Bzm4BtiCroBw4cUEvwNBF0l3hsE9UJpxZ0S3suS+6WErPe9fOXanHkhA6tmnqgakV36xUsJQmBeAjs3LlTiSuXog3Wo0cP5RwX1wydDmZcdtfpdEiXLh2aNGmCFi1aqFu5/86ZPZ3SeHbdYBT9WrVq4ZtvvlEzdFOCfvr0abRp0wYnTpyILCMuL3cRdHmsE0JABD0h1OQeiwkMGh2Bh4+BgT09kTeX7J9bDFBusJjAhQsXlOc495kLFCigArfQkezDDz+MU9A3bNgA/ps4cSLc3d3h7++vvMkNRsE+duyY2n9nUCseR+OePJ3i6ABnjqBzSZ7e77/88ovai2c9XGqXGbrFwys3xEFABF0eC5sTCAvXo0sfjaqHDnGeHiLoNocuFSgCDA+9dOlSNcPm0jmX4Lds2RKnoP/7779q9swZPI1iS4c3HnujkxvjXnBmTyHnbL5YsWLKG5172TRzBJ3XzZs3Dz///LPa0+cLBGfjIujywFqDgAi6NShKGUYJXLuhx9hpGmTL6oYR/cQhTh4XxyPAgC/t2rXDTz/9hIIFC6oGcg++bdu2ytu8fv36jtdoaZEQiEFABF0eCZsT2HNAh1/XaPFBOXe0aykOcTYHLhVYTIBJnhjghQ5xUY3HybhEz71yMSHg6ARE0B19hFygfUtXanHgHx2aNvBAreriEOcCQ+pyXaC3OAOz8Jw5I65xeZ1L89xzZwAZQ8Q2l+u4dMilCIigu9RwOmZnRk7S4NYdPXp38USB92T/3DFHSVrFWTqd1eipTmc4Lr1zhh7Vq10oCQFHJiCC7sij4wJt0+n06NRTA60OmD3REz7eIuguMKzSBSEgBByQQCxBr1q1qtnNjHq+0+ybkvBCOYduf/h37+sxbLwGGdMD44YaT6Rh/9ZJjUJACAgB1yEQS9D//vvvyN4x3CGPVzA5wTvvvKOObjAO8pIlS1SIQQZhcCYTQbf/aB06osOiX7UoXdwNnduJh7v9R0BqFAJCILkQMLrk/uWXX6J///4oU6ZMNB7MGMRwijxD6Uwmgm7/0Vq5Toud+3RoUMcDdT8Whzj7j4DUKASEQHIhYFTQCxcurDIApUqVKhoPxjlmGMTz5887FScRdPsP14QZGly+pkfXbz1RvIjsn9t/BKRGISAEkgsBo4Jeo0YNla6PWX+i2qZNm9R5TYY8dCYTQbf/aHXuFYHwCGDSCC+kTWP/+qVGISAE/kegQoUK+Ouvv5A+fXoVs75Pnz44fvw4PvjgA5V6NT5jdDtmeOvatavgdGACRgWd5zC5V87Yw4UKFVKhEJl1iGc2mSLw008/deCuxW6arQX98HEdHj7WOxUTazf2iM9NXPN4qoplBM1rN/Xw9gI+qSEBZazNWsoDhmUrJxgsIBBV0Pk9Pn/+fJVwhuLO73cRdAtgOuClJo+t3b59W8UuvnXrloo9zAALzELkjIEWbC3oM+dr8N+55Cvor1O8xqqGK6H1fBsLW0wI2JqAvkwnW1fhUuVHFXSeuef3OwPqmDKZoZsi5BifmxR0x2imdVpha0GfPk+DM+f1eL+MOwIyWafNzlTKDP+92J3iMgqFZ0bx8OyRTU+X1g2ZM8n+uTONpbO01Vln6FWqVFEpVw8ePIinT5+idOnSytGYRqdjpn198eKFmjUPGTIEvJ62evVqlT2OOdiZ1z1TpkwqAU2pUqXiHDJeP3fuXHh7e6sVVUa9++OPP5RvFFdZX716pfKpz5gxQy3DMzIeP2O9zZo1Q4cOHVS5UQX9yJEjYB744OBguLm5YfDgwbDkuLOzPFvO2E6jgs5lmFWrVmHz5s0qUQHzC9P4ENIxjpmInMlsLehTf9Lg3EU9unX0RNFCyUvAToY+RekLq+Hl5o4rRZsjt7e/Mz0a0lYXJkAfjguX7b9yxq2mQvnj/h4oUqQIfvzxR3z77bcqu1vjxo3Rr18/lC9fXn3XMjtc7ty5VS53ZmLj9ieFnyePuAeeMmVK/PDDD6hbt26838NMONOqVSusW7dOiTYj4XGf/PDhw0q8+fPDhw/VSSYaZ+pp0qRR++r8fmdiGr508EUgqqAzUQ1TzObPnx+BgYFK1Jk+VizpCRgV9FmzZikxb9mypXoQDF7tzAnMt0Y+WM5kthb0KXM0OH9Jj+6dPFGkYPIS9A8ursO/IY/QJ3NJjM/xgTM9FtJWFyfw7AXQd1iE3XuZIR0wfljcwZQo6NzDprDS+H3KdKwU9qgWERGhThRx1k7nNc7GFy1aFDlr5jZox44d4+wbY4jw5YApXmnh4eGqjn/++SdOQecsny8QBnHetm2bms1zhh9V0Lt37460adOqFwpD++0OVyqMk4BRQa9cubLKJcygMnwAz507pwrhUhA/O3v2rFNhtbWgT56tUTOBHp09UbhA8hH0319cRdPrO5DJ0xdXi7ZAag9vp3oupLGuTeBVMLDkN43dO+nv54Y2zeN2BuX3Kb8/ObulDRs2TM14mdWNedmXLVumZuk0TqBOnz6NZ8+eoUGDBir+BwWVs3vmb69UqVKcfWN+9gwZMqjrDMaXAwp1zBk6l8+5vx71O50vEcOHD1eiHlXQGet+4cKFavmfOeZ79+4d62iz3WFLhYqAUUEvWrSoerj8/PyiCTr3bugYd+LECafCaGtBnzhLg0tX9Oj5vWe8S21OBcyMxobptShw9jfcCg/Gz7mroX3GQmbcJZcIgeRNIOoEKaqg16lTBzVr1sTvv/+uJlJc+uaRMgo6jbNlCimX47mvTkGPzzhD5zK9YUmdS/v8Tmc00JiCzpk+k9Ds379fLbvT4puhG+rjjJ8vIpzRc7tALOkJGBV0OkQUL15cLa0YHsCXL1+iR48eatCnTp2a9D2woAW2FnRDEJXklFVszMMTGHjvMAr7psPZIs2QfNYlLHjw5FIhEINAfILOlU/uk+/Zs0ftk/NYGZfZmaudVq9ePbVqas5S95UrV9Q+OE8pZc6cWWWS44zb2B46J298ATDsoX/99df47LPPos3QufXKoGM0toUnoLhlIJb0BIwK+oMHD5SYc4n9zp076u2Os3OmFZwzZw4yZsyY9D2woAW2FvTx0zW4cl2PPl09kf9d15e2J5rXyHPmF4TqNNhboD6q+mWzYDTkUiGQfAnEJ+hccudS+Z9//qmWy7kSunLlSjCYF52U27dvrwSZXuv+/v744osvlHNdfMaZPmf1Hh4eanmcK650hovLKY7L7pxxc4/d19dX1c3lem4LRF1yp9Mcr/Hx8VHHl8ePH6+87cWSnoBZx9bojEEh55JNvnz5lCemM5qtBX3cNA2u3tCj74+eeO8d1xf0b27uxpJnl9AwbV6se/cTZ3wkpM1CwGkI0Nude+ft2rVTibK4p07RpUA7Y1wQpwHvRA01Kug8F8kjCjwj6Qpma0EfM1WD6zf16NfNE/nyuragyzE1V/iLkD44EwF6s3M5nnvstLt376pMmDyaxhl8VEuXLp1yrBNLXgSMCjqXVnbs2KHeCrl3w3SpnKE7q9la0EdP0eDGLT0GdPfEO3lcW9DlmJqz/hVIu52VAMNuc0mc3u8M/MJl8e+//16F5hYTAiRgcsmdnow8L8kz50zGQu9KCjsdJRiswJnM1oI+arIGN2/rMbCHJ/Lmdl1Bl2NqzvTUS1uFgBBILgRMCnpUEMy2wyhxDOZ/6NAhXL582ak42VrQR07S4NYdPQb19ESeXK4p6FGPqc3PXRUdMr71dhUTAkJACAiBpCVgtqAzjCBn6Tyb+PjxYxUOkEcgnMlsLegjJmhw+54eg3t5IndO1xR0OabmTE+8tFUICIHkRMCooDMTD49P8B/PGjI/OpfbeVaSXpbOZrYW9GHjNbh7X48hfTyRK7vrCbocU3O2J17aKwSEQHIiYFTQed6cDhcU8Vq1atklvB+zAU2bNk3FHWadXAXgGcqYZoiYxN8zohKPdPDcpjGztaAPHafBvQd6DOvriRzZXE/Q5ZhacvpqkL4KASHgbASMCjrPOZoSSWt2+MaNG2jdurUKpBAQEICePXuqcISMdhTVTp48qVIN8jpGU+ILACPY0QM0KQV9yFgN7j/UY3g/T2TP6lqCLsfUrPmkS1lCQAgIAesTiCXozK5mrjF1nzWNYQ6DgoLQq1cvVeyFCxdUGML169dHq2bv3r0q1jGj1dGYWpAe+Mzvm5SCPnhMBB48Akb090S2LK4l6HJMzZpPupQlBJyXACdY3333Hd5///1Ynfjtt9+Us7SpyZWj9J4JaegbZk4oXUdps7F2xBJ0ZvMx12IKrbn3xXcd8/GWLVsWjRo1UpfQq54/nzlzJtotXI5nMAVuBzDWPNO8MvygqTPy5iy5b9iiTXA39hzQITgEGDXQC1kCYhdzJSwQvz5zrpMB7MXDiFDMe3oeAZ4pVK5zyaaW4EdEbjRCQHP2ODTnT1nEyLdJO4uud8aLGX6bSVjKlCnjEM0XQXeIYYizEWZ7udujC0z6wihIzDhkMIow3/gMaQYNv2fAGyYEYHxjRrNjEBxPT8/I+z7++ONYTb5+/TqYsMCYtf8x8XmTRw/yQuY4QhtveHkDDa5ttQdKm9Qh2dRsgjV5FxoejrC9fyJsyxro7t2ymEXa3w9afI+z3cDELO+++67KeukIJoLuCKMQdxvMEvSLFy8qIWSKPc6CDZl2rN2tgQMHokSJEio+MS2uHL38PQPdzJgxQ+XkZbSk0aNHIyIiAmPGjIlsEuPOxzQ6+RkT9LBw4PvebwW93ifuCe5ezaoeSJUy9u2rX1xDk+vbUcQ3Hb5M926Cy0+KG73c3DEwq2PMEJKi/1KndQnonz/Fmy2rEbZjPRAa8rZwbx94V/sU7qnTmV2ZM87QNRqN8gFikhWuNvL7lE6+/H5lEhRuJzLbGaNzDho0SPkQGZa4+f9cJmZyFH4/MtDXyJEjVfS42rVrq/SnKVKkUPwYL4Tf3fx+jMtYFhO27N69G8xxTn+kKVOmqMigNLaJudD5XcoVUWZeo0VtD/2s+vbtCx5rzpo1qwoTbkjyYqoMlsOVVfaVbeDPPEHF9K5MDFaoUCHFgEzYvzx58qhtVUbJM1Y287iTCZOK8VpO/JhqlsbUs+wXk9vw6DWdsNlHl11yjzrwBELHNCZn4YPDWfLNmzeV6NIRzdoQFi1ahEePHkXm72UOYIp8zDjFfMhLlSqlMg3R+EfBh9xUfnZTS+6hr4Gu/SKQwheYOd76x/J+eX4ZrW7sQov07+GXvG/jMYsJgeREgEvqYVtWI+LoAUCnU113z5IdPp98AZ/qdYEUcbwJJxZQeBgizhxLbCkW3+/m7QPPYmVj3Ud/H25Xzpw5U33GTJY5c+bExo0bVYrTBQsWqExq/P7ld2xMQafwckJDseKLAeO2d+vWTYWBpUgZfJsY552Z2PjdGJ+g8/gxfZF4kogTItbLJX7uK3M/nJMmTpYaN26sssAZnJQNLxisl4lhuLr6/PlzdR1FmXvopspg/6gj1BbDiwJXIaZPn65WXrn9S6ds8uDqK18oyKJq1apGy6aG8AWA5e7bt0+dgKKfFV86+GKybt06FeWUSW3YZ0M6WYsH2AFvMDpD7969uxLxESNGRC738O1r8ODBCjjBW9OYbIDpA1esWBHp5Z4/f3506dJFDcz9+/dVMgI+ZOfOncOECRPUQG/dulUNzqpVq4w2x5Sgc/+724AINbuePtb6gr7o6UW0u7UH32QoiEV5qlsTnZQlBByXQEQ4wg/uUEKuvXk1sp2excvBp05jeJX6AHCznROp7ukjBHV++/JvT3PPmBmp56yNVSW3EJloZdSoUdHisPN39B/iTDuqxRR0rmB+8snb7IZ0HO7duzfozMwXBZ78+fnnn9XEiIlc+L1pmNHGbAjLpQDzJYDGeCPMw85ZcMxEMHyB4Hc+BTxqe+jDxOihqVOnVmVMnToVgYGBStBNlcFt0aZNm0Y2i+VG7Rudo+k3wO98Gmfz2bJlU6JsrOyo/eTLSLly5cBZu4ELJ4Q0TgSLFSumVjusPTm153MWtS6jgs63MUaGy5w5c7T28WHhA8XjY9Y2PpgcOL5h8U2Mb1BcHuFgMDkBHzYOBP8YGH6Wb5ZsH186uCRjzEwJemAQ0HNwBFL7A1NGWV/Q5z45h0639+O7jIUxN3dVa6OT8oSAQxHQv3ym9sbDdm6E/lXg27b5+MK76ifw/awp3LPmtEt79UEvEfrTWLvUFe3LNXVapOzUP856ueo5e/ZsJbz9+vVTs9qGDRsqIeQKaFSLKehMn/rhhx+qS3g/fYiY55xL+dWqVVMzfa5q3rt3D3Q0js9YLvOdG2bwnMVycsSJGtvCGTdzntPooEwBZnmG9hQtWlR5up89ezayCi7zcybMfpgqI2rdLCBme+gXxaVyw4rDxIkTkTFjRnzzzTdGyyYLZpqjhtCOHTsGrvZyhYEzftZrMIo9NS5ZCDrfvvjGFvMs+pMnT9RbpC0E3ZZ/daYE/cVLoPfQCKRNA0waYX1Bn/H4DH68cxA/BBTDjJyVbNlVKVsIJBkB7cXTeLNlDSIO7wN0b31Z3AOyvl1W/6gekDJVkrXN0SqmGFKgKSqcaXOGyoBaxgSdgb4Mp5H4HcwVU8NxY+6X08+J+8LcruQM1JigRz1+FlXQOQPmzJiTqpgW9QXDMMM1OOxxG4H76oYZujllGMqP6WxnTNDjax/jkdCxmn4IDDjG/fkPPvhACTonhU+fPo3c0qVvAF9KuGefLAS9U6dOSsz5wBje1PjWw8F6/fq11Zfcbf3HZkrQnz4H+g2PQIZ0wPhh1hf0SY9Ooffdf9AzcwlMyiEpD2093lK+HQloIhD+9041I9devxRZsWfR0vD5tDG8ylay6bK6HXua6Kro8EVnXu59U3CYuZL7unQMo5MWhYcC+fDhQ7XXG3OGTgc2+htx5bJr167gtiSXwmlcgudqJUV1+/btRtsaU0CjCjr3v3/99Ve1ikAnOe5302kv5p6+oX5ui/KaZs2aKQE17KGbU0ZCBD2+9pEntxo4EaWvAWObsA88KUCHaPZ5zZo1alWX/gqMRJps9tD5QHXu3BmM6c63HQ4ol1P4/wTlbG81pgT98RNgwKgIZMoAjB1ifUE3JDbpn6U0xmSPHZQh0d8UUoAQsDMBfeALhG1dq7zVubStjN7qVT6Gb91mcM+Wy84tcvzq6LzLZXYukdMpjSLDvWSDXxId5jhx4lJ61CVuLm/zWjoE79y5Uy2J83f06DZ4trP3nMEz7wYd4oyZMUHnffRLouhRJPnyQZ8lzsij3sfVWnq5X716Vfk90WueybsMgWXMKSMhgm6sfVxapz8AJ6Nc8aBfgcGxmjN3erlzq5Zt5fI82+hsWhbfuJo8tkYRP3r0qBJyPoAFChRQwV7ic7Rw5D8nU4LOKG+M9pY5ABg90PqCPuz+UQx/cAxDs5bFsGzlHBmVtE0IGCWgvXIOb/5ajYh/9wD/f0SUTmBcVveuUQ9uqfyFoA0IUEy53Fy+fPl4S6d/Ez3XOfESS14ETAq6K+EwJehMrMIEKwzbyvCt1rYB9w5j7MMTGJ39fQzIUtraxUt5QsC2BDQahP+z+623+tULkXV5Fi75dlm9XGXg/88I27Yhybd0Y0FdSIVL0ZyR0imMxtUAHm2LaT/99BNy5MiRfEG6aM/jFHQevufeDT0vDUa3fy6tcP+HSxV0vkiVyrmcW0wJOnOZM6c5M6UxY5q1rdfdQ5j86D9MzPEBemUuae3ipTwhYBMCXEoP27bu7bL6y+dv6/Dyhnfl2vCt2xTuOfLapF4pNDaB+ASdZ9np/c3vZDqm8Wy4WPIjEKeg85gAnR0M5yF5TIx7Mi1btlR7NpMnT1begRR4ZzJTgn7zth6jJmuQO6cbBveyvqB3vXMQMx+fwfScldA1IH7vU2diKm11XQLam1cQtmmFmpVDo1EddcsQAJ+PG8KnZn24+b09eywmBISAYxCIU9B5DnLDhg2R57p5rpE/M6ALjclSKPj0JHQmMyXo12/qMWaqBnlzu2FgD+sLesdb+1SSk59yVUHHTEWcCZ20NbkQ0GrVvjjDsmovn4vstUfB4vD99Et4vV8VcPdILjSkn0LAqQjEKeiMx0vXfoNTBY8idOjQQc3SaTwSweX48+fPO1VnTQn6let6jJ+uQb68bujXzfqC3vbmHix+dhELc1dH24wFnYqdNNa1Cahl9R3rEbZ9PfQvnr7trKcXvCvVhE/dZvDI5Vy5B1x7tKR3QiBuAnEKOgMdMMQezzYychDPPDK7mcGznUcUKPKMwONMZkrQL13RY+IsDfK/64Y+Xa0v6C1v7MSvz69ged4aaJk+vzOhk7a6KAHt7WsI27wS4Qd3Apq3iYnc0mWET+0G8KnVAG6p3ybqEBMCQsDxCcQp6BRsijpjp9M5jgfzGTXOYIxCRMc5Bu93JjMl6Ocv6TFljgaF8ruh5/fWF3RmWmPGtVXv1EKTdPmcCZ201ZUI6LQqihujuTGqm8E88heBL73VK1QHPGRZ3ZWGXPqSPAjEe2yN588ZJo+H82OeOWdecX7OHL3OZKYE/ewFPabN1aBIQTd072R9QW9wbQs2vLyJP979BA3SimewMz07rtBWfXAQwnZsUB7r+udP3g7UsUcAACAASURBVHbJ0xPeFWu8XVbP854rdFP6IASSLQE5hx5l6P87p8fM+RoUK+yGH7+zvqDXufIntgTdxp/56qBOmrcpA8WEgK0J6O7ewJvNqxB+YDsQEa6qc0ubXi2p+3zcSJbVbT0AUr7NCXC1mFnsDBHqbF6hg1Yggh5lYE6e1mP2Qg1KFnNDl/bWEfQgbTimPPpP1bL82WVcDw/Czvz1UMNfgjo46N9EvM3S3bul4pU7k2nOnYDmwtvnj+aROx98PmsK72pvU2aKOT4B5idv06aNSiVqTeNKK8PNMpmLIxiPRzOVaVwJYUy1L6kFPTFtN9U3Sz4XQY9C69gpPeYu1qB0CTd0bmsdQT8c8ggVLq6LNiYHCjRAJb+sloyTXJvEBCKOHkDIzJHAm9AkbknCqveu8gl8ajcE98nFnIsAE4twe9OQ0cxarWeaavpGGfKhW6vchJazd+9e8F9CZtlJLeiJaXtCecV1nwh6FCpHTugwf6kW5Uq547s21nEK4qy89c1dKJEiQ+S+eftMhZDDy8+a4yhl2ZDAmxXz8OaP5aoGrwrV4OFEkdHcfFOoiG70XBdzDALMicFwrMzyxZld4cKFVcIQ+iXNmzdPpf5kQpR69eph0KBBsbKtMX85Z7LBwcHInTu3Ss7CZC4MBLZ///7IRC3MTX7x4kUV1TOmMVkJs7L5+/sjderUmDp1qiqHkego9Kyf2d+YuYxtNaRhZdt4XJmiy+ihDCGbNWtW3Lx5U/lc8f5GjRqp6rgCMGTIEJUHhNk6lyxZomKbsN59+/YhIiICJUuWVIHKeC1XIgIDA1V5dMpm/8mFTthMddqqVSt8/fXXqmwenWZgM5bN63nUmjyMvQwwtzqj6R08eFC1lfdEDYsbV12zZs1SueB79uyp6mVwtbx58ypWNLaZfVi1alWstjNOy6RJkyLHadSoUZER/Ey1JaFPqlFBZ/o9JmPhQ0M7cOCAOsKWPXt2lbs3TZo0Ca03Se4z5RT3z1EdFv6ixftl3NGhtXUEffD9Ixj14LiK3c4Y7mLOQ0Af8goh04ZC898R5fWdos2Pas9ZzLkIvNZpsOvVPbs3OoW7R5xba7t27QIzqjFEK41hW3PmzAkG8GJ2swULFiihZTrSmOlKKZhMCzpjxgzlrExBYiY0HjH+/vvv1WybkT5pzEXOjGt8AYjLKFLMHW6YobNs1jlt2rTI73xTgt64cWN14omiRpH9+OOPcejQIZXNjGlhWT/LZ7nUC7aZ8eUNp6ZatGihthN4TdSXBbaXcek582ZAM4o/62ImNdbF/jK8bY8ePVTWOX7G2CjGBL1IkSKqPd9++616QeA9zHrHRDfx1cV6p0yZghUrVihhZlY8voTxGDetYsWKKhc9s98ZXnQMY9q8eXOVgpbt5PFvjjdfpMjAWFsS86AaFXRC5lsF926YEo+DxTcSNpxvk3yzciYzJeh/H9Zh8W9aVCzvjrYtrCPoTa9vx+8vrmFxnupok0GCyTjL86K9cwPBY3tB//QR3PzTIlXf8fCU5WpnGb5o7bwdHozcZ96usNjTcnv74WaxVrGqpPMWM6bxu5WCYDD+jrNbQ8htw+9j5kNnSlBmVKMx/zknVxQVvigwMQvzqT969EjNrjkTji8zZlyCzu94ipbBTAl6//79wTzqBuP9rJ/i16dPH9UuY0YN4QsJ+xhT0MmD9fOlg8aXGO75U8z5QsCZNlcXaFxh4OzelKBzUmpIlcrVA648UNjjq4vpwzlGfEnhigVXVS5duqTqYepb5oFnqtaYbefEl8e+ucJiML7gTJw4Ua3IUNDja0tinlGjgs5KGTyGuXb5lsJlijFjxihwtWrVwpEjRxJTt93vNSXoB/7RYelKLSpVcEebr6wj6KXPr8bJ109xsEBDfOiXxe59lgotJxB+eB9CZwxXHuEe7xVGql5j4C5L1paDdJA7nmheo91N+4epzuSZAgvzVI+TwvHjx1V8DwovZ4mcXTZs2FAJBUNvR7WYgs7l6A8//FBdwvuZN515vbmUX61aNTXT50zw3r17Kp96fBaXoHP2GnVGH1PQubTMlwjDkjtzpEeNR8JJIJepb9++rVYbDOHCDW14/fq16vfZs2fVi8atW7fUSkL79u1jiSJ5cPbN5Xoal775wsBZNnOKsAyDcXuBy++mBJ33uLm5qdt4bf78+cGZdHx1kR+X+rkSwL7zRYoTWop52rRp1ZbG4MGDY7WdOpkxY0a1GmAwjiPLql69uhL0+NqSmD8bo4LOgeUbFpd42AhCIwDu1zAnelSgiWmEve41Jeh7/9bhl9+1qFrRHa2aWkfQfU/MQ5heh8cl2oB/4GIOTECnxetf5iBs8yrVSDqRpfimmwRZceAhc/am8TuUAr1t2zY10+bsm5MlY4L++eefo0GDBuqSkydPKkExzIS5X06vde47Dxw4MHLvOy5OvXr1UuG8oy65f/fdd0osDcbZOkXN8JLBPXO+RBgEnTNOLisbzCDooaGh6j6+WES1cePGgZ9xduzp6amW0DNlyqQEnUv3586dixRlzpop9nF5vXNmTT8Cg6Mgl7O55G9K0Fm+waIKurG6+ILi6+urlt05G+d+P9vNvXuuHnBFJWbbDaskxmbo8bUlMc+0UUHnxj8TsXCZg6FgueRheIj4VsmH0JnMlKDv3q/Db2u1qF7ZHS2+TLygP4wIRdbTS+Hv7oWgUu2dCVWya6vuVSBCJvZ/GznN0wspO/YFPcPFhIC1CTAFNQWCS810PuNS7Lp169SS7tq1a9WSNYXq4cOHKlJnzBk6BZFLut7e3ipJFidZXIamcfZMpzOKG32gjBmX/NkG7r3T4krNymVzijn3ujmRo8CXKlXKpKDT74qzaeoEX1C4BM+ZMUWU38OcufLFgLNjwwyd+9Kc1S9dulS1h/vafFngjJ6zYe7Dc6uXS+aGfnPJm79nKPIPPvggwYJurK6jR48qJ7jMmTOrsaHxRYgrDBRyti1m27lCQWacBNMRkFpJ3wS+EBj20O0u6FzCYYMp6Fx6MSx9cKmdA8S86M5kpgR9x14dVv2hRc2q7mjWKPGCvj/4Pqpe2oCyKTPhaKEvnQlVsmqr5vpFhEzor6KnuaXPBL9+E+GRxzHO5iargUgmnaVTGIWO369cuqWQUij5PTt9+nTlMEfx5FI6Z7kxBZ2CSicsLkdzNk2x4baowTiDp+BwadqYcabJPWI6iLFeemTHnKFzSZwrB5xNsw7Wza1XUzN0HrPjcjSd9lgGV3m5/E6Hsu7du6u+58iRQ4kwhZ4zdH7GJGD0mOdLBlcrFi9erESeLz58+eASP2fnT548UV7uDFMeEBCgtIh+XgmdoZNTfHWxXfQj45hRpGn0HeDqimEFIq6206eB7eU2Ax3j+AJFcadxyd3ugu5qf1+mBH3bbh1Wb9CidnV3NGmQeEFf+PQC2t/ai6/S58NveaMvo7kaW2ftT/j+rQj9aRyg1YApQlP1Hgt3f+c6veGs7KXdlhOguHN5mJ7Z8Rn3eefMmROZLdPyWuQOZyVg8hw634Do1cc3pJjGNyhnMlOC/tcOHdZt1uKTGu748vPEC3q/e/9i/MOTGJq1LIZlK+dMqFy/rVotQhdNRfiO9aqvjGWeomUnyfXt+iPv1D2Ma1k8aoe4dExP92XLlqlfczUg6llrw7XcC+cM2dUsufU35vgZFXSeh+S6P8+ic88npkV1hnCGB8OUoG/epsP6v7T4rLY7Gn6WeEH/4tpWrHt5A7/krYEWki7VYR4R3YunCJk0ANor5wEvb6TsOhTe71d1mPZJQ4RAfATiE3SeZWfQlFSpUqnzzlziFUt+BIwKOo9SGDb1XQGNKUHfsEWLTVt1qPeJO+p/mnhBL3ZuFc6+eY7DBb9A+VQBroDQ6fuguXwOIeP7Qv/qJdwyZoZf/0nwyCmZ75x+YKUDQkAIwKig86gaw9e5ipkS9D/+1OLP7To0qOOBuh+7J7rbhiNr9HCnp7tY0hII27oWr5fOALRaeJYoj1TdhsMtlX/SNkpqFwJCQAhYiYBRQafHI89IGnPAsFI77FKMKUFfs1GLrbt0aFTXA3VqJU7Q74QHI9eZ5cjo6YsnJb6xS/+kkrgJ6CPCETp3PCIOvD1m6dvoa/g2bQ/8f4AJ4SYEhIAQcAUCRgWdxw14dIJh9niInvF5oxqj4TiTmRL039drsX2PDo3re+DjjxIn6Ltf3UONyxvxQarMOFRQ4n8n1XOie/YYweN6Q3frGuDjq2blXmXeRtkSEwJCQAi4EgGjgs647Yw7XKlSpTid4ng+0drGwAp0xOO5PgYkGD58eKwXCdbJ4AqMUsTzmDyoz4g8MSMsxWybKUFfuU6Lnft0aNrQA7WqJU7Q5z45h06396N1hvxYmqeGtTFJeWYQYB5wBovRBwfBPWtOFY/dI5s4C5mBTi4RAkLACQkYFXQGLeDheGvn4Y2P040bN9C6dWt17ILBAhhrmJl16NkZ03gWs1ChQiowAoMzmGOmBP3XNVrsOaBD8y888FGVxAl6z7uHMOXRfxiZrTwGZS1jTvPkGisSCNv4G17/NhfQ6eBZuuLb/XJfCb1rRcRSlBAQAg5GwKigM9oQBd1eNn/+fAQFBYExhmkMY8iIPIycFNUYgYhxijmbt8RMCfryVVrsO6RDyyYeqPZh4gT986t/YVPgLax6pxaapJOoY5aMU2Ku1YeHqcQqEUf2qz1y36Yd4NuodWKKlHuFgBAQAk5BwKigz5s3T3WC5xsZN9jWxjCHTPrCFII0Ztfhz4wnH9UYNIEZbxh+lhl2GE6PwRMY99iYGRP0oFfAtLka3L6rx9fNPFD5A8sFfczDEwjXaVUT5j05h4ea1zhRqDFKpcxoa3QWl6+9eh4RJ/6x+D5HvyH88F7o7tyAW0o/pOo+QnmziwkBISAEkgMBo4JOD/f9+/crMWdGnJiibir4v6UAmaKO2Wvq1KkTeStFmPv4hpR3/IB754yIxGhHBQsWVLF+mdiACQsMFtd+OmMEX7lyJc5m3b6nx4gJGvUZc6EzJ7ql5nb8p1i3hJTqgJTunpYWZfPrQ2eNRPh+50quYy4Uj9z5kKr3GLgHZDP3FrlOCAgBIeD0BIwKOkXSmFk7OQuX0ZnZxxBSljNwpnCNmaaVudnpCGfIMMTkApzJM+xfVOGP2XZjM/Qbt/UYPVmDtGmAbh09kSPb25y55lqITgO/k28z8TDUK83X3QP9spQ2twi7XhfYto5yFvP5vDncvN/mG3YJ8/KG72dNAFfqk0sMjHRCCAgBWxMwGcvd1g2IWj5n2Eypx31z2unTp9VeecycuswA999//6nsNTR6xDNrz/Hjx40215igX72ux7jpGuTL64Z+3SyfUT+ICEW200uR1Ssl7hf/2p7YLK5Le+0iXvVvrzKLpZn7h8X3yw1CQAgIASHgeASMCjrT+a1atQqbN29WQssjYrSDBw+qZC3Md2tNu3v3rsqPy0TyBi935vplztt9+/bh/v37KnduYGAgmFGI6fgKFy4M7vUzFZ0hX3t8bTIm6Jeu6DFxlgYF8rmh9w+WC/qlNy9R8NwK5PdJg0tFm1sTi9XLerN2Cd6sWgCf2g2Ron1Pq5cvBQoBISAEhID9CRgV9FmzZikxb9myJRhEho5otGPHjmHIkCFqH9vaxvrGjx+v8gFXrVpV1cu9eyaWZ9Y35uylcW+fM3S+WBQtWhSjR49GxozGnc+MCfq5i3pM/UmDwgXc0KOz5YJ+NPQxyl9Y6xS5z18N7gTtpTNI1WccvMpWsvYQSnlCQAgIASGQBARMJmdZunSpyqsbNSH7ixcvwMQtMfe2k6D9FlVpTNBPn9NjxnwNihV2w4/fWS7ohshw1f2zYXf++ha1y54X60ODEdjmE8DNHWmWbpOz2faEL3UJASEgBGxIwKigc+b777//qsAyUQWdOdLpuEYnNGcyY4J+8rQesxdqUKqYG75vb7mgr395Aw2vbUX9tHmw/t1PHRZLxL97EDJlMDyLlobfkBkO205pmBAQAkJACFhGwKigd+jQQcVxZwhYg6C/fPkSPF6WJk0aTJ061bLakvhqY4J+7KQOc5doUbakGzp+Y7mgL392Ga1v7kKr9PmxLK/jhnoNnTsO4bs3I0XLzsrDXUwICAEhIARcg4BRQX/w4IEScy6x37lzR+1Vc3bOs99z5swxuWftaIiMCfq/x3RYsFyL98u4o0Nry3Ohz35yFl1uH0DnTEUwO1cVR+t6ZHsC29VVucD9Jy2FR653Hbad0jAhIASEgBCwjIBZx9Z4HIxCzvPe+fLlc9p0qsYE/e/DOiz+TasCyjCwjKU27uEJ9L93GP2ylMLY7BUsvd0u1+tuX0dQr9Zw80+LNAs326VOqUQICAEhIATsQ8AsQbdPU2xfizFB339Ih2WrtCrkK0O/WmoD7h3G2IcnMDr7+xjgoMFkVMKSX+bAu/pnSNnp7Vl/MSEgBISAEHANArEEffDgwWb3bOTIkWZf6wgXGhN0ZlljtrXqldzRorHlgs7ldi67z8xZCV0CijlCd2O1IXhEV2jOnkCqHiPhVaG6Q7ZRGiUEhIAQEAIJIxBL0MeOHWt2SYaIbmbfkMQXGhP0HXt1WPWHFjWruqNZI8sF/eubu7Ds2WUszfMRWmcokMQ9jV29/s1rBH79MaDXIc2SrSp5iZgQEAJCQAi4DgFZcv//sdy6S4c1G7X4+CN3NK5vuaDzyBqPrq179xM0TJvX4Z6QiGMHETKhHzwKFIP/yNhJZByuwdIgISAEhIAQsIiASUF//fo1duzYobzcmfgkd+7cKiOaj4/zJfQwNkP/c7sOf/ypRZ1a7mhU13JBr3l5I3a9uoed+euhhn8OiwbBHhe/XjAZYdv/gG/T9vD9oo09qpQ6hIAQEAJCwI4EjAo6vds7deqE9OnTK+92xnZn+FWK/Ny5c9UZdWcyY4K+casOG7doUe8Td9T/1HJBL39hDY6GPsHhgl+gfKoAh8MS2LEh9M+fwH/sAni8W9Dh2icNEgJCQAgIgcQRMCron3/+ORo2bIhvvvkmWi2zZ89Ws/b169cnrnY7321M0Ndt1uKvHTo0/MwDn9W2PBd6wbMrcCnsJS4U+QoFfdPauWfGq9M9uIOgH78CUqR6u3/uZllqWIfqjDRGCAgBISAE4iRgVNALFSqkUpKmTJky2s2vXr3C+++/H5msxVnYGhP01Ru02LZbhy8/98AnNSwX9Oynl+J+RCjuFW+NbF6pHApJ2JY1eL14Grwr1UbKrkMcqm3SGCEgBISAELAOAaOCXqtWLZWiNFeuXNFqY5CZ77//Htu2bbNOK+xUijFBX7lOi537dGja0AO1qlkm6CMfHMOYByfwRq/Fq1Lt4efuZacexajmTSjebFwRq+6II/uhvX0NKbsMhncV66a8TZqOSq1CQAgIASEQk0AsQX/y5Im6xt3dHf/88w9++eUXdO7cGXny5IFer8e1a9dU2FeGhGV6U2cyY4LOM+g8i978Sw98VNkyQXc7/j+vcX2ZTkmGJPzAdoTOHBFv/WkWbIZbasfaDkgyWFKxEBACQsDFCMQSdIqeOZYzZ07s3r3bnEsd5hpjgr50pRYH/tGhdVMPVKlovqA/1rxG5v+WwM/dE/2zlknSKHHBY3pCc+qwWlp3z5I9Gnc3P3/41GniMGMhDRECQkAICAHrEogl6CEhIWbXkCqVY+0Vm2q4MUFf9KsWh47o8E1zD3z4vvmCfiUsEPnP/ob3fNLgctGky16mC3yBoG/rA56eKk67m290vwdTbORzISAEhIAQcG4CJs+hO3f3orfemKD/vEyLw8d1aN/KAxXKmi/oR0Mfo/yFtSibMhOOFvoyyXCF/fU7Xi+ZAa+KHyFVt/iX3ZOsgVKxEBACQkAI2JSASUE/deoU5s+fjytXrqg9dJ5Hb9euHcqVK2fThtmicGOCzlzozInesY0HypYyX9B3Bt1FrSubUNM/B3bkr2eLZptV5qv+7aG9dhGp+oyDV9lKZt0jFwkBISAEhIDrEDAq6H/99ReYrKV169YoUqSIOr989uxZLFu2DEOHDgXPqTuTGRP02Qs1OHlaj+/beaJUcfPPaa95cQ2Nr2/HF2nfwZp3k8aDXPvoHl790BRuqfyRmsvt7pYHxnGmcZS2CgEhIASEQGwCRgW9du3aGDhwYCxv9r1792LMmDHYvn27UzE1JujT52lw5rweXb/1RPEi5gv6gqcX0OHWXrTLWBALcidNBrM3vy/AmzVL4F27AVK27+VUYyKNFQJCQAgIAesQMBlY5tixY4jp/BYcHIzy5cu7VGCZKXM0OH9Jj+6dPFGkoPmCPvnRKfS6+w96Zi6BSTkqWmdULCwlqEsT6B7fh/+IOfAo6FzheC3sqlwuBISAEBAC8RAwKug1atTA6NGjUaFChWi3Hzx4EMyF7kqBZSbO0uDSFT16d/FEgffMF/TB949g1IPjGJGtHAZnLWv3B017+RxeDfoObukzIc3cP+xev1QoBISAEBACjkHAqKCvXLkSU6dOVU5whQsXVk5x58+fV9HjuBRfv359x+iFma0wtuQ+broGV6/r0e9HT+R7x3xB73rnIGY+PoMZOSvhh4BiZrbEepe9XjQVYVvXwrdRa/g2+9Z6BUtJQkAICAEh4FQETHq579mzRwk4I8RpNBoUKFBACXz16kmzX5wYusYEffRkDW7c1mNgD0/kzW2+oLe+sQvLn1/G0jwfoXWGAolpnsX36nVaBLWrC33IK/jPXAWPzNGDyVhcoNwgBISAEBACTkvApKA7bc/iaLgxQR8xQYPb9/QY0tsTuXKYL+ifX/0LmwJvYcO7n+LztHnsiktz4h8Ej+sNjzzvwX/CYrvWLZUJASEgBISAYxEwKuh0fNuwYQOyZs3qWK1OYGuMCfqQcRrcf6DHiH6eyJbVfEGvemk99gc/wL4C9VHFL1sCW5aw20JmDEfEwR1I0boLfOo2S1ghcpcQEAJCQAi4BAGjgl6tWjXMmDEDxYu7hue0MUEfODoCjx4Dowd6IXOA+WNb4vzvOP36GU4VboISKTKYf2Mir9SHhyHwm0+BiHCk/nkT3NOkS2SJcrsQEAJCQAg4MwGjgs7kK/PmzcP48eNVtjVnN2OC3m94BJ4+B8YN8UJGC3Q5z5nluBUejJvFWiK3t7/dEIXv34bQWSPhWbQM/IZMt1u9UpEQEAJCQAg4JgGjgs60qRcuXMDdu3eRJUsWpEiRIlovbBFYZu3atZg2bRrCw8PBfOzDhw+Hh0f8kc8OHDiAtm3b4tChQ8iUKZNRysYEvfeQCLwIBCYO90I6CzKMpj21EIHacLwo2RZpPXzsNsqGzGopOw+Ad7U6dqtXKhICQkAICAHHJGByhm6s2R999JFVe3Xjxg0VZpbH5QICAtCzZ0+ULFlSCXZcxgA3vP7NmzdYunRpogS9x6AIBL0CpozyQmoLJtqGXOjaMh3hDvP33hMDTjKrJYae3CsEhIAQcE0CDuXlziQwQUFB6NXrbfhSrg70798f69evj5M+P6tYsaJKHrNo0aJECfqP/SMQEgpMH+uFVGZmHuXMnDP0NB7eeFmynd2ekLC/VuP1kunwqlAdqXqMtFu9UpEQEAJCQAg4LoF4BZ2JWbiHrtVqUbduXTBqnK1twIABKFu2LBo1aqSqCgsLUz+fOXMmVtX79u3D6tWrMWvWLHz66acqYUzUJXedThfrHp6hZ9a4uOz73hEICwdmT/CCjxkr55fDXmLek/OY8ug/5Pb2w81irayKh6KtDw6Ks8zwv3dC9+COZFazKnEpTAgIASHg3ATiFHQK5bBhw/Dll1+qDGucITMZS506tt2r7dGjB2rWrBmtHu57X758WbXDYK9evUKLFi2wZMkSpE+fPk5B//jj2JnPrl+/Hq+gd+wRAY0WmDvZC56epgd19YtraHL9bXIaerfTy92aFvhdA+hfPI23SGZWS7N4izWrlLKEgBAQAkLAiQnEKegM6dqyZUs0btxYdW3Xrl2YNGkStmyxrYAwnGyJEiXQpMlbceQeOePIM2VrVOvbty94pI4zc1pcM/S4xsSYU1z7HyPULQume5k1nIufXUTbm3tQKkVGdAkohrYZC5p1n7kXvfy6NvA6FL4NWwEesd8wPHLkgVdF26+amNteuU4ICAEhIASSlkCcgk5HNIq3IaAMQ74WLVpULX17eZkneAnpFvfBHz16pPbNaadPn1Yx4zdt2hStOOZm9/b2jvxdSEiIyghHj3hjOdrjE3S9HujQLQJcBPh5mnn9Y/x2xnHvkqkoZuaqnJDuGr3nZZNK6vO0vx+0etlSoBAQAkJACLgegTgFncJ36tSpaGlTy5QpA+6rZ86c2WYUeDyuefPmWLFiRaSXe/78+dGlSxdwz/z+/fv46quvYtWf2Bl6RATQqVeEWmrnkrs5NvbhCQy4dxj9spTC2OzRs9GZc7/Ra8Le4GWrmoC3D9L+sivRxUkBQkAICAEh4PoE4hX0b775JtpsnMfCuKceNTd67969rU5o8+bNKpANj6JVrVpV7d1zNv7zzz/j0qVLauk/piVW0N+EAV36RChnODrFmWOD7h3G6IcnMCpbeQzMWsacW8y+Rh/0EoHt68ItdVqkWbDZ7PvkQiEgBISAEEi+BOIU9D59+phFZMKECWZd5ygXxbfkzuNqPLbG42o8tmaOdbtzENMfn8HUnB+iW4B1Q+PqHt9HUJcmcA/IitSzVpvTHLlGCAgBISAEkjkBhzqHbuuxiE/QGVCGgWUYUIaBZcyx9rf2YOHTi/g5dzW0z1jInFvMvkZ7+xpe9foa7rneQepJy8y+Ty4UAkJACAiB5EtABB3Ai5dA76ERKuQrQ7+aY82u78CqF1exIm8tNEufz5xbzL5Ge/ksXg3qCI/8ReA/ap7Z98mFQkAICAEhkHwJiKADePIM6D8iApkyAGOHmCfoda/+X4+DOgAAIABJREFUhT8Db2FTvjqomya3VZ8gzemjCB7VHZ7Fy8Fv0FSrli2FCQEhIASEgGsSiCXojAxnLBmKM2OIb8n94WNg0OgIZAkARg00T9CrX96Ava/uY0/++qjmb9086BFH9iNk0gB4la+CVL3GODNyabsQEAJCQAjYiUAsQWc0uOXLlyNDhgwqoIw9Qr7aqa+IT9DvPdBj6DgNsmd1w/B+ZoSJA1DuwhocC32CI4W+QLmUFiRQN6OzhtSo3pVrI+UPQ8y4Qy4RAkJACAiB5E4glqAXL14cR44cga+vL8qVK4ejR4+6DKP4BP32XT1GTNQgVw43DOltnqAXOrcCF9+8xPkizVDIN51VGYVvX4/QBZPgXasBUnZ4m6hGTAgIASEgBISAMQKxBJ2pSj09PVUWsylTpsDYWfNWraybkMTWQxWfoF+/pceYKRq8k9sNA3qYJ+g5Ty/D3YgQ3C7WCjm9/aza9LCNv+H1L3PgU+8rpGj1vVXLlsKEgBAQAkLANQnEEvTnz59j4cKFuHr1Kg4cOKBiqcdnDNXqTBafoF+5rsf46Rq8944b+v5onqCnO7UQL7XheF6yLdJ5mJGezQJQb35fiDdrFsO3cVv1T0wICAEhIASEgCkCRr3c27dvjwULFpgqw2k+j0/QL17RY9IsDQq+54ZeXcwTdI/jP4EJWrVlOsId/8sEZw0Yr5fPRtimFWp2zlm6mBAQAkJACAgBUwSMCnp4eHi0JCimCnP0z+MT9HMX9Zj6kwZFCrqheyfTgh6u18HnxDx4ubkjvPR3Vu926M+TEL5jPVK27wXv2g2sXr4UKASEgBAQAq5HwOQ5dCZpmT9/vsojrtfrkS9fPrRr1045zDmbxSfo/53TY+Z8DUoUccMP35oW9OfaMGQ4tUgttXPJ3doWOnMEwg9sR8oug+FdJXZed2vXJ+UJASEgBISA8xMwKujMrjZ48GC0bt0aTFnq5uamcpMvW7YMQ4cONZqq1BHRxCfoJ07rMWehBqWLu6FzO9OCfjs8GLnPLEdOLz/cLm59x8CQif0RcfSAOoPOs+hiQkAICAEhIARMETAq6LVr11b5yJn1LKrt3btXZUHbvn27qfId6vP4BP3oSR3mLdGiXCl3fNfGI1ab/w15hK2BtyN//0zzBrOenEVh33Q4V6SZVfuoOX8KoT+Nge7RffgNngbPYmWtWr4UJgSEgBAQAq5JwKigFypUCMeOHYuWMpUYgoODUb58eZw/f96pqMQn6P8e02HBci0qlHVH+1axBb3X3UOY/Oi/WH0tnzIAhwt9YVUGIdOHIeLvnapM/9Hz4PFeEauWL4UJASEgBISAaxIwKuiMEjd69OhYR9cOHjyIkSNHYtu2bU5FJT5B33NQh19Xa1HtQ3e0bBJb0Otf3YKNgTfRKn1+vOOTOrLPuX388U2GglZlEPhtfehfPoPPZ03gW78F3NJmsGr5UpgQEAJCQAi4JgGjgr5y5UpMnTpVOcEVLlxYOcVxVs5z6lyKr1+/vlNRiU/Q/9qhw7rNWtSp5Y5GdWMLui2jwkUFqH/6CIGdvwB8UyDtsh1OxVYaKwSEgBAQAklLwKSX+549e5SAX7t2DRqNBgUKFFACX7169aRteQJqj0/Q12zUYusuHb6o54FPa7rHKtnz+FxooYemTEd4WPnMedTKuNTOJXfPkhXgN2BSAnootwgBISAEhEByJWBS0F0JTHyCvnyVFvsO6dCqiQeqfhhd0K+HBeHds78ij7c/bhRraVMcrxdNRdjWtfBt1gG+jb62aV1SuBAQAkJACLgWARF0APOWanH0hA7ffu2B8qWjC/q2oDv45Mpm1PTPgR3569l09F/1bQvtjcvwGzIDnkVL27QuKVwICAEhIARci4AIOoBpczU4e0GPbh09UbRQ9DCusx6fwQ93DqJTpiKYk8t2Z8L14WEIbFVTPV1plu+Em7d148O71mMrvRECQkAICIGYBETQAZVpjRnXBnT3xDt5ogt61zsHMfPxGUzJURHdM5ew2ROkOXscwSN+hMc7BeE/znXi59sMmBQsBISAEBAC0QiIoAMYPCYCDx4BIwd4IWvm6E/Ip1c2Y2vQHWzKVwd10+S22ePzZu0SvFm1AD51GiNFmx9tVo8ULASEgBAQAq5JwKig63Q6rFq1Cps3b8ajR4+wc+fbgCc8hx4SEoKPP3auOOPxOcX1HByBwCBg8kgvpPnfMXPV13xnf8W1sCBcLPIVCvimtdlTEDymJzSnDiNVtxHwqviRzeqRgoWAEBACQsA1CRgV9FmzZikxb9mypQr1aogMx+hxQ4YMAWO9O5PFJ+ide0UgPAKYM9EL3t7/6xGPqvkcn2eXI2svW9cC3rxG6rnr4Z4+ozNhlbYKASEgBISAAxAwKuiVK1fG0qVL8c4776jkLOfOnVNNfvHiBfgZE7U4k8Ul6DqdHt9218DNDfh5mle07lx68xIFz61AXm9/XLfhkTXd7esI6tUa7hkzI/Wctc6EVNoqBISAEBACDkLAqKAXLVoU//77L/z8/KIJ+tWrV9GkSROcOHHCQbphXjPiEvTgEKDbgAj4pQKmjYku6JsDb6He1b9QO3UObHvPdkfWwnduQOj8ifCqVAupug41rzNylRAQAkJACAiBKASMCnqHDh1QvHhx/PDDD5GC/vLlS/To0QNp0qRRYWGdyeIS9MdPgAGjIhCQERgzOLqgT330H3rcPYTvMxXFrFyVbdbV0FmjEL5/K1K07Q6fT6yb7MVmjZaChYAQEAJCwKEIGBX0Bw8eKDHnEvudO3fAGTtn5wULFsScOXOQMaNz7fXGJeg3b+sxarIGuXO6YXCv6LnQO9/ej5+enMO0nB/ix4DiNhu4oK5NoXt4D/4TFsMjz3s2q0cKFgJCQAgIAdclYNaxtePHjysh12q1yJcvn0qdaitbu3Ytpk2bhvDwcNSqVQvDhw+Hh0f0hClPnz7F+PHjceDAAXh5eaFKlSoYNmyY+n9jFpegX7isx+TZGhTK74ae30cX9JqXN2LXq3vYnK8OPrPRkTXdq0AEtfsM8PJ+G1DGPXYseVuxlnKFgBAQAkLAdQgYFfRly5ahYcOG8Pf3t0uPb9y4gdatW4NZ3gICAtCzZ0+ULFkSbdu2jVb/yZMnwWs///xz8Ghdx44dwVSvLVq0sFjQj/+nx0+LNChdwg2d20YX9NxnluN2eDAuFf0K+X1sc2Qt4sg+hEwaCM/i5eA3yLm2MOzyUEglQkAICAEhYBYBo4JOz/bt27cje/bsZhWW2Ivmz5+PoKAg9OrVSxV14cIF9O/fH+vXrzda9OLFi3H37l0MHjzYYkE/+K8OS1ZoUamCO9p89b+VgDC9Fr4n5qvsamFlvrNZlrXXy2cjbNMK+H75DXybtEssQrlfCAgBISAEkikBo4LerVs3FCtWTKVLtYcNGDAAZcuWRaNGjVR1YWFh6uczZ84Yrb5r165qhh41P3tERESse5jTfcPmy7hyXac+O+pzC8eCn+DxUz3ezeOGIgX/t9z9QhuGGY/PIJ9Palwpanzmbw4bfXAQwv5aHevS8IPb1f45Z+ecpYsJASEgBISAEEgIAaOCzqXtQYMGoVChQnj//feRIkWKaHXUrVs3IXXGew+952vWrIk6depEXsN978uXL8ONB8XjMEato7c9I9p5ev5vyTxqGYbbrly5gtETL2L7nreCvrvKLtzIc8NoHz5JnRNb3kt8P7W3ruJV7zbx1pV22XbAN6VVeUphQkAICAEhkHwIGBX0Bg0aGCVhaincUowDBw5EiRIl1Bl3WnBwMCpUqBBvAJvTp0+jT58+4JJ71qxZTVbHl4Ph4y5i934dihV2w8Lif+KM933UeJ0fRdL7I13a2C8NpVNmwudp85gs29QF2oun8WpIZ7hnygLvqp9Gu9zNzx8+dd72WUwICAEhIASEQEIImOXlnpCCE3LPokWLVMx47pvTKNgU+U2bNsUq7uLFi+jevTsYnvbdd981qzoK+uBRF7H/kA6tmniga7o1OP36Gf4r3ATFU2Qwq4yEXqQ5+S+Cx/aCZ6kK8Os/KaHFyH1CQAgIASEgBOIk4FCCTse25s2bY8WKFZFe7vnz50eXLl2wb98+3L9/H1999RWuXbsG7ptPnz5dHaMz1yjo/YddxKEjOrRp7oGmKZbjfkQo7hZvjexeqcwtJkHXRRzahZBpQ1XiFSZgERMCQkAICAEhYE0CRgX9+vXrGDt2rNrDpoNaVOPZ8L///tuabVFlMRkMz5i/efMGVatWVUlhvL298fPPP+PSpUuYNGmSmpnzOvcoZ7Z9fHzUjN6YUdD7DL6Iw8d1aN/KA1Xdf0a4Xoew0t/B282257/Dd25E6PwJ8K5RDym/62t1blKgEBACQkAIJG8CRgW9WbNmoAhyL71v375KXHn+e8mSJZg8eTLoNe5Mxr706H8BPHveuo0OVXWLkMrdE8GlOti8G2GbV+L1slnwqdsUKVr/YPP6pAIhIASEgBBIXgSMCjqPrB09ehS+vr6gRztnxTQmZZkwYYIKAONMRkHv2ucC/jurR8N2r1E34lfk9vbDzWKtbN6NN78vxJs1i+HbuK36JyYEhIAQEAJCwJoEjAr6Bx98gD///BPp06dXZ7y5t50yZUoVlrVUqVKR6VSt2SBblkVB/77nBZy9oEetDi/QLGwtyqTMhGOFvrRltars18tmImzzKjU75yxdTAgIASEgBISANQkYFXSeC+c+NsXcEFO9TZs22L17t8qTvmvXLmu2xeZlUdC/+/ECLl7R4/3vHuDb13/aPDWqoVOhc8chfPdmtX/OfXQxISAEhIAQEALWJGBU0J8/f67iuDPpCY+Tffvttzh//jzSpk2rnNMo9s5kFPR2XS7g6nU9CnW8gV6hu9A8/Xv4NW9Nm3cjZNoQRBzarTzc6ekuJgSEgBAQAkLAmgQsPrb26tUr+Pn5xRu5zZqNs3ZZFPQ2HS/gxm09sne6gBEhf+OHgGKYkbOStauKVV7wmF7QnPpXnUHnWXQxISAEhIAQEALWJGCxoFuzcnuXRUFv2eEC7tzTI1Wnk5gRchzDs5XDkKxlbd6UV4M7QXvpDPxHzIFHQdvlVrd5R6QCISAEhIAQcEgCRgX95s2bGDFihAq9GhISEqsD586dc8hOxdcoCnqzb87jwSNA0+kfLA05h9m5KqNzpqI278erXl9De/sa/CcthUcu8yLb2bxRUoEQEAJCQAi4DAGjgt6yZUtkzpwZ/G+qVLEjqTGKmzMZBb1x6/N4/BR40nEPNoZew8p3aqFpOvOjzSW0v0Hffwndk4dIPWs13ANMx51PaD1ynxAQAkJACCRPAkYFvXjx4jh06JDaM3cFo6A3bHEez18AV77dgv1v7mFn/nqo4Z/D5t0LbFsHTKGaZtFfcPNLbfP6pAIhIASEgBBIXgSMCnrFihVVMBmeQ3cFo6DXa3oeQa+AIx3+wJmwZzhZuDFKpsho8+69bFoZ0OuRZuV+uEUJWWvziqUCISAEhIAQSBYEjAr6woULwRzizInuCrN0CnqdL88jJBTY0nYF7mtCcKd4K+TwsvEKRHg4Xrb8CPDyRtpfdyeLB0s6KQSEgBAQAvYlEEvQa9euHdkCT09P3Lp1CzqdDpkyZVIhYKPa9u3b7dvaRNZGQa/d4DzCwoHlXy+yW2IWfdBLBLavC7fUaZFmwdvwuWJCQAgIASEgBKxJIJagMwqcufbRR84VIIWC7t9/OfRuepwqfgop3T0RkoDELIzLbonpQ0MQ9tfvcM+SHalnrLLkVrlWCAgBISAEhIBZBJLdOfSrK3tEgsnl7YdbFiZmoWMbHdwSYh553oP/hMUJuVXuEQJCQAgIASFglECcgr569WpkyZIFlStXjrz51KlTKoXqgwcPwJn56NGj4zzK5si8OUOnoBeICECzXLmQ2SslOmUqYlGTdXdvIKhHK7ilTQ+fmvUtutc9Y2Z4f1TXonvkYiEgBISAEBAC5hCIU9CZKrVr164w7Kczu1qNGjXUefT3339f5UIvWrSoEnhnMoOg98xcApNyVExQ0zVnjyN4xI/wLFIafkNnJKgMuUkICAEhIASEgLUJxCnoJUqUwIYNG5AnTx5V38aNG9XP9HqnnTlzRgn+nj17rN0em5ZnEPS+WUphXPaExVOPOLgDITOGw+vDmkj14zCbtlcKFwJCQAgIASFgLoE4Bb106dJYs2YN3nnnHVVOs2bN0KFDBzVLpz179kwtxzPzmjOZQdAHZimNUdnfT1DTmdOcuc196jRBijZdE1SG3CQEhIAQEAJCwNoE4hT0du3aIVu2bOjWrRu2bt2KRYsWYceOHXD//4AoV69eVSJ/7Ngxa7fHpuUZBH1o1rIYlq1cgup6/etPCNvwK3ybfwffBq0SVIbcJASEgBAQAkLA2gTiFHQKNkX9/v37yjlu9uzZYBhYg/3xxx+g49xvv/1m7fbYtDyDoI/MVh6DspZJUF2hs0cjfN8WpOw8AN7VEubtnqCK5SYhIASEgBAQAkYIxHtsTa/X4+nTp8iQIUPkzNxQzvXr18HP333XubKGGQR9bPb30S9L6QQ9GMFjekJz6rDkNU8QPblJCAgBISAEbEUgWZ5Dn5jjA/TKXDJBTF/1aQPtzavwH78IHnmdK9tcgjosNwkBISAEhIBTEEiWgj4154foFvC/LQRLRirw2/rQv3yGNHPXwy297ZO6WNI2uVYICAEhIASSL4FkKegzc1ZCl4BiFo86txkCmTUNQJpVB+Dm5mZxGXKDEBACQkAICAFbEEiWgv5TriroaGGEOMKPTLLinwZpFv5pi/GQMoWAEBACQkAIJIhAshT0n3NXQ/uMhSwGpr19Da96fQ33HHmRespyi++XG4SAEBACQkAI2IpAshT0xXmqo02GghYz1Zw+iuBR3eFZtAz8hky3+H65QQgIASEgBISArQgkS0FfnrcGWqa33EM9fP82hM4aCa9KtZCq61BbjYmUKwSEgBAQAkLAYgJOK+hr167FtGnTwMQxtWrVwvDhw+Hh4WEUgOEc+oq8tdAsfT6LYYVtWoHXy2fD57MmSPG1hH21GKDcIASEgBAQAjYj4JSCfuPGDbRu3RorV65EQEAAevbsiZIlS6Jt27ZmCfrqd2rjy3SWB8WhmFPUU7ToBJ/6LWw2KFKwEBACQkAICAFLCTiloM+fPx9BQUHo1auX6u+FCxfQv39/rF+/3ixB/+PdT9AgbV5LWanldi67p+w8EN7VPrX4frlBCAgBISAEhICtCDiloA8YMABly5ZFo0aNFJewsDD1M9O6GiwkJCQWM87ir67sgT8eeOKTUHeLmYYf3AHdw7vwGzgFniXKW3y/3CAEhIAQEAJCwFYEnFLQe/TogZo1a6JOnf8lR+H++OXLlyODvTRo0CAWs3PnzilBX/v7Hnx0436CmfpPWAKPPJbvwSe4QrlRCAgBISAEhIAJAk4p6AMHDkSJEiXQpEkT1b3g4GBUqFABZ8+eNdpdin7TOb3QItgDeSMSHuXNp25TuKX0k4dLCAgBISAEhIDDEHBKQWd+9kePHql9c9rp06dBkd+0aZNJQb9y5YrDwJeGCAEhIASEgBCwFgGnFPS7d++iefPmWLFiRaSXe/78+dGlSxcRdGs9GVKOEBACQkAIOBUBpxR0Et68eTPGjx+PN2/eoGrVqhgzZgy8vb1F0J3q8ZPGCgEhIASEgLUIOK2gJwQA99BlyT0h5OQeISAEhIAQcHQCIuiOPkLSPiEgBISAEBACZhAQQTcDklwiBISAEBACQsDRCYigO/oISfuEgBAQAkJACJhBQATdDEhyiRAQAkJACAgBRycggu7oIyTtEwJCQAgIASFgBoFkJ+hmMJFLhIAQcBICcmrFSQZKmmkXAslK0O1CNAkrGTFiBKpVq4YqVaokYStsX3WHDh3ABD1581qeMc/2rbNeDcxVwAyCpuIrWK9G+5fEiI/MzfDrr7/av3KpUQi4GAERdBcaUBF0FxpMQCUfEkF3rTGV3ggBWxIQQbclXTuXLYJuZ+A2rk4E3caApXgh4GIERNBdaEBF0F1oMGWG7lqDKb0RAnYgIIJuB8j2qkIE3V6k7VOPzNDtw1lqEQKuQkAE3VVGUvohBISAEBACyZqACHqyHn7pvBAQAkJACLgKARF0VxlJ6YcQEAJCQAgkawIi6Ml6+KXzQkAICAEh4CoERNBdZSSlH0JACAgBIZCsCYigO8nwnz17FhMmTMClS5eQMmVKtGvXDi1btlSt1+l0GD16NDZv3gwvLy906tQJLVq0UJ89f/4cvXv3xunTp5E+fXqMGTMGZcqUcYpeT5o0Cdu3b1f/TPWF/evXrx+ePHmCggULYvLkyQgICHDofv7999+YOnUqGC0tR44cWLFihWqvsb44Wz/37NkDjuObN2+QOnVqDB06FCVLljTZz7Vr12LatGkIDw9HrVq1MHz4cHh4eDj0eErjhEBSExBBT+oRMLN+fsEx1Gnp0qXx+PFjNGrUCIsXL8Z7772H1atXY9OmTZg/fz5CQ0PRrFkzTJkyBUWLFkWvXr2QPXt2/Pjjj0oo+N9t27bB19fXzJqT5jK2lV/od+/ejRT0+PrClxh+6Q8bNkyFvV26dCkOHTqEefPmJU3jzaj11KlT6N+/v+pjgQIFIu/QarXx9sXYZ2ZUafdLIiIiUKlSJfz+++/InTs3/vnnH/Bo5ZYtW2CsLzdu3EDr1q2xcuVK9VLWs2dP9RLQtm1bu/dBKhQCzkRABN2ZRitKWzt27KhEvXbt2mq23qZNG1SuXFldsWTJEjx48AB9+/ZF2bJlwZlgihQp1GecvTdu3BgfffSRw/acszK+lHBWxi9zztC5ChFfXzJkyIBRo0apFxsar/3ggw+wc+dO+Pv7O2Q/O3fujKZNm6Jq1arR2vfff//F25fr1687VT+Dg4PVy8nBgwfV7JqrRfXr18eBAwdgrJ9cqQgKClIvo7QLFy6olx+GwRUTAkIgfgIi6E74dBiWIfnFly1bNtSoUQPLli1TM3Ha/v371c8UOQrj3r17I3s5ceJEpE2bFkxw4qjGrYWsWbPis88+U+2noD98+DDevnAWxxn5+PHjI7v05ZdfYsiQIShevLhDdrNcuXLo3r27mr3yBeSrr75S/zZs2BBvXzhzdbZ+covn/v37aNWqFebOnYsvvvgCdevWNdpPzsz58sYXVlpYWJj6+cyZMw45ltIoIeAoBETQHWUkLGgH911DQkIwaNAgddeHH36IjRs3gjNV2pEjR9RSLr9MOZPfunVrZOkzZ85UAsKld0c0LkWzf1xlePHiRaSg37x5M96+ZMmSBefPn1czeoPRv6BLly6oUKGCw3WTAlWsWDF8++23+OGHH9RYNm/eHOPGjVM+EvH15datW07VT4LnqgJXkNzd3dXL5/Tp05Uvx6pVq+LtC19yatasqZLTGIxbS5cvX4abm5vDjac0SAg4CgERdEcZCTPb8dtvv6kZK/fLDWk1+eW3cOFCtU9J27VrF3jd/7VzJkBXjWEcfxBZIinGFpXKKApDyJ7Up02WNokQZWwJDS3W0oJKWmhBUiGKZkKWSBQSY4lsg8halrI2kfk9M+91vtu9371OpznfN/N/ZsxX7j3v8nvPd/7PdkLQiYhIeQbj/9WoUcPFpLwZQkeUOnr0aG8SI0UbInQax/LtBUFfsGCBN8IFI7VLvbZx48blbZve6EVNGOclnOGYMWO8oZHMRL69IOgVaZ+rV6+2jh072vjx461+/fo2a9YsmzhxokfnOJn59oKgc25ci5G6xzGjMVQmAiKQn4AEvQLdHbNnz/YU7aRJk2yHHXbIrLxnz55ejw11cR6aCGD//v2N1O78+fO9wxjr0aOHf5faZnmzJUuWeONTpUqVMksjemWvdPAj0rn2QuTHXkONdf369dakSRP/LuWF8mj0O9DoGDrxaWKsVq2arzvfXlauXFmh9kmjJvVySijB6N8gk7Jhw4a8e0H4uX+pm2M0SMKE8WQiIAIS9Ap/D9AZTF0csa5SpUqp/RDxIA6hy53IZsiQIS7m/fr184i8d+/e/mAkBU+zWPYY5RFQNEJnffn2wmt8JSUlNnDgQG8MpMudPU6dOrU8bsvXRFmB2jJp9rDPcePG+VsL+fZCqaQi7ZOIuk+fPu6E4litWLHCSwvcyzhp+fbCmw18jx6R0OVOhE8JRSYCIiBBr/D3QNOmTW3VqlWlaoiIF9E6RhSEqFNjpGYZmt7oFu7bt68tXbrUo3Re7Qrd8OUdSragl7WX5cuX+z4Ryf3228/ffa5Zs2a53SLvZdMDwRsIOCR0vVNSwMraS0XbJ07VtGnTPCLnVUkEPnT2l7UXMjI0OcKJ71MqCuWJcnuoWpgIpExAKfeUD0DTi4AIiIAIiEASBCToSVDUGCIgAiIgAiKQMgEJesoHoOlFQAREQAREIAkCEvQkKGoMERABERABEUiZgAQ95QPQ9CIgAiIgAiKQBAEJehIUNYYIiIAIiIAIpExAgp7yAWh6ERABERABEUiCgAQ9CYoaQwREQAREQARSJiBBT/kANL0IiIAIiIAIJEFAgp4ERY0hAiIgAiIgAikTkKCnfACaXgREQAREQASSICBBT4KixhABERABERCBlAlI0FM+AE0vAiIgAiIgAkkQkKAnQVFjiIAIiIAIiEDKBCToKR+AphcBERABERCBJAhI0JOgqDFEQAREQAREIGUCEvSUD0DTi4AIiIAIiEASBCToSVDUGCIgAiIgAiKQMgEJesoHEHf6IUOG2O+//2633HJL3CESu+6dd96x/v372xdffGFt27a1wYMHJza2BvqPwG+//WYHH3ywLVq0yHbddVehEQEREIFSBCToMW+Ivn372osvvmjz5s2zatWqlRrlyCOPtHvvvdcaNGgQc/TCl5UnQT/zzDOtefPmdv7557uTsfPOO5faAKxmz55VsyW/AAAKiklEQVRd6v9tt912hiOwuY15f/31V+vWrVtmqnPOOcfOPfdcO+mkkzbL9I899phde+21G409a9YsO+igg2LPuTkEnXVybvXr1/d14SyMGDHCHn300djr1IUiIALpEJCgx+SOSD333HPWokULGzp0aCqC/ueff9pNN90UcwfJXUbUOGPGDDvggANyDgqrHXfc0S655JLM51tsscVGjlByK/pvpCuuuMIOO+ywUoKOWDVp0sT22WefzTGlIehTp051py5qO+20k1WqVCn2nEkL+rp169ypmTx5ckbQv/32W5s/f76dddZZsdepC0VABNIhIEGPyR2RqlOnjk2aNMnGjRvnAhEsGqF/9dVXduKJJ9oHH3xQ6mFer149dwj23XdfI9quUqWKp6yXLl1qCHXnzp3t+OOPt0GDBtmqVats2223teuvv96aNm3q04QIne8+++yzttVWW1n79u3tuuuuy8zDw/mGG26wV155xapXr+5j9urVyxBTxIHxiRqvuuoqe//99z0qyxZlHvq33367zZkzx9auXWuNGjXydfC9jz/+2Od7++23XbBZA2vJFaGTIr7mmms2og3H3Xff3fr06ZP5bPTo0c7ijjvu8HUeddRR/udRo0b537fffnuf99hjj81c89BDD9nEiRPtm2++8fGGDRtmTzzxhIvr1ltvbZUrV7bTTz/dr4NTjx49rE2bNn79m2++6TxhULVqVevYsaNdfvnltuWWW/rnfJ+oHlacJ/y6du3qY+Qy5sTByRXltmrVys477zzr0KFD5lK+z9qffvppe++993yv/Pz777/tuOOO87WR0cgW9ELsmCDfeDCBB/dlODtKJTgcOKjPPPNMZn0zZ860u+++29nWrFnTcJLYB4b4T5s2zQ499FDPwnC/4CjdeuutGYfpjTfe8D18+OGHfnY4WHfeeaefi0wERCA5AhL0mCx5mCJuCC2ijuBts802PlocQX/ggQc8quNhh1C2a9fOatWqZffdd58L1OOPP2633Xabvfzyyy4oPCC55uabb7bWrVv7w/bSSy810t8XXHCBrwPRQBAQkO+//94uvvhi/zPCHsSBBzEp1wMPPNB22223jR6yw4cPt9dee834iSgjPjzcn3/+eXdCsIYNG/rDPKRts5HCalMEnQwAoo7jxJyITb9+/dxRQahfeOEFdxYQokMOOcSdAZwtHAv2hkMVTblHBX316tVeLmCN1P9XrlzpDg5/7tmzZ0bQcao4n9q1a7uo8/n9999vjRs33ugOKkvQ77nnHlu8eLFfG4w1Hn744X4+K1as8PVzLjhrOA2cLz/jCHpZ4+U6OwQ6KugLFixwNiNHjvS9LlmyxPkQ1XMufB9OrI8zwAnCCf3ss8/8OxhOKKn9kpIS+/HHH91xatasWczfPF0mAiKQj4AEPea9wUNu//33d/FEJBHikFKOI+g85BCMYESPp5xySmZMHu7UXxGDGjVquKATzUejwLlz53oUS5TMZ6wR4Q324IMP2lNPPeURVRAHojIi0lxGtIVATp8+vZRwkY5t2bKl16GLFXTWFhwerkFEcVAKRZlhnTgviHowWOBE1K1b184++2w75phjPPuQbYUEfcyYMfbWW29lxIfrX331VecOQwwH4IQTTrDevXtnhufcESUi9WxD0HE4iEaD0WeB+H399dee5sYZ2WWXXeznn3/2feGkEP1mG07M559/7g5VHEEva7xcZ5ct6DhCZEIuuuiizFBE10TbrI3v40iS5cC5xcjY8H0cQeyII45wx5N7RiYCIrD5CEjQY7JFiIhIiUyI6k477TQXV9KNcQSdBztp4mBE2ggnadFg2Wl6okvS4cE++ugjO/XUU23ZsmVGmnTgwIGlIu4NGzbYnnvu6an+IA4Ifr5aMlEWPQKMFxVj0qk0vxGJ5RKFbKSw4mEfFQXEDkErVtBpQNxrr70yQxPRkqYmSiQChF00BR++WEjQr7zyStt777096gxGEx2ODKJL1iKk3KNngYjhVIQoPrpnBH3KlCkueMEoR+yxxx7+1y5duniEz/k+8sgjnvV4+OGH/bN3333XMz6w57w4Y/aKiMYR9LLGK0bQYYszgcMUjHuGKB7HEUFHrDmf6H3I7wP3DfbSSy959E6TKKULnCOyTDIREIFkCUjQY/KMCjpDEF3zoCOVSsRFupEHWK4a+l9//eUp7mgNPfsVNASd6AiBzifopIGptwZbvny5OwDUTakp42BQ981lxTRYEYWRKcgWdKL6P/74438J+v9JuRO5U/8PNfRcr2pFBR0HCscmKjrFCjqROOn5QoIerbkzdiFBz1dD51o+I2NBxqR79+528skne6T/3XffeVqavgcEHyfgrrvusk8++aRoQY+yKzReMYJO5omsT5Qt9y0OVBD07Jo7jmVU0JmHDBNlKUoOlC34yf5kIiACyRGQoMdkmS3oRFNEXkRdCNH48eNd0H/66SdvmCOtG2rO1MhpKtpUQX/99ddLvQ5GExhRIa/S8RkitHDhQm/0yrZiBJ2HMMKJs4KoBmOPiBClhlyikD1XWTV0uvRpjiJFHeyyyy7zjECxgg53or5c0TIMECOEM1i0ho5gcjbRjnRS7tSzSSMTSWY30W2qoJONYU0IHL0SRLBkK7gf+HcFqFsHo1mQ5rhcEXohdoXGYw6yDGQJQjNkdsqdcgaZjyhb1kIzHb0U2d9nzFyCHvaDI0hPA78fZEFkIiACyRGQoMdkmS3oDEOaFOH4559/PAIJ76HTmIZAIDxE51dffbV3NG+qoBPhIYSIArVZok0ivSC01MYRcxqSEIxPP/3UIyXEpBhBZ0/U6ulSJu1K+pmoH6eBbASvYW2qoDMeqXN+0m1N3Zq0LJFqsYJOXwBRLd+ncYsSCM4TNekbb7zR/06tnHOhWzwq0GQCcK44EziGprho/0IcQafmT+o8atTRw2tr1Pu5F3BmJkyY4F9DJM844wyP4OnPoK5OOvvoo4/OKeiF2BUajznZJ/umHLJ+/XovM0Qjbs6Zeyw0xXEv4GQg5jh7xQg65QT6DbgHKQFwfz755JOZEkTMX0FdJgIikEVAgh7zlsgl6AyFkJP+JVoOgk5nMJHXL7/84l3ZF154oY0dO9brrOG1tTgpd64luuTBT/oSMUC8Qyrzhx9+8H+1jYiPBjcEjsYuxLJYQechT0SGeKxZs8YjugEDBnjJINimdLkzPqJFpzrrRsjo8CbKK1bQWQelDv4jzUytmmuJABFoXkGjHNGpUyd/5S5boBEZOPETJwWO1NYDxziCXugflkHQeP2Lf8SF9HqwcF/geCGCnBUOS64IvRA7xixrPD4ng8N5UqsnjY7Dk51CD5mfL7/80vsNKDfgBGDFCDrOC44A0Tn9GlxP575MBEQgWQIS9GR5ajQREAEREAERSIWABD0V7JpUBERABERABJIlIEFPlqdGEwEREAEREIFUCEjQU8GuSUVABERABEQgWQIS9GR5ajQREAEREAERSIWABD0V7JpUBERABERABJIlIEFPlqdGEwEREAEREIFUCEjQU8GuSUVABERABEQgWQIS9GR5ajQREAEREAERSIWABD0V7JpUBERABERABJIl8C+rQyiJ+GfAhgAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" @@ -195,7 +195,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAFACAYAAAAvc1ZOAAAgAElEQVR4XuydBZRV1dvGnym6QbrhD9JdSghDDCVIg0gIoiChSHc3EgoSgiAqSCjd3dLSDQKCMnTnzLee7XeGy3DnzhlyZu7zrsVShn322ft37tx9nv3G9ggMDAyETAREQAREQAREQAREQAREQAREQARE4I0S8JBAf6P8dXMREAEREAEREAEREAEREAEREAERMAQk0PVBEAEREAEREAEREAEREAEREAEREIFwQEACPRw8BA1BBERABERABERABERABERABERABCTQ9RkQAREQAREQAREQAREQAREQAREQgXBAQAI9HDwEDUEEREAEREAEREAEREAEREAEREAEJND1GRABERABERABERABERABERABERCBcEBAAj0cPAQNQQREQAREQAREQAREQAREQAREQAQk0PUZEAEREAEREAEREAEREAEREAEREIFwQEACPRw8BA1BBERABERABERABERABERABERABCTQ9RkQAREQAREQAREQAREQAREQAREQgXBAQAI9HDwEDSHyEZg2bRr69OkTNLEoUaIgadKkKF68OFq1aoUECRK80knfvn0bU6ZMwZIlS3Dq1CnEihULOXPmxFdffYW333476N4tW7bEsmXLgv4eM2ZMpE+fHpUrV8aHH34IjlsmAiIgAq+DQPDvTX4fZc6cGU2aNEHZsmVfxxCe6x4dOnTAnTt38O233z7X9S/jonPnzqFkyZJYunQpMmTIEKYub926hZ9//tlce/bsWdy7dw+JEydG7ty50bhxY+TIkSNM/b1I4y5duuDKlSsYN26c024ePnyI77//Hr/99hvOnz+P2LFjI2PGjKhfvz78/Pxe5Na6VgREQATCDQEJ9HDzKDSQyESAL5qjR4/G1KlTzbT4AnT48GHzAkcBPGPGjFc6Xd6X4rxOnTr43//+Z164xowZgwMHDhhBHi9ePHN/CnS+WLZr1878nS9G27dvx08//YR06dIZkU9xLxMBERCBV03A+t6cPHkyAgICcPnyZSxcuBALFiwwArJgwYKvegjP1X9EFuinT582GyAPHjzARx99hGzZsiEwMBB//fUXli9fji+//NII9ddloQn0vn374vfff8cXX3xhNm+uXr2KHTt2IHv27KhataoZ5pkzZ8Bn8jLX2VfR5+tiqvuIgAhEPAIS6BHvmWnEEYAAXzQpiLdu3frUaGfOnImuXbti586diBMnziubCV+wPDw8nur/+vXryJ8/PyZOnIj33nsvSKB7eXlh1KhRT7Xly0jNmjVRqlQpDBw48JWNUx2LgAiIgEUgpO/NGjVqIFWqVBgxYkS4hEUxePfuXXzzzTdvbHzP40GnN7p69erw9vY2m8n0Rr9pC02gcw37/PPPjWc/JKOHfcWKFfj1119f2nReRZ8vbXDqSAREINIRkECPdI9UEwoPBEJ60aQ3iGHm+/btCwofp3d92LBhxrNNEZ0mTRp8+umnQd6AP//8E7Vr18akSZPw7rvvmunR28Ew9GLFiqFbt262pkyPSOnSpTF9+nQj1Gn0oDsT6Pw3eqzordi8efMrD8m3NQE1EgERiNQEQvre5Kbm0aNHMWvWrKD5b9iwwWwsHjp0CNGiRUOJEiXQqVMnE5pNe/ToEUaOHGm875cuXUL8+PHN9x6/0ywhevLkSfTv3x/btm1D1KhRUaFCBVAgsj/anDlzwE1Vfh/zXsePH0fChAnNd3ObNm3MdyeNAv3x48fImjUrfvzxR/j7+5sw8/bt25u0Jss4Rn7XM5Jp/PjxJrKJ3l/2Q0/2oEGD8Mcff4DCmV5rXp8rV66nnvnatWtNJBbnHT16dOPxZsTBhQsXnglx54YBv+85h5QpUz7z2Vm5ciWaN29uoq0YJm7HfvjhB/zyyy/4+++/DYsqVaoYFj4+PkGXh7amWQ25UT1gwAATXcbnU69ePfzzzz+4ePFiiCHuefPmNevWxx9/7HS4vXr1MmuXozEirFChQli1apWJCjty5IhhTK97jx49TJQZjZscvr6+2LNnD/r162eiN3hd8uTJQ+zTDjO1EQEREIGwEpBADysxtRcBGwSCv2hSUB87dsy8QHLBt0Q1Pd3MneMLXceOHU2eOgUxXyx79uyJWrVqmbt9/fXXmD9/PhYvXowYMWKYlzzmC/IFwnqZDGlY9+/fx8GDB01O/FtvvWVeDC3vuiuBzhc+vlx+9913RtjLREAEROBVEghJoDP0mmKQ34u0jRs3omnTpkakMe/4xo0bJqXo2rVrmDt3rvmOnDBhgglxptDi9yoFJYUXa4DQmM5DQU4B3KJFC5OGxO9cingKZRoFevfu3ZElSxbTD0X33r178cknnxjxTEFJo0Cn2KV4pJjn/ZkjTaG4aNGioJxwCvRMmTKZe7MdNwqKFClivv8rVapkRDnnxNofs2fPxrx588wYGMpN46YEw9Hr1q1r5k2RyTxspjIF96BzM4Pil2Ka43dmXIe4AcxNDDtG/vS0c77kxg0ORlgVLlwYw4cPN13YXdM4Z4phRmlxTlynGN3FDYsCBQqEKNB5702bNploBfIObtz04Hq5e/duI8ZpXCO5CcKNDDIrWrSoGSfFPO9rzd9iyAizuHHjms0H1ovhcw+pTzvc1EYEREAEwkpAAj2sxNReBGwQsIodeXp6mtbMp+T/80WwdevWQQKZL1x8IQvuweDLJl+s+CLCFwsK/GrVqpkXF4ae8w+9Anny5AlxNJZHh/emvf/+++YF1DG03pVA5wsMXwz5EmO9iNqYupqIgAiIwHMRCC7QKWQpNPl9SLFr5ULz+y9FihRBgp03u3nzptlQbNu2rcmlptedEUkhFW6jR5wCfs2aNUGbnPw+pvCnlzpZsmRGHHNTlf9lkU3L6GXnZsDYsWPNjyga6Z3l5io98ZYxNJ+CnEKZRoHO72PmdtP7bRk3XCnGORaGm1vGQp30LFtz4IZtokSJgu7rCNlRoDNFiV5thmW7ytvn2sPNhOCMGH1gGdct/uEGBoU4uXKDwDJ6/LnJzI0IztXumsY5c9OZc7YiEbjOkRHFf0hF4jgOPhNGnFGgc22qWLHiU9yGDh1qhH5oIe7r1683mwPcuGFBQoshCxIyRc3R7Pb5XB98XSQCIiACwQiEKtAZ0sVwIFaFDm6Wd09URUAEniZgFTuyQu24q3/ixAnjjeZLDHf/6cVmTiW94Hy5czR6vLl7b7308N/4M76Y0gtOzw9fCkMzhoUyN5IvHhT8/C9fWuhRorkS6BT4rPjOEFD9rodG2n3+XWuC+zzr1z1TZxubLFZJgWul5VDEsar4kCFDzHeko3322WdGqFFwMny6QYMGKFeuHBo2bPhMqDjFL0U4haJl9MTny5cvqE4HhTnFOL97LRHJtvSmbtmyJSjknt/FDM1meLujsW96++nVp1F88rub0VKORg84i4daQt76N4aTcxOAhTs5b24S0LtvFUNz7MMSl9zM4HgGDx5s7uXKyIeeYsfcea5TjtXQ6eHnvLj5QI4U4Nb6YfXNjWJrY8TumsbNAfYTfM7cxOYmRkgC3brn/v37jTefayTTwhgZljp1avPPdsU0v8vKly8fNCeLoWOdFut+dvt83b8zup8IiEDkJOBSoHP3lSFN9KI5C6MNnucTORFpViIQdgIhhWoyJJAvjAy/5JE4vXv3Bl80HHMreTe+7DG/PHjlYnqGWHhu3bp1Ji8uLMbQPr6MMKSQL500VwLdylln7rtjHmVY7qm2kYuA1oTI9TzD22yCb2zSw01vM72l9HDSWLWbXmGGK/M70tH4vUbvMaOLaBRgFHqMUGKYN//dCoumeOURlI6507yGG5oUjdwMpUCnIKZAdjQKdApWhqHTKIjp2bU86lZbjpEim6KWRoFOjy2FsaNxLPxetk7TsP6NXnX+jOlRjCZgepSzebO9JS4Zks0NYUYCWOH8IT1nhumTEauiW8aQb27s0siOkQkU6EypYn/Mnw9+/CZD1blpwH+3u6axhgp5BJ8zveOMTghNoFvj5bybNWtmag9YIe3OxDRFP/PxuSHOfH/+nX94L2vTwWLINlZagXUfCfTw9m2h8YhA5CbgUqBz8eOCmTZt2shNQbMTgZdMICSBzrBxFhJioTi+QNFzQe9KSB50xxcFVqXlkTcsCsSXMHrjw2oU5AxftF5+XAl0eiTojeGGQHio7hvWuar9yyegNeHlM1WPTwgE/96k6GX9C6b3WBFDFFX8DqWH2JkHnZ7u4OHJLBLHkHYKbnpc6ZVn4U1WhncmYpnvzuMlwyLQQ/KgM03JEsAUpPze50arozFEnN5fZx50zoXh2vSgs6gZvfJMVwpulrhkTjg3M3gMGQWpszxt61puDDMPnWHmzjZ8mX/PjVoKdBbSY9RBSB50rk3ceLC7pjVq1MjwZ9E+R2MUhLU5YPd3gxvZZMfNA5ozMc3NE24wkh+LrTIVgZvjH3zwwTMC3TFyTQLd7lNQOxEQgZdJwKVAp4ePX9wyERCBsBEISaCzWi09B/TA8L988WI+X/AcdIZoWmGFDNmk94Teb7688L/8w3xyZ6GOIY2UL3gMXeQLb2gedIZ0MrePL8ascisTARLQmqDPwask4Ox7kyKS30EUTQwDp1EIxosXz2wgWkYxz0gf1vig+HNmDNemh5bCnkKNG6MsEOaY9+14XVgEOovE0avuGG3I+zAcnwXmaCEJdIpwRgusXr36KY8+hTw3CqzNWH7f02FiFctzHGvwInGcJzdXOb+QNljv3LljPPfc8OCmbXDPuKNAp2edkQvcKKFQt4zRBVwrmE/OKAW7axo3EsifG89W0VJGeXE83IS260HnOLgpQJFuHWvKv/N5MALBMobnc2Pb8ag+fra4Fgb3oDsT6M76fJW/C+pbBETAvQm4FOisMspwLFdFRtwbn2YvAs4JBA/VpDhmKCEXeXqAWI3dKhLE3zN6KfiiQC8GcxvpHercuXPQixC9PDx6hh4RFuxhHjnbsJ/g+YAcEV+s+CLHnEV6g1iRnaHqrGzLlxYrV48edL6kMcyQOee8B3Mm+eLCgkz0OIRWJV6fAfchoDXBfZ71m5ipM4HO70t6OVkszQphZlEvikS+n7BAGMOwKVr5PcfvN4paCjbmV7OOBoUnC78xXJ1RSRT69Kpzk5SikoKfxdf4MwpM69iwsAh0imt+3/I7lR5s63gzbr4yR9qVQGfuO+dBYcpNWKuKO7/neUQaf06j6GSONs8AZ6oUBS1Z8PcyuEBn3SB62rlB4EzQW8+XRd4YIs61h0xZI4UbFpcvXza5+Pz+t3LruYZw85iF4ph3zhQBesBZ1M1xs8TOmsZnxc1ijpH8OReG71OwM1LHmUDnOslICFZhZ5FARqTt2rXLpBbwbHQeGUdjWgTXTP6cz5+fB46b6yWvZzg8nzPnw3B+OwLdWZ/8fMlEQARE4FUQcCnQ+WXIHWAuOiym4lgkhYMJHo71KgaoPkUgIhKwih1ZY6eo5u8QXyz48sdCb5bRM2Gd10tPOV/mGAZZvXp104QeEIp1/pehmZbRI2AdHROcEQU2X+74AsV8RIp4brTx5Y5hhZbxZZL5nTR6MVjhnS80/L3nS3FInqWI+Ew05hcnoDXhxRmqh5AJhBR5ZIVXc4PTKmBGzy0jkRimTEFL77l1VCXvwNQhpunweDV+//Kcb37/0UNr2dmzZ004NMPQmXvOzUyKQ4pOfreGRaDzPYmimBsDFPo8W5veZoZTWxaSB53/TsFKrzI3SLmhS9HLjdPgJ3UwF5wedealUzzze51iNrhAZ58U7yxAx3c1RkOFZPy9Jivem8efcS0gC3rWuXHgGFLPDQPm1fMatuG/cU1z9L6HtqZZ46DHm5smFMlce6xjzbiR7Eygc33kqSL8d/4/58/NFkYaOI6Rwp258FwzrYJzXNe4cU0xzs1oRlMwCo35/2TKNdJi6MyD7qxP1gSQiYAIiMCrIOBSoHMHkl+cFBXOvGgsMCITAREQARFwDwJaE9zjOWuWIiACIiACIiACb46AS4HO3UHmCDE8SCYCIiACIuDeBLQmuPfz1+xFQAREQAREQARePQGXAp1HZwSvLv3qh6Q7iIAIiIAIhEcCWhPC41PRmERABERABERABCITAZcCnTlJNBYkCV7dMzJB0FxEQAREQARCJ6A1IXRGaiECIiACIiACIiACL0LApUBnhdT169cbcc6iVsFFOqtaykRABERABNyDgNYE93jOmqUIiIAIiIAIiMCbI+BSoPPYEFfmWA31zU1BdxYBERABEXgdBLQmvA7KuocIiIAIiIAIiIA7E3Ap0N0ZjOYuAiIgAiIgAiIgAiIgAiIgAiIgAq+TQKjnoLsaDM9rdkfj+aY8g1QmAiIgAu5EgGcfa02w98S/+OILlC5dGpUqVbJ3gVqJgAiIgAiIgAiIAACXAp1CNCRLkSIF1q5d65YQJdDd8rFr0iLg9gS0Jtj/CEig22elliIgAiIgAiIgAk8IhCnE/f79+zhz5gxGjx6NEiVKoEaNGm7JUgLdLR+7Ji0CIhCMgNaEkD8SEuj6dREBERABERABEXgeAmES6NYN+FJWpUoVLF269HnuGeGvkUCP8I9QExABEXiJBNx9TXCGUgL9JX7A1JUIiIAIiIAIuBGB5xLo5EMP+rp169wI1ZOpSqC75WPXpEVABFwQcOc1QQJdvxoiIAIiIAIiIAIvi4BLgf7o0aNn7nPv3j3MmzcPM2fONP91R5NAd8enrjmLgAhoTbD/GZAH3T4rtRQBERABERABEXhC4LmKxCVPnhxff/018uXL55YsJdDd8rFr0iLg9gRCKhLn7muCPOhu/6shACIgAiIgAiLw0gi4FOjnzp175kYxY8ZE/PjxX9oA3nRHgYGBGDNmDH744Qfs3LnT1nAk0G1hUiMREIFIRsAd1oSQHtmaNWvQtm1b/Pzzz8iaNWuoT1Ye9FARqYEIiIAIiIAIiIATAs+dgx4ZaD58+BBffvklEidOjAULFmD79u22piWBbguTGomACIhApCAwadIkrF69Gnfu3EH//v0l0CPFU9UkREAEREAERCB8EnAp0B88eIA5c+bg0KFDuH379jMzGD58ePicVRhGtX79ehQtWtSE6+/evdvWlRLotjCpkQiIQCQj4A5rgrNHtnXrVuTNmxcNGzZE9+7dJdAj2eda0xEBERCBiEbgl19+wdGjR9GrVy8z9G3btpn1ic7HcePGIVOmTCFOKVu2bDhw4EBEm7JbjdelQG/Xrh0OHz6M4sWLI1q0aM+Aad26daSAxcJHBQoUCJNALz+8M2LFjILe0ZLCI35CeGfNEylYaBIiIAIiEBIBd1kTQpp/7dq10bNnT9sC/e3cmfF3Ku+g7hpnLYX0yTLoAyYCIiACIiACL0QguECvWbMm2rdvb/QMzcPDQwL9hQi/2YtdCnR6lpcvX44YMWK82VG+4ru7EuiVK1d+5u7ctDg+o635+dXBP+NB1HhIPG3hKx6luhcBERCBN0vAXdaEsAr0oUOHgtFYjvbWW28hfqa0+LrMW0E/XhklK3xzlHizD1F3FwEREAERiPAEggv0ggULmlSsWLFihTo3edBDRfTGG7gU6L6+vli1atUbH+SrHoArgX737t1nbp8zZ86nBbpHVCT+NfJzetXPQf2LgAiEbwLusiaEVaAzpDD4EXSdOnVCjESZcSurF+Yluo2zsaJDAj18f741OhEQAREIK4GPP/4YpUqVCqpTQqcmT7qKFy+e6apPnz5Yt26dCT3PnTs3mB7s4+ODy5cvo2PHjrh165aJVua/lylTBiNHjnQ6BKv9iRMnkCxZMpN2xWu51nTu3BmLFy/G22+/jXfffRcdOnQAC5sOGzbMtEmTJg369euH1KlTm74tgc51i1Fhf/zxB5jCxgKoDI+XvXkCLgU6H2aCBAnwySefmA9TZLXnCXF39KCTS7yZGyMrHs1LBERABAwBd1kTwirQnbVnFfdkKXzxbvGK6HxzFDbGj4YVd5KidLEP9GkSAREQARF4TgI79gTi7wsBz3n1819WILcnkid7NmycAp0aaezYsfDy8sKAAQMQO3ZstGrVytxs165doGOP9uGHH6JRo0YoX768Ee6pUqVC48aNcezYMXDNWLRoUYgD5L9TYPM0kStXroAh7cWKFQvKQc+TJw82btwInrZ19uxZ1KtXz5w6wmuWLl2Kb775xhTE9vT0DBLodMLOnTvX/BuN13FMsjdPwKVAZ/GBatWqgUeRMVyPHzxHiyze9RcR6BeG/I5ogXcQ78flQLTInQrw5j+uGoEIiMCbJOAua8LLFOiF362I7gETsCF6IJad90HZyk3f5CPUvUVABEQgQhMYP+Uxtu9+/QL904ZeKJDX8xl2FOgUyxTdNIpsy3sdvDG95zyqmtew6ChPkqJXnUaB7apYNUU+BXicOHFM+xEjRuD69etOBfrkyZNx/vx5dOvWLWgIFStWBNOx6CW3POhc0z/77DOz+f7OO+9E6M9FZBu8S4FOcZ4+fXqULVvWaZE4Fo+LDPYiAv2voUsQJ+AK4k6YD494CSIDDs1BBERABJwScJc14WUK9AKFK6KXhwS6fqVEQARE4GUQCI8e9GbNmqFw4cJmekuWLDEe61GjRoFpsmPGjMH+/fuN5/qvv/5C3bp10bRpU/Tt29dEKX/++efYs2eP8bzPnDnTKSKepFWoUCHTj2XTpk0Dw92tKu6OHnT2lShRInBclnFT4KOPPkLJkiWDBDr/befOnWaM//77rwmXp1de9uYJuBTo3E3ZtGmTy0qAb34Kr38EPGbNCnE/NmwNEj0+jzjfzIRnkuSvfzC6owiIgAi8JgJaE+yDtkLc8xaoiL5RJmND1IdYdvIRytb8L+xRJgIiIAIiEPEJUPh++umnRkAHF+iDBg3CnTt30KNHD3h7e2PgwIEmIpkC/dq1a2AhajpC48aNC56SYuWIO6OSI0cObNmyJagIHMPSmZfuTKBPnDjRCO7QPOiO96H4b9KkCZYtWxaUPx/xn07EnYFLgc5wjXnz5iFKlCgRd4avYOSOAv3A8K1I/ugEYg+dAq80GV/B3dSlCIiACIQPAloT7D8HS6DnylsRA+P/gvWBN7F482mUbzXYfidqKQIiIAIiEK4JuBLoPPaMmoGebApm5oVbHnSekkXBzSJtdoxHW/Ns85YtW+Lq1auoU6cOihQp4lSgnzlzxuS708ueNm1aI7pZfI7h94456BcuXDAR0gy7p5eeYfC//fab8ezL3iwBlwJ97dq1mDFjhtlRSZ48+TNCnbtA7miOAn33yD+R9v5+xO43Dl6ZsrsjDs1ZBETATQhoTbD/oC2Bnj1XRQxJJIFun5xaioAIiEDEIeBKoB85csTkmTOVNmXKlEZQ83xyetC3b99uQs6jR49uvOsZMmQwueAZMzp39vn7+5uq78ePH0fixIlN5fiLFy86FeikxzphQ4YMMWH29Myzb4p1mpWDzgJ2DGvn+FjojnOpXbt2xIEfiUfqUqCzIIGzY8YsHqw66I5GgX7u1/a4F/gY20Ydxv/u7US0TiMQLW8Bd8ShOYuACLgJAa0J9h+0JdCz5KiI4Yn/X6CvOYTy7Ubb70QtRUAEREAEIh0Bim1Wc2coOh2gPGKN55rv27fPHI0mEwGXAp3hDq6Mpfzd0SjQz8/sgDsBj7Bm3Bnkvr4BPm0GIOa7kaNonjs+U81ZBEQgdAJaE0JnZLWwBHqmrBUwKuNCrLt1Hgumr0SlYXPsd6KWIiACIiACkY7AwYMH0bVrV8yePduckBUQEGDOR+d/Wak9uLVo0SKoSnykg6EJOSXgUqCLmXMCFOgXZnbA7YBHWD7+IgpcWwGvZj0Qu3RZIRMBERABERABc6Ytz0HPkLkCFuZch6mXj2DM4i1o0f1H0REBERABEXBzAjwmjWHoDC2nMM+fPz86dOiAqFGjujkZTZ8EnAp0ludnmX0WMHBlPCLAHY0C/d+ZHXEz4CEWTLqFopfmwbNhe8SpWMUdcWjOIiACkZyA1oSwP2BLoKfNWAGHCu1C7ws70HHjXgxq813YO9MVIiACIiACIiACbkPAqUBn6X4eF8CdHVfWuXNntwHlOFEK9IszO+JGwEP8PuUB3vt3FlCrJeLVqOOWPDRpERCByE1Aa0LYn68l0FOlq4Cj7zwR6P1KfwLvbHnD3qGuEAEREAEREAERcAsCCnF/jsdMgX5pVidce/wAM6d5osz5aQis3BTxP2r0HL3pEhEQAREQgchGwBLoyVNXwIliEuiR7flqPiIgAiIgAiLwqgi4FOg1a9bErFmznrk3K7uzDP/8+fNf1bjCdb8U6FdmdcaVx/fxy4yYKP/XBDwq8yESfdI8XI9bgxMBERCBFyGgNcE+PUugJ0lRAaffk0C3T04tRUAEREAERMC9CbgU6AUKFDDn9AU3Hg/g6+uLvXv3uiU9CvSrszrj8uP7mDorId4/ORqPildHopZfuiUPTVoERMA9CGhNsP+cLYGeKFkFnC31RKD3zlgSUSvWst+RWoqACIiACIiACLgVAacCvVWrVggMDMTq1atRqlSpp4A8fvzYnNOXN29ejB7tnue5UqBfn90F/o/u4fvfU6L60cF4VNAPidp1c6sPjyYrAiLgHgS0JoT9OVsCPV7iCrhQ5olA75UsP6LVahL2DnWFCIiACIiACIiAWxBwKtDPnz+PtWvXYvDgweDZe47m6emJlClTokyZMvD29nYLSMEnSYF+Y3ZXXHx0F+MWZkDtA33wMNd7eKtrP7fkoUmLgAhEbgJaE8L+fC2BHjtheVz02x1UxV0CPewsdYUIiIAIiIAIuBMBlyHuc+bMQfXq1d2Jh625UqDfmt0V/zy6izFLs6Len13x4O1CSNxnuK3r1UgEREAEIiIBrQn2n5ol0GPEK4/LFZ8I9O734yJmh0H2O1JLERABERABERABtyIQahX3e/fuYcWKFThz5ozqBUQAACAASURBVIwBkzZtWpQuXRpRo0Z1K1COk6VAvzOnG84/vINRK/Oiwc6v8DBdLrw1eIzbMtHERUAE3IOA1gR7z9kS6FFjl8e1958I9G5XvRCr17f2OlErERABERABERABtyPgUqDv2rULzZs3R4IECZAxY0Y8fPgQBw4cAPPQx40bh5w5c7odME6YAv3unO74++FtfL22CBr/0RIPU2TGWyMmuSUPTVoERMA9CGhNsP+cLYHuHaM8bn4ggW6fnFqKgAiIgAiIgHsTcCnQ33//fTRo0AA1atQIokRxPnz4cGzevBlz5851S3oU6Pfn9MDZh7cwbFNJNNnYFI8SpUaisb+4JQ9NWgREwD0IaE2w/5wtge4RtTzu1Hgi0Lsc9UecMbPtd6SWIiACIiACIiACbkXApUAvWrQoNm7c+AyQ69evo0iRIjh48KAtWIcOHTIeeB8fH1vtw3sjCvQHv/XAmQe3MHi7H5qt/giP4ryFRN//Ht6HrvGJgAiIwHMT0JpgH50l0AN8yuN+rScCvdOmfYg389l11X7PaikCIiACIiACIhCZCbgU6FWqVMGMGTMQPXr0pxgcO3YMLVu2xLJly2yxyZo1K1auXInkyZPbah/eG1GgP/qtJ04/uIn+ez5Ai2U1EBA1FhJMWxreh67xiYAIiMBzE9CaYB+dJdAfepbHo7oS6PbJqaUIiIAIiIAIuDcBlwJ98eLF+P333/HJJ58gVapUuH//Pk6cOIExY8agWbNmyJ8/vzkv3bK33nrLKU2GyH/66afmaLbIYBToAb/1wskHN9DnYF20WlDJTEtekcjwdDUHERCBkAhoTbD/2bAE+r3A8gis/59A77TrJDqu2II4386CZ+Jk9jtTSxEQAREQAREQAbch4FKg586dG7dv37YNg551Z3b69Gl07twZ1apVQ6FChZ7xyIck7G3f+DU3pEAP/L0XTty/gb6H66DZvBqIgvsS6K/5Oeh2IiACr5eA1gT7vC2BfvtReeRtfhYfnFiKiv/cwE9TFyBWz9HwzpbXfmdqKQIiIAIiIAIi4DYEXAr0sIhzEosZM6ZTcPny5cONGzdChBqSsA+vT4EC3eP33jh2/zr6Ha2LhnM/RKzA64g7aRE8YscNr8PWuERABETghQhoTbCPzxLoN+77oUwbf5Q8Og9FL93GgklzJdDtY1RLERABERABEXA7AqGeg/4yiIT2UheSsH8Z934VfVCge/7eG0fvX0f/E3VQ+/dmSPj4gqnM6/lW0ldxS/UpAiIgApGGQGRbE5w9GEugX73jB7+2/y/Qr97DgglzELPdAPgULB5pnqcmIgIiIAIiEPEI7NmzB0OHDsXPP//sdPCFCxcGU9t43HZ4t19++QVHjx5Fr169wvtQbY3PpUBftWqVKQR39uxZ0xnz0MuVKwdfX19bnUfWRhTo3nP74PC9axh4ujaqzPkCyR6dRJzh0+CZKl1knbbmJQIi4OYEtCbY/wBYAv3STT9UbP+fQC921wPzR/+EaDUaI1qtJvY7U0sREAEREIEIT+DAgQMYOXIkJk6cGC7mIoEeLh6D00E4FeiPHj1CmzZtsHbtWiPI06RJA09PT/z1119YunQpSpQogVGjRsHb29v2zPbt22d2NlhoLrjVq1fPdj/hoSEFepS5fXHw3lUM/Ks2ys3pjHQPDyB2//Hw+l+28DBEjUEEREAEXhoBrQlhR2kJ9H+v++H9jhLoYSeoK0RABEQgchG4e/cujhw5AtZzCQ8mgR4enoLzMTgV6OPHjzfHq/FPkiRJnrry4sWLqFu3LmrVqmUqs9sxVn3nblGuXLnw559/Inv27Ebs37p1CxTn7du3t9NNuGlDgR51bl8cuHcVg8/WQonZfZD5wU7E6j4S3jnyh5txaiAiIAIi8DIIaE0IO0VLoJ+/4ocPuvy/QL/vg/kjpyBqhZqI3qhN2DvVFSIgAiIgAuGKwE8//YRp06bhwYMHiB07NiZMmICkSZPi5MmT6NGjhzn9KmrUqJgyZQquXbsWFFJOcTxu3DjEihUL//77r9FEbdu2RbFixTBgwADEiRPHHGlNe/z4sfn5b7/9ZvoOblyjWeuL2or3uHPnDnr37o0cOXKYpizW3aVLF3OfFClSYPDgwUiWLBmCC/RZs2aZMUWJEgXly5fHnDlzzGleDHF31cf06dNNf+TQsWNHZMqUCd999x1YBJxjunTpkikWTicvuTDNrVu3bqZwOI0OYYba37t3z/yMYeocw9WrV41G5DUPHz5E/fr1g7Tn5cuXzb3Il/fOmzevYRipQ9z9/PzQunVrVKhQwekvwYoVK/D1119jyZIltn5J3nnnHUyePBlvv/02KleujAULFiAgIACDBg1C/Pjx0bx5c1v9hJdGFOjR5/XDvrtXMOR8TRSeORw57m9AzPYD4VOgWHgZpsYhAiIgAi+FgNaEsGO0BPoZfz/U7P6fQC/uERvzBo2Dd9bciNXr27B3qitEQAREwM0JPNy6Bo/PnHztFKIUKfVMGuvNmzeNVlq5cqUR4efOnUPKlCmNoK5YsaKJRqbQpdCMGzcu9u7d+5RAp7Nz7ty5yJo1q0kn5t+ZWnzhwgW0atUKy5cvN/PcsmULvvnmGzDP2plRoHOjgPoqXrx4YDraDz/8YH5GvVWpUiUjZhkBTRFO/UZd5ijQKXQ/+uijoE0AXs+Ngj/++MP06aoPHsfdoEEDo+cYXc1+OReOJ3PmzOZ+1JXMdS9YsCB27NiBgQMHmg0AzpVtf/31VyO0O3TogIwZMxohzrHv2rXLHOtNkV+2bFnDmhsGXGNTp05tNjWuXLmCmjVrmk2MSC3Q+UFhUYC0adM6/SCcP3/enGnOXAo7xh2cnTt3mt0QPuCFCxeay65fv25C6Ldu3Wqnm3DThgI9xrz+2Hv3Mob8UwN5fv0O+e8tR4xWPRClWNlwM04NRAREQAReBgGtCWGnaAn0U//4oU4vCfSwE9QVIiACIvAsgdsje+Dh5tWvHU3ML3rD552na3BRiFMPNWvWzBwlTZ1DO3jwoBGalt6xBusoiPn/9GpTb1lGgfvBBx8YIVqlShX069fPeMHpbc6WLZuJYA5JoFPoWuKUYpb9bNiwwYylU6dOmD9/vrmUKWs5c+Y0Ec3UcVaROEY608POe9EYEcB7c3Pgn3/+cdkHNxPWr18PDw8Pc23wuZ05cwa1a9c2fdEY6l+8eHFs377dbCRQV3bt2tX8GzcEmKdPr3xwo5Dv2bOnYcE5bNy40UQa0EaMGGF0ZaQW6Hny5DHAQsqR4MP+8MMPsXv3blu/IO+//77ZKSHQhg0bmg8t/9/f3998sPkgI5JRoMea1x977l7GsIs1kOXXKXjnzjzE+KQdopSpGpGmorGKgAiIQKgEtCaEiuiZBpZAP3bOD/X7SaCHnaCuEAEREIFnCYQnDzpH9/fff4OpvBSLjRs3Nn/WrFljvNeTJk16agLBBTq1ET3HllGkUh8x/Xfq1KnGI09xTTFLsc+oY2dGDzrDw+mxp9GjTM8+HaAcC3/uGBpPIcv+OHZLoHMsCRMmNJsNlhUoUMB49CnmXfUxZMiQp7z7nKfjzziPjz/+OCgigPXIWCGeOpLR1AyjZ4QBjZse9NjTu05hz1B5bhBQ/HMcTBVInz69CYXfv39/0FgZXs8ogEgt0Bs1amTCLSiknRl3NgifkOwYd20YtsAHzZ0i5kUwzIKgs2TJYnZKIpJRoMeZPwC77lzC8EvVkW7Gryh5+1dE/+hzRK3sfHcrIs1PYxUBERABRwJaE8L+eXAm0EvESo653YeazuLN3Bj2TnWFCIiACIhAuCRApyNDvSlkEyVKZLzjDPF2tOACneHZq1c/iQaguKeXnB50iuzq1asbLzr1lqvK7xToFL0MIw8u0OlU7d69uxG8wc1xPOzfyhW3hDJrhm3atMkIZDt9WP0Hz213JdDpECY7Z5qTUQB8/2A0Aa1q1aro27ev8exb3n3m8NOYAsC89Egt0Ldt22aAMGSBOQXWOeUMSeCOEAU1d4W4+/E8xtwI7uowT6NOnTombyMiGQV63PkDsfOOP76+Ug3Jpy9CuVuTEa3mx+aPTAREQAQiEwGtCWF/mkagp/TFsbNPPOgS6GHnqCtEQAREILwSoC6ieE2XLp3Jl6ZAZq0tHkfNFF56vxkpzOJl9AAfO3bsqRx05k3TQ1y6dGnj+GzatKkR7FbYNkPemefOdpZIdcbClUCnR5rXfv755yYfPjAwEKdOnTJeaEchzbHRyz179mxTIJx6jw5VhpzTu22nj+cR6Axv56bE999/D+orbjSwIDmP9mbkAIU3i4wzHJ7alAXMKc7JmsXoWEiPOf7Uk0WKFIncAp2AWZiAD4aQ+KD4wWJuAneFWJWQRYNCM+4kMSfA2t1gGAeLJlh/D+368Prv/ADFnz8Q2+/4Y8S16kjwyyq8f3OM8Z7Tiy4TAREQgchGQGtC2J4oBXqK1L448pcfavfyR9mT8yCBHjaGai0CIiAC4ZkAK6fT603PM4ujsUgZPc1eXl44fPiwyZdmFfMYMWIYxyZDy62QcorjYcOGmQhjFkLj9cz/Zh+WsSDal19+aZyalrM0rAKd7RkqTs8yx8SNBG4eUOMF93TPnDnTVHHn+EuVKmXuSw83i7LZ7YP3C4sHne3ppWdleWpO5vHTQcxNCUYgkBHnzirtzItnITsKdHrdWfju+PHjSJw4sRkvr4/UHnTr4bOkPc8vZ2VBGj3eTMr38fGx9ftCIcudFz5YGvMYCZv9vGpjKAc9/XyY3L3iB5EfuODGDyIrGtK4m8RcCOZguDLOK8H8Qdh25yJG3qiGmL9sRo3rw03+OfPQZSIgAiIQGQlE5DXB2fNgRV16OLjQ85SR4cOHm4U+uDGHjy8JzPGjZ4MvXaGdY0uBnjK1Lw7/5YeaPfzhd1oCPTL+TmhOIiACIvA8BCyBTk91SLZo0SLw5KyIlgr8PDx0zdMEnJ6D/rIgvSmBztANhuYzDIIvW1999ZV5mWLohqOxOAFftNiOu1v8BeD5gaHtvnBeiRYMxtbb/2LUrWrw/nk36l3rZyq4s5K7TAREQARE4FkCb2pNcPYsrOq7/L5nGB0L8mzevBkMFXQ0bkoULVoU9CykSZPGVKHt06dPqMeMGoGexheHT/uheld/VDj7n0BfOH0FHh3cg1g9R8M7W159TERABERABNyQQHAvc3AE3BBm2Da96jxmjNauXTscOXLkqaZcv3hWuCxyEYiUAn3ChAlg2Ak/yLRDhw6hc+fO5qxBR1u7dq156Ro7dqz5Mc/pY348PSWujC+Zby0YjC0U6Hc+wKOfjuDjq13NGeg8C10mAiIgAiIQvgU6i5Sy+I4VQcWwP+avMaQwduzYQYNn7iCjsFihl1FYLNzDXDweX+PKKNBTpfXFoVN+qNrZH5X/lkDX74QIiIAIiMB/BFwJdFZUZ1FtCnTmjsvcj8ArF+ijRo0KyjlnIj+9FcxjdzTu/rxMY+VE7jbxTEIaCw7w7wzXdzQrl+Gdd94xofvffvutyYHImDFjqAI9yYIh2HT7H4y+VxW3p53DZ1e+hHeO/IjVPWJVpH+Z3NWXCIiACLgiwM3NN7EmOBvTvHnzjMec3/mW1ahRw9RY4XrgaAMGDDDntDL3jWlRrKxbqVIllw+bAj11Wl8cPOWHwT19kOjUd6b9zQUH5EHXr4kIiIAIiIAIiECIBF6pQOdRanZs3bp1dprZbsNjC1gRkWcAWsYXw6NHj5pid47G3A6+kNF7Qq8Iy/yzUINlLIwU3LiblWzhUGy4dQHfPqiKyz9eQuvLzeH1v2yI3f/p8Ejbg1ZDERABEYjkBN7UmuAMK4uW8vgZ1iexrH79+qYibPATSk6ePIkmTZrA09MTyZMnN5sMVm0VXstcdlbydTRGbGXMXB4HT/phQDcfJDkjgR7JP96angiIgAiIgAi8FAK2BDqr/rH8Pkvz07vMM9LDs3Xt2tWU5K9Vq5YZJkMU+cLleKA9f84QxdGjR5vKitGiRUP//v3BfEN6SywbMmTIM1PlWYHJFw7Fegr0R1VwfuodtL/UCB5x45sq7lGKh17hPjzz09hEQAREwBWBiLYmOJvL/Pnzwc1hFoazjJu0zC/n+mEZz1XlWsKjcHiky2+//WbOo6UHntVmaSx+ylQqR2Nl2azZK2P/CT/07eKD5Ock0PVbJQIiIAIiIAIiEDoBlwKd58qxwNrOnTtNcRx6n0+fPm1eXlhQzdGDEPqtXl+LyZMnmyPhmHdOo3eDop0vUY7GwgusLM9wRRpD3inkedyBK6M3PuWiYVh78zzGBLyPU1OBrhdrm0s8EiVB3LFzXt9kdScREAEReE0EIuqa4AzPgQMHzLpg1SZ59OgRChYsaM6gjRcvXtAlXDe4meu4WcvjX+h5d7VZzRD3tBl8sf+4H3p19EaqC+NMnwpxf00fVt1GBERABERABCIoAZcCnWfvUZTTo2CdXU5vNM/4Y0g4w/zCo507dw716tXD9OnTg6q4W4fZ02PCXMK6desazzlf0vjixbD2pUuXmvP+GPoYmkBPtWgY1lCgB76PA1Nj48O4vyLrmZnAvbuIO2E+POL9d7ScTAREQAQiC4GIuiY44881zM/Pz6xnPHeWVdxZIG7atGlmfaMA51msDF1n2hQLilK48yxYri8sKupYTC74PSjQ02X0xb5jfujezhtpL0qgR5bfA81DBERABERABF4lAZcCnUeTLVu2DEmSJHlqDPRO88WGx5SFV1u4cKEp/sNjCpj3yLB1hiMyNJFHFLBSOz3mrOLLQkGszst5cjMibdq0oQr0NIuGY9XNvzHWozJ2Tk2Cgnk9Ue/UF3h0cDdidhwMn3zvhlc0GpcIiIAIPBeBiLwmOJswQ/VZd4SbthkyZDDrQqpUqUxhUdYxYTQWI6Yo2n/++WeT5sV0KAr20PLpKdDT/88Xe4/6oUtbb2S49J9Av3siCu7N/gHRajRGtFpNnus56CIREAEREAEREIHIS8ClQGcl2zVr1iBhwoRPEfD390fZsmXDtUB/lY+ML2zpFn+NFTfO4TvvytgxOQny5/ZAQ+/xuL9gOqLVaIRotZq+yiGobxEQARF47QS0JthHToGe4X+++POoHzq28UamqxLo9umppQiIgAiIgAi4LwGXAr158+ZGnDMEMGrUqIYSPdI8Ku3u3bvPFeJ+8eJF44UI7pWPSI+AAj394q+x3EGg58nhgWZZ1+H2yJ7wzl0Ysbq4Pks9Is1XYxUBERABEtCaYP9zQIGeMZMv9hzxQ7uW3shyQwLdPj21FAEREAEREAH3JeBSoDP3rkWLFibnLn369EZYnzhxwvz/hAkTbBeJYz4fQ8t5zY0bNwxt5rQ3bdoUn332mQkvj0hGgZ5x8QgsvXEW46JWwvaJSZEzmwdaVvwbN778EJ7JUiHOqOkRaUoaqwiIgAiESkBrQqiIgho4CvQvm3sj+20JdPv01FIEREAEREAE3JdAqMesUZRv377dCHNWuc2cOTPy589vzoO1ayNGjMCqVavAqunZs2c3l/HIM+Z/lyxZ0lSKj0hGgf6/xSOx5MYZjIteEdvHJ0P2LB5oU/sarn9aFR7xEyHu+LkRaUoaqwiIgAjYIqA1wRYmUKBnetsXuw75oXUzb+S6J4Fuj5xaiYAIiIAIiIB7E3Ap0JcvX25yzYMbC+iw2m3FihVt0StSpAimTJlixL2jsVhb48aNTZG2iGQU6JmXjMKi639hfIwK2DYuObJk8sBXje/jWqNyQIyYiDdlWUSaksYqAiIgAqES0JoQKqKgBo4C/fMm3sj7UALdPj21FAEREAEREAH3JeBSoBcoUMB4z4MbPems5ksvuB3jWbHbtm0LOqrNuubmzZugeLfbj517vY42FOhZlozCAgr0WBWwbWxyZM7ogfatvHGtVlEzhHgzN76OoegeIiACIvDaCGhNsI+aAj1zFl/sPOiHzxp5oUDAeHOxqrjbZ6iWIiACIiACIuCOBJwK9KNHjxoWderUwYwZM57i8vjxY6xdu9acCcsK73asevXqqFWrFmrXrv1Ucx5bs2DBgmfuYafPN9mGAj3rktGYf/00JsQujz/GpEDGdB7o9IU3rtUvBTx4gHg/rQaiRHmTw9S9RUAEROClENCaEHaMFOhvZ/XFjgN++KSBFwrjP4H+MFoh3OrdGt5ZcyNWr2/D3rGuEAEREAEREAERiNQEnAr0Tp06YdOmTWBBIJ4d7mjMPU+ZMiW6du2KokX/8xaHZvTCN2vWDHnz5gW96cxhPHjwIPbs2YOpU6ciR44coXURrv6dAj370m8w99opjI/rh23fpES6NB7o2tYb15tURODN64g7aRE8YscNV+PWYERABETgeQhoTQg7NQr0LNl8sX2/Hz7+0Avvekmgh52irhABERABERAB9yMQYoj7gwcPUKNGDcyfP/+lULl06RKmT5/+VLE5etUj4nFrFOg5ln6D36+dwsR4ftg6OiXSpPJA93beuPF5DQT4/4M4Y2bD862kL4WdOhEBERCBN01Aa0LYngAFetbsvti2zw8N63ihcvQfcP3xA/hHywfv3m3lQQ8bTrUWAREQAREQAbch4DIHnbnm3t7ebgPD7kQp0HMt/RZzrp3ExATlsHVkKqRM7oFeHb1xo+1HCDh3CnG+ngbPlOnsdql2IiACIhDuCWhNsP+IHAX6hzW90PutBVh36zxWRsmKfH27SqDbR6mWIiACIiACIuBWBEI9Zu1FaOzatQvx48dHunRPhOrly5cxatQoXLhwAaVKlULdunVf5BZv5FoK9DzLxmDW1ROYmLActo5IhWRJgL5dfHCzSzM8Pn4QsQdMgFfGrG9kfLqpCIiACIRHApF1TXDGmgI9Ww5f/LHXD3WqeaFfUgn08PiZ1JhEQAREQATCF4HChQtj8eLFSJAgQfga2GsczSsV6B9++CGqVKliCsRZxsJzsWPHNmep//TTT2jevDnq1av3Gqf84reiQM+7bAxmXj2B7xOVxZavUyPJW0D/bj641ac1Hu3fhVg9RsE7e74Xv5l6EAEREIFIQiCyrgkhCfTsOX2x9U8/1KzihYEpJNAjycdY0xABERCB5yJw4MABjBw5EhMnTnyu60O6iCloW7ZsQYkSJV5qvy/SWUjHstrp800L9A0bNhidGj16dDvDfSVtXqlA5+R++eUXZMqUyQz+jz/+QO/evbFw4UKw2Nz69esxePBgLFq06JVM7lV1SoGef9lYzLh6HBMTl8HWYWmQKCEwqIcPbg/phIc7NiJmh0HwyW+viN6rGqf6FQEREIHwRCCyrgkhCfScuXyxeY8fqlXywpDUEujh6bOosYiACIjA6yZw9+5dHDlyxBxV/TKNp2vxT69evV5mt8/d140bN/DRRx9h3rx5z9XHmxToLGRes2ZNTJgw4Y168EMV6Pfv3zfV1lnRnd5wGndqaMErvAd/CqzOvmTJElP1ndamTRsQuhXW7u/vb8Lc9+3b91wP8E1dRIFeYPlYTL9yHN8nKYMtQ9MgQXxgSC8f3B7VCw83rUTM1j3hU7TMmxqi7isCIiACr4SA1gR7WBninjO3Lzbv9kOVCl4YnvY/gb4mUxXkbvJfVFm8mRvtdaZWIiACIiAC4ZIAo4GnTZtmtBEjhCnskiZNipMnT6JHjx6mOHbUqFExZcoUXLt2DUOHDgWPmaa2GjduHGLFioV///0Xt27dQtu2bVGsWDEMGDAAceLEQcuWLc2cecQ1f/7bb7+Zvh2Ngr9Vq1a4fv06kiVLhiZNmiBVqlSmMDf/zrF17NjRXMf/d/Te8zQuFgNnKHnx4sXRuHFjbNy4ESzszZO3evbsaW5F0Tp+/HhzxPbt27dRuXJldOvWzcyhb9++uHr1qnG8cr6FChUyY9i9ezeol/j3zp074/Tp0+jSpYuZa4oUKYyDluOjzZo1y7CgrixfvjzmzJmD33//PUSBzLFwE+Cvv/4yTO/cuWMcwNapYM7ulTBhQjOWzZs3G8/4tm3bwKg+nlqWOHFiHDt2zOhUcv7xxx+RMWNGxI0b10R789n06dMHPJWM82Q0+CeffGLGHtpYnvdD61KgHz9+HE2bNjUTJ4jDhw+b+/BsdLr/x4wZ4/K+VatWNbsQBMBj1Ro2bGh2eGLGjGmuO3PmjBH9fIgRycwHbvl3+PnKMXyfrDS2DE6LOLGBr/v54M74wXiwagFifNoRUXwrR6RpaawiIAIi4JKA1gT7HxAK9Fy5fbFptx8qlfPEyAwLJdDt41NLERABEXBKYPbVE9h/98prp1MzQQZki/Z0TvTNmzdRoUIFrFy50ojwc+fOGackBXXFihWN4KPgpICl2Nu7d+9TAp0pwHPnzjVHUJ89e9akBC9btszU6aLoZpg4jeHr33zzjYlKdmYUztRZlgedwpkCskGDBiaVmAW/GbXsSqBny5bNjJfHYnP81G88YrVgwYJGxFOofv/992YTgvOhqKfYvnfvHtKkSYN169Zh0KBBxjFL4fzZZ5+Z/6cFBASgUqVKZqOAYfgU5Py3yZMnmw0MetutzYcffvjBbFAw6jqkHHSKYo5nwYIFiBcvHlatWgVex5+5uhfv06JFCxQpUsQ8B2pZ/oxzJVu+43CTwXHjguPnxgKfX4cOHcwGxccff2w2M/hsXY3lRT6kLgV6/fr1DUg+ZD445k5YwpqTITxXRmCtW7c2Ozn80HL3oVq1akGXrF69GsOHD4+QIe5Flo/DtCtH8X0KX2wZmA6xYgIjB/jg7pTRuL94JqI3bI2oFZ/k3r/IQ9K1IiACIhAeCGhNsP8UKNBz5/HFxl1+KF/aE99kkkC3T08tRUAERMA5gTonV+DXq8dfO54Z6cugdvyMT92XQrZMmTJG1FLfWJHFFMsUc0zpdTQKZ0cPOoUfi6FZRjH9wQcfoGzZssaB2a9fP+MVpreaOiykwtrOBDoFuht7gQAAIABJREFUPkW5h4eH6d6OQKdgtUQxhSrvTb1Hsc35cVwh2cOHD1GgQAHjVQ8u0MmDYt86upsnwuTMmRN//vmniSyg0OccaYxE4H25KeFKoHMTw9qQoMef3Dh+V/eimGY0ANlww4C8uVHw7bff4ssvv4Sfnx/KlSv3jEDPkyeP2YBgVAONmyj08NPrzz5DGsuLfEhdCnTC27p1K2LEiPGUQL9y5YoZPCGEZqdOnTLCPkuWLMiQIcNTzQmS+RiuHnho/b+Jf6cH/Z0V4/Dj5aOYlMIXmwemQ4zowOhBPrg3YyLu/TYV0ep8gmjVGr6J4emeIiACIvBKCGhNsI/VCPS8vti40w9lS3pibBYJdPv01FIEREAEnBMITx50jvDvv/82EcUMDadXlX/WrFljvLmTJk1yKdAHDhyIX3/9NahN165djd5i8eypU6ca5yaFLcPPKfZ5MpYzcybQhwwZ8pTH3ZlAf/fdd40XmkKY992/f3+QoKf4ZQ0xjoXil3/PlSvXU7enRmQ4OL3otB07dpgogeACnTzonXcMz2dIPudErzzDz7nJYRmFPkWwK4HOe7JPGnUpIxk4Hlf3Yuj72LFjjYf+888/NxHhJUuWNOKbKdfMmSdjRw86w9uZnk02lnETgiH1FOkU6CGN5UV+h10KdH4guDvA0AtHDzrDMfjzpUuXvsi9I+y1FOhFV4zHlMtH8H2qUtjSPz2iRgXGDPHBvbnTcO+X8YhatT6i1/ssws5RAxcBERCB4AS0Jtj/TFCg58nniw07/OBb3BPjs0ug26enliIgAiIQsQiwrhYjjikaEyVKZMKiKX4dLbgHnTnnjCa2jOKeXnI6Lik6q1evbrzo9DK7qvzOkHE6Qx1D3C1PvdU3c60ZUm5tGtCTnD17duN1tgS6FSnNaxwFOufF8HtGC1jG3O/SpUubvPT06dOb0G+GjlOgM4X5008/DQpxp0O3e/fuJrc8uHFe9IAzT53GqASOi+N1JdBZD4dR2sEFuqt70TvPyHDm9pMvPemMDqDXnFysiAfmoVOs8/7kxKJ+3OBgmDstuAc9pLG8yCfYpUBnPD4fJidAcNx14O4Id3X4gbGKxr3IACLitRToxVZMwA+XD+P7VCWxpX8GRPEBxg7zwf2lc3B38ghE9auO6B9/GRGnpzGLgAiIgFMCWhPsfzAo0PPm88X6HX54711PfJ9LAt0+PbUUAREQgfBPgFHALKKdLl06k/tMwcgCar6+vkb00ftNUUsvLEPNWYjMMcSd4ePfffedEboU76z7RcFuhVIzBJt57mznSnOtWLHCeOypz2iOGwEWRea4syYY2zJfnmKUYd1WrrejIza4QJ89e7YR1xTTLGrHOTOkvUaNGsZjzUhrFsdjJAHD1ukdp0eaopZ1xyi6OX56rZm3TdHLCGsKezJhTjfvkSRJEjMPeqdDy0EPSRS7uhfnxZxzjq9///4mlJ7F9HhPbi5YYfZ8hiyQx5NnaNxs4bypha0cdNZVY50BetBfu0DnoOj2p0hn4jwnzap23BXh7oK7GgV6iZUTMOnSYUxKUxKb+/4Xuv/9KB88WLMId74biCjvVUCMFl3cFZHmLQIiEEkJaE2w92Ap0PPl98W67X4oVsQTP+R5VqDH/WEJPGLGttehWomACIiACIQrAiygTa83PcAsxEZtRE+xl5eXKaxNkcdwbwpYemgpDB0F+rBhw0wl8127dpnrKRAd9RWLz1FEM3TbKrDtDAA9w/RyM4SbIpih6cE96LyOAprRz/TwM/WYYfn0zofmQefmw6hRo0xBO4ZzU2xTtDJEn0dlM0SdHnaGjFtRAwyxZ845PdYUw/Sq0ytPLuyPGxgU4jR64RmZTW4U9pwvi749jwed/bm6FxmwWB5z3LlpwvxxRgfSCW1FCJARx0yPOTcyuMHCsfOaaNGimbkyJJ/XvzGBHq5+E8LJYCjQS66ciImXDmFimvewte9/RSMo0B9uWY3bI3rAp3BJxGzbN5yMWMMQAREQARF4nQQo0PMXKI2128rhnYKe+DH/E4Gef/gAPDq4B7F6joZ3tryvc1i6lwiIgAiIQDggQC83BTq9tyEZxS893iNHjgwHI9YQXicBlyHuDNXgWXbBiwJwB4GJ8dwdsWMMzWB+RHBjaEjt2rWDqvrZ6Ss8tKFAL7Xye0y4dBAT0pTAH33/FyTQH+3agluD2sM7T2HE6jwsPAxXYxABERCBl0JAa4J9jBToBQqWxpo/yqFQPk/8XEgC3T49tRQBERCByE3AWRi644zpqeZ52/SqW6HW7dq1A889dzR6f9u3bx8pYbnbfB0fokuBTmHORHjHqnu8mIUQWMDA7vnlrMbHw92DG/thngYLCkQko0AvvWoSxvkfwLjUxbG9X6YnAv3gHtzq1RLeWXIhVm/X58RHpDlrrCIgAiKgNcH+Z8AI9EKlsWZrOeTP7YEZ7ywKOgddHnT7HNVSBERABCIjAVcCnaHjPH6NAp0h6zL3IxDqMWuMvU+dOvVTZM6fP29yB/bt2+eSGIvLsRAACx4wp8DRmM/O6/PmzYvRo0dHKPIU6GVWTcJ3/gfwXeri+HNwJjx8+F+I++OTR3CzUxN4pcuE2IMnR6h5abAiIAIi4IoAj1nTmmDvM0KBXqhQaazaWg55cnhge+n1mHr5CH5IWxI1vvlWIe72MKqVCIiACIiACLgdAZcCnaXnWZSAFdujR49u4LBSHYseXL582WXJf7alkF+7di0GDx6MFi1aPAXX09MTKVOmNAn5LIwQkYwCvdyqyRjjvx9jUhfDgSGZcf8BMHaoD7yv/I0brWvDM1kqxBk1PSJNS2MVAREQAZcEtCbY/4AYgV64NFZtKYccWT1wtfJu9L6wAz2T5Ue7CVMl0O2jVEsREAEREAERcCsCLgU6BTaFNavhZciQwVSrO3HihKk4yGp3wT3rIZFjaX6e5RdZjALdb9VkfOu/H9+kKoojX7+Nu3eBbwb7INq9K7je7H14xE+EuOPnRpYpax4iIAIiYDZdtSbY+yBQoBcuUhorN5dD1sweuFFVAt0eObUSAREQAREQAfcm4FKgEw1D1Jk/fvLkSVMWn2f9FSpUCPSA2zVemyJFCnPuHo0l7XkAPH9WqVIlI/wjklGgV1j9A0Zf3IfRqYri+Ii3cfsOMGqgD2J63cO1j0oD0WIg3o/LI9K0NFYREAERCJWA1oRQEZkGFOhF3imNFZvKIfP/PHC72hOB3v6nOXi4YyNithsAn4LF7XWoViIgAiIgAiIgAm5BIFSB/jIoWOfFlS5d2pyfx0PqeUbfuXPnTC47KwNHJKNAr7R6CkZe3IuRqd7F6VFZcPMWMKK/D2LHAq7VKmqmE2/mxog0LY1VBERABF4Lgci2JjiDRoH+zrulsXxjOWRM74F7NZ8I9E4b9+Le7B8QrUZjRKvV5LUw101EQAREQAREQAQiBoFQBTqrDB44cMAc0h7cPv30U1uzzJ07N9atW2cOfP/ll1+wZMkSc0g8BXq9evWwfv16W/2El0YU6JVXT8GIi3sxItW7OPtNFly/AQzv64O4cYBrDcsCd+8g3o8rgGj/5e7LREAERCAyENCaYO8pUqC/+25pLNtYDunSeOBhHQl0e+TUSgREQAREQATcm4BLgT5+/HiMGzfOVFq3isQ54vr2229t0cuTJw82bdpk+qhQoQK6dOmCYsWK4eHDh6B45wZARDIK9CprpmL4v39ieMp3cGFsVly9Bgzt7YP48YDrn1VF4JVLiDthHjziJYxIU9NYRUAERCBEAloT7H84jEAvWhrLNpRD6pQeCPhQAt0+PbUUAREQAREQAfcl4FKgv/fee/jpp59MtfUXMXra2QdzF7dt24YFCxYEFZxr1KgRNmzY8CLdv/ZrKdCrrvkRw/7dg6Epi+DSuGy4dAUY3NMHCRMAN76oh4DzZxBn9Ax4Jn0xdq99crqhCIiACIRAQGuC/Y8GBXrRYqWxdH05pEjmAY8GEuj26amlCIiACIiACLgvAZcCvWTJklizZs0L0/n3338xcOBAU2Suffv2SJUqlelz8eLFOH369DNHsL3wDV9xBxTo1db8iCH/7sGQlEVwdUI2XLwEDOzhg7cSAjc7NcXjk4fNOeg8D10mAiIgApGBgNYE+0+RAr1YsdJYsr4ckiYGvBvvCTpmTTno9jmqpQiIgAiIgAi4GwGXAr1+/fro27evqdwue0KAAr3G2mkY9M9uDEpRGDcnZcc/F4H+XX2QJDFwq1crPDq4G7F6j4F3llxCJwIiIAKRgoDWBPuPkQK9eInSWLy2nNm4jdpUAt0+PbUUAREQAREQAfcl4FKg//bbb/j6669Ro0YNc+Z5lChRniLFI9LsGD3nv/76KxYuXAh601euXGku27hxI27fvm0qub9s49nrI0eOxIMHD1CmTBn07t0bXl5ez9zmzp07GDp0qBkTj47r1q2bae/KKNBrrv0JA//ZhQEpCuHuDzlx/p9A9O3ig2RJgNuDO+Lhzk2I1WkovPMWedlTU38iIAIi8EYIROQ1wRmwvXv3olOnTvD398fbb7+N4cOHI3HixE7ZTp06FT///DPu379vaql07NjR5TOgQC9RojQWrS2HBPGBGM2eCPTOu0/h7tTRiFqhJqI3avNGnqVuKgIiIAIiIAIiED4JuBToVatWdTnquXPn2poVi8lRnNP7MmDAABw8eNBct2PHDvTo0cOEur9MO3XqFBo0aIAZM2aYl62vvvrKFKP7+OOPn7nNZ599hixZspgwex8fH1vDoECvvfYn9P9nF/qnKIQHU3Pi3PlA9OrojZTJPXB7VC883LQSMb/oA593StnqU41EQAREILwTiKhrgjOujx8/NpuxvXr1QvHixUEBvnnzZrAQXnCbPHkytm7dikGDBiFBggS2HhMF+nvvlcbCNeXM6R6xmz8R6N2ueuFW79bwzpobsXrZK7Zq66ZqJAIiIAIiIAIiEOEJhHrM2suYISu28+Unffr0yJYtW1DV9qtXr5pq7vv3738ZtwnqY8KECbhx4wbatWtnfnbo0CF07twZwTcUDh8+jK5du4Le9rAYBXqddT+j34Wd6Ju8IAJ+yoUz5wLRo4M3UqfwwJ0JQ/Bg5XzE+KwTopSyF2UQlvurrQiIgAhEZAKve01wxurPP/9Ev379MGvWLPPPjPQqUqSIiaaKHTt20CUU8qVKlTLrR/z48W1jp0AvWbI0Fqwuh1gxgXgtJdBtw1NDERABERABEXBjAq9FoGfPnt14H2LFivWUQD9+/Dhq1aqFXbt2vdRHwGPc8ufPj2rVqpl+GZLIv+/bt++p+/z444/Gm88z3k+cOIG0adOiZ8+eSJo0qcvxUKDXW/cL+lzYgT7JC8Dzl9w4dSYQ3b7yRtrUHrj747e4v3AGojdsjagVa73UuakzERABEYjoBF73muCM17x584zHfPDgwUH/zHQuRnXlzJkz6GdHjhwx4ewU7+vWrTPincVOuaa4MiPQS5XGglXlED0akLCNBHpE/9xq/CIgAiIgAiLwOgi4FOgnT5401dePHj1qRK6jMZ+bZ5vbsU8++cS88LRq1SpIoF+7dg1t27ZF3LhxMWLECDvd2G7DfkuXLm3yBC2jqOY8PDw8gn7G3HOG13/33Xcm/5BHyq1evRoMZ7Ts888/f+a+y5cvR/3109Hr/Hb0Sl4APjNy4+TpQHRp6430aTxwb+Yk3Jv9A6LVbopo1RvZHrcaioAIiEB4JhBR1wRnTFkXhRu0rE9iGdOwWrZsicKFCwf9bP369SYFiusF66XwGqZGcR2IESOGacc1Y+fOnU/dhmvm+1WqYv7KcojiAyRuK4Eenj/bGpsIiIAIiIAIhBcCLgV6nTp1YM78rlrVeBCYP8787ilTpphiOlmzZrU1jwsXLhhxzpD2s2fPgt4Tes8piseOHYtEiRLZ6sduI4at58qVy3jnafSQ84UreCg9C+CxMBw9HTSGMtIrQo++JeQp6oNbxYoV8dH66eh5fjt6JMuPGLPy4NjJQHRq442M6T1wf8F03J02BlHfr4fo9VvYHbbaiYAIiEC4JhBR1wRnUOfPn2884lzLLKtSpQr69Olj1g/LuBHNOirTp08P+tlHH30UVNuEP+Qad/Pmzadu88033xhBP3fFf0VQK/U+hw9OLEWVeGkx+14S5aCH60+6BicCIiACIiACb46AS4GeI0cObN++HdGiRQMrtrPQG40CdsiQIaYIW1iMHgYKcwrhjBkzomDBgmG53HZbejNYLZ555zRW6qVoX7BgwVN9MPfQykPkP7DiO8MYg3tCgt+YmxYN189A9/Pb0D1ZPsSekxdHjgeiQ2tvZMrggQcr5uLOxGGIWvYDRG/6le1xq6EIiIAIhGcCEXVNcMb0wIEDZl2wapM8evTIrEmMoooXL17QJWfOnEGTJk2wYsWKoJ/Vrl3bpEO52qTmxi8juSyBXr+fP0oenYcSsZJj5aNUEujh+YOusYmACIiACIjAGyTgUqBTrC5atMhUraVngR4EhvRRyObJkyeo2FtYxx8YGAj+off6Vdi5c+dQr149M16rinumTJlM6CI9JufPn0fdunVx/fp1+Pn5YdKkSeZFi9V7+dI2evRol8OiQG+0fga6nd+GrknzIv7cfDh0NBBffe6NLJk88GDjctwZ3QdRipdDjJbdX8UU1acIiIAIvHYCEXVNcAaKReH4/d+9e3dTrJSFTFkgbtq0aaZgHEPfGfnFCC9GDnzwwQegMOcGNdOoGOIe/OhRx/u4EuirombFzQ6N4ZU2I2IPmfLan6NuKAIiIAIiIAIiEH4JuBTofAkpUaKEEefWOeKNGjUyHga+zKxatcrlzCjkmd997Ngx40lgqDxFMMPaKdCt88lZPO5lG739LP5z7949MweG5/NlauLEiWDRn2HDhplbMr+QlXx5HjtD7/v37x9qyD0F+scbfkWXv/9Al6R5kWh+Phw4HIi2LbyRNbMHHu7YiNtDOsGnYHHEbDfgZU9N/YmACIjAGyEQkdcEZ8B4kkeHDh3Mpm2GDBnMupAqVSpTc4VrFqOx+H1PLzrb8b/c9OV66BgG76xvS6AvXlsODx4CdXv7o/SJ/zzoazNXwbVaRc1l8WZufCPPUjcVAREQAREQAREInwRcCvQrV66YirU8H5wh482aNTMFchj+xxcZCl9XxpeYNWvWmGJtFMI1a9Y0Xm0r9JxFd5gb3q1bt/BJJ4RR8YWt6YaZ6PT3VnRKmgdJF+bHvoOBaPOpN3Jk9cCj/btwq09reOfIj1jdR0aouWmwIiACIhASAa0J9j8blkBftqEc7t4DavX0R7lTEuj2CaqlCIiACIiACLgngTAfs8ZCOPR4O1ZDDwnde++9Z6rAMyySRXTokWCxnZIlS5pLduzYYQrtMOw8IhkF+icbZqLj31vRIUlupFxSAH/uD0SrZt7Ilc0Dj08cxs3OTeGVMStiD5gQkaamsYqACIhAmAhoTXCOyxLoKzeXw63bQI3u/ij/lwR6mD5caiwCIiACIiACbkjApUCnx5uF1ILb3bt3TS4eq+C6sixZspij2JjDTmNIIAu1pU6d2vydOeAFChQwx59FJKNA/3TjLLQ/twXtk+RGmmUFsHtvID5v4o08OT0QcO4UbrT9CJ6p0yPOsB8j0tQ0VhEQAREIkYDWBPsfDkugr/mjHK7fAKp19UfFsxLo9gmqpQiIgAiIgAi4JwGXAp3imVXcg5u/vz98fX1NdXRXRiG7Z88exIwZ0zRjfxToSZMmNX9n3nfu3LlNjnpEMs7rs42z0O7cFnyVJBcyriiIHXsC0fxjb+TL5YGAf/7Gjda14ZksFeKMenI0T0Sao8YqAiIgAsEJaE2w/5mwBPr6HeVw5SpQtZM/Kp+XQLdPUC1FQAREQAREwD0JOBXorFzLIm4sBleqVKmnyPCItH379iFv3ry2qp2zIFzUqFFNH23atEGvXr0QP35883cW4mnRokWEFOgtNs5G23Ob8WXinMi8ujC27wrApw29UCCvJwIvX8T15tXgmSgJ4oyd456fLM1aBEQg0hDQmhD2R2kJ9I27yuHSZaByB39U/UcCPewkdYUIiIAIiIAIuBcBpwKdFW3Xrl1rqqBTQDsaj0ZLmTKlqcDu7e3tklZoReSsiyNiDnrLTXPwxdlN+CJxTmRbWxhbdwTgkwZeKJTPE4E3ruF600rwiJcAcSe4TgNwr4+bZisCIhARCWhNCPtTswT6lj/L4d+LQMV2/qh20UGgNyoH3LmNON/OgmfiZGG/ga4QAREQAREQARGIlARchrjPmTMH1atXj5QTf5FJMcS91abf0ObsRrROnAO51hfB5m0B+PhDL7xT0NO8dF1rVA4eMWMj7g9LXuRWulYEREAEwg0BrQn2H4Ul0Lft98P5C4Eo39YfNS49Eei3erXEo4N7EKvnaHhny2u/Y7UUAREQAREQARGI1ARcCvTly5cjc+bMSJMmjYGwYcMGcy5sihQp0L59e8SNGzdSwwlpchTobTb9hlZnN6JV4hzIu7EINm4NQKN6XihayNNcZs64jRIV8X5yfVa8WwLUpEVABCIkAa0J9h+bJdB3HfTDmb8DUfYLf9S+IoFun6BaioAIiIAIiIB7EnAp0MuXL49+/fohX758uHjxIsqVKwfmIvIsdOaoDx8+3C2pUaB/sfl3tDyzAZ+/lR0Ft7yD9ZsD0KC2F4q/4yDQAcSbudEtGWnSIiACkY+A1gT7z9QS6H8e8cOpM4Eo3dofda9JoNsnqJYiIAIiIAIi4J4EXAr0bNmymbPKo0ePjq+//hqXLl3CgAEDzPFozEHftm2bW1KjQG+7eS5anFmP5m9lw7t/vIs1GwNQv5YX3ntXAt0tPxSatAi4AQGtCfYfsiXQ9x/3w/FTgSjZ0h/1b0ig2yeoliIgAiIgAiLgngRcCvTChQtj4cKFiBEjBkqWLIlp06YhU6ZMuHfvHvLnz4/9+/e7JTUK9Hab5+KzM+vx2VvZUGz7u1i9PgD1anihVLH/F+gNygL37iDetJVA1GhuyUmTFgERiFwEtCbYf56WQD90yg9HjgeiRHN/NLgtgW6foFqKgAiIgAiIgHsScCnQ+/bta45UCwgIQPLkyYOOVdu9ezc6deqEZcuWuSU1CvT2W+bh07/WoVmirCi1qyhWrA1AnWpeKF3iP4HOKu6s5h538hJ4xIrtlpw0aREQgchFQGuC/edpCfSjZ/xw8Egg2rbwRrZb40wHgfmaQ0Xi7LNUSxEQAREQARFwJwIuBfqjR48wa9YsI9Br1KgRdJ45Q9tv3br1zBnpIYE7e/asyVc/dOgQbt++/UyzjRsjVp42BXrHLfPxyV9r8UmiLCizpxiWrQ5ArapeKFvy/wX6Zx8g8Io/4k6YB494Cd3pM6W5ioAIRFICWhPsP1hLoJ/42w/7DgaizafeyHn3iUC/M6Y/HqxbghgtuiDKexXsd6yWIiACIiACIiACkZqAS4H+smZet25dpEuXzhSZixbt2XDvQoUKvaxbvZZ+KNA7bZmPpn+tRZNEb6P83uJYsjIANd73gp/vfwL9RqtaCPj3POKMmQ3Pt5K+lnHpJiIgAiIQEQhEtjXBGXNLoJ/+xw979gWiZVNv5HnwRKDfmzkJ92b/gGg1GiNarSYR4bFpjCIgAiIgAiIgAq+BgFOBvnLlSpNrvnfvXpdDqFSpkq0hFitWzBzRFlmMAr3L1gX4+PQaNE74NiofKI5FywNQrZIXKpT5f4Hetj4Czp1GnJG/wDN56sgydc1DBETADQloTQj7Q7cE+tmLftj5ZyCaf+yN/I8k0MNOUleIgAiIgAiIgHsRcCrQGzRogPfffx8//fSTSxpz5861RYue8/nz5weFyNu6KBw3okDvunUBGp9eg0YJM6PqoRJYsDQAVSp4oXK5/wT6zQ6N8fj0McQeOgVeaTKG49loaCIgAiLgmoDWhLB/QiyBfv5yeWzbFYBmDb1QKHC86Yg56PKgh52prhABERABERABdyDwWkLcmce+atUqNG3aFMmSJYOXl9dTbJMmjVgh4BTo3bcuRMPTq9EgYSbUOFIS8xY/RmU/T1Qp/9/cbnb9FI+PHUDsARPhlTGLO3yWNEcREAERsEUgsq0JziZtCfR/r5XHlu0BaFLfC+94SqDb+oCokQiIgAiIgAi4MQGXAp3F4VjYjUXeKKqZR54xY9i9wcuXL8eXX36JBw8eOEV97NixCPUIKNB7/rEIH51ahY8SZELtYyXx+6LHqFjWEx9U/E+gB1Xo7TMW3m/njFDz02BFQAREwBkBrQn2PxeWQL90szw2bg1Ao7peKOYjgW6foFqKgAiIgAiIgHsSCFGg//HHH+jSpQvOnDmDWLFiIUqUKLjyf+ydBZjUxRvHv9cNR4ekICiNhCDdHX9aRBpRurtLRBAQUAEpkfAApUUEJKWlGwSkS+K6/887xx63e3t7v73c3fvO8/Bwd7+Jdz4zuzPf38y8899/KFy4MKZPn45ixYppJlazZk307NkT9evXN+okzsXFRXNelhBRBPqEo9vQ4eZufJzxHXT4pybWbw5Hg9r2aNnktUCfMhBhZ4/Dc+wcOBYvawlm0wYSIAESSDABjgnmodMJ9OcBDbDvUAQ+aeOA6q4U6OZRZGwSIAESIAESSHsEjAr0K1euoGXLlupqtc8//xzZsmVTZB4+fIgFCxZg69at6kx57ty5NRGrWrUq9u/frymuNUQSgT7p6Ha0v7kLH2UsiE43a2HdpnDUq2mP1s2iBLr/l8MRevIQPEd8Bcf3K1pDtWgjCZAACRglwDHB/I6hE+ivghtgz/4ItG/pgFoebwR6yN7tCPh2GpyrNYB779HmF8AUJEACJEACJEACNknAqECXiYVsaZe7y42Ffv36IV26dJgyZYomKO3atcPcuXOjhb6mRBYcSQT65KO/4aObf6BdhoLodqcW1v4SjjogV/PSAAAgAElEQVTV7dH2f68F+tdjEXrkT3gMmQqn8tUsuDY0jQRIgARME+CYYH4P0Ql0/7AG+OPPCLRt7oC66d4I9LALf8NvYj84FikFzwnzzS+AKUiABEiABEiABGySgFGBXrFiRcyfPx9lypQxWuljx45h+PDh+PPPPzVBkRX32bNn43//+x9y5syptsvHDFqva9NUWApEEoE+9dhvaPvPH2iToQB63q2N1RvCUbOqvVolkRAwbxJCDuyER/8JcKpUOwWsYhEkQAIkkDwEOCaYz1Un0IMiGmDH7gi0auqABt4U6OaTZAoSIAESIAESSFsEjAp0uQP98OHDyJQpk1Eacha9cuXKuHjxoiZazZs3NxlP63VtmgpLgUgi0L84tgOt/9mJVhneRu8HdfCTTzhqVLbHx61fC/TvpyNkz1a49xoN5+oNUsAqFkECJEACyUOAY4L5XHUCPcyuAbbujEDzRg5okokC3XySTEECJEACJEACaYuAUYEuAvT06dPw8PAwSsPf3x+lSpWCtXlfT6qmFT7Tj/2OVv/8jpbeb6Pfozr48edwVP3QHh3bRgn0wB9mIXjnr3D/dCicazdLqqKZDwmQAAmkOAGOCeYj1wn0SMeG2PRb1DWczbMuUhnJPejc4m4+U6YgARIgARIggbRAIE6B3qVLFzg5ORllEBoaimXLliVIoD9+/BiRkZFWfR5dJqszju9Eixs78D/v/Bj0tC6Wrw5H5Qr26iodJdBXfIPgbT5w6zIALg1apYW+xDqSAAnYKAH5zuOYYF7j6gS6vUtD/LI1HA3r2KNlDgp08ygyNgmQAAmQAAmkPQJGBfqwYcM0kZgxY4ameHJ37uLFi7Fo0SK8evVKpZGr27p3747PPvtMOaSzpiCT1a+O78T/buxAc+/8GPqsLpauCseH5e3R9ePXAn319wje+BPcOvSCS9P21lQ92koCJEACegQ4JpjfIXQC3cm9YfQtHz3yLsfL8BA8L9UVnpcv0Emc+ViZggRIgARIgARsnkCc96AnZc3FQdzu3bsxZsyY6PvTz58/r7zA16hRA4MHD07K4pI9LxHos47/gWY3fkPT9Pkw6mU9LP4xHBXK2qP7J1ECPchnCYLWL4Nr2+5wbdk52W1iASRAAiRgLQRsbUwwxl0n0F29GqpbPmpXs8f3Rbdin999/FmoGaoG2uFVn9awz5Id6Rast5amo50kQAIkQAIkQALJTCBFBLp4AF6+fDkKFy6sVx25W1e2Tf7111/JXM2kzV4E+uwTu9Dk+nY0Tp8X417Vx8IV4Sj3vj16dnot0H9diaA1C+HaohNc2/VIWgOYGwmQAAlYMQFbGxNMCXT39A2xen04alSxx+LibwR6da+ceNGmskrq7XPQiluTppMACZAACZAACSQlgRQR6EWKFIFczSbb2mMGX19fyERNVtOtKYhAn3NiFxpf345G6fNion8DfLc0DGVL2eGzLo6qKsFb1yLwx/lqe7tsc2cgARIgARKIImBrY4Ipge6VsSFWvnYiurQUBTo/AyRAAiRAAiRAAqYJpIhAb9myJdq0aYO2bdvqWbNq1Sps2bIFa9eutap2EoH+zYndaHh9Gxqky4OpgQ2xYEkYSpewQ+9urwX6778gcMnXykGcOIpjIAESIAESiCJga2OCKYHunaWhciJa6QN7rChDgc7PAAmQAAmQAAmQgAUI9OPHj+PTTz/F+++/r1ZOxIu73KEuV7mtWLECxYsXt6p2EoE+7+RuNLi2DfXT5cb0kEaYtygMJYvZoW+PKIEud6AHfD9dXbEmV60xkAAJkAAJRBGwtTHBlEDPlK0hlvwU5aPkp/IU6PwMkAAJkAAJkAAJJFKgBwcH486dO/Dz84uVk9yFrjU8ffoUa9aswY0bNxAWFqbOo8uqerZs2bRmYTHxRKAvOLkH9a5tRd10uTAztDHmLgxD8SJ26N/ztUDf/zsC5k+Gc/UGcO812mJspyEkQAIkkBgCHBO00dM5icuWs2GUj5LS9lhTUV+g+w7tjPDb1+E5/hs4Fn1fW8aMRQIkQAIkQAIkYNMETG5x37t3r/KwHhISAldX11ggZBVES7h06RIKFiwY573qWvKwpDgi0L87+SfqXNuC2l65MCeiMWZ/F4ai79ph4OdRAj308B74zx4Hp0q14dF/giWZT1tIgARIIEEEbG1MOHv2LEaMGIEnT57g3XffxaxZs5A1a9Y42Ui8Bg0aYMKECWjcuLFJhjqBnjN3I3y7NAzvl7CDT+Vt0V7cxUmc34Q+CLt4mgI9Qb2RiUiABEiABEjANgmYFOgyERk4cCDq1q2bqNrLtvZdu3YhZ86cicrHnMQbNmzAnDlz1MuFOnXqYOLEiSbvWz9w4AC6du2qPMpnyZLFZFEi0L//+0/UvroFtbzewjw0wawFYXivkB0G934t0E8chP+MEXAqXw0eQ6aaYzrjkgAJkIBFErDmMcEQaHh4uBobRGxXrVpVHbeS7/+FCxfGyf6zzz6Dv7+/8qeiVaDnztcI8xaHoWRRO2yoRoFukR2bRpEACZAACZCABREwKdCrV68OWTFJbGjVqhV69uypJkMpEW7evImOHTsq53OyGiK7AGQ7vghwY0G270v8oKAgNUnTItAX/b0XNa9uRg2vnPjOvim+mheGwgXtMLRvlEAPO30UftMGw/H9ivAc8VVKVJtlkAAJkECyErDWMcEYlDNnzmDKlClYt26dehwREaFuFZGXyV5eXrGSbNy4ESdOnFC7yWQ80SrQ8xVohDnfh6HYe3bYWIMCPVk7KDMnARIgARIgARsgYFKgN2rUCD///HOs69HMrfetW7cwcuRItGjRAh988AHc3Nz0sohPEJtb3qJFi/Dq1SsMGTJEJZUt9lK+TLCMBXn24YcfQtItXbpUk0Bf/Pc+1Li6CdU8c+IHp6aYPjcM77xth+H9Xwv0C3/Db2I/2GfNCdfWXeBcrYG51WB8EiABErAoAtY6JhiDuGnTJrVi/uWXX0Y/lpfJ48aNQ4kSJfSSPH78GD169IDcPDJz5kyULVtWs0AvUKhR9A6rLbX1BXrAgqkI2fcb3Dr1g0ujNhbV1jSGBEiABEiABEggdQiYFOg7d+7ETz/9hM8//xx58uSBs7NzgoR1mTJllGCOK1y7di1Jaz9q1Cg1gZIXAhLEqZH8fu7cuVjl7Nu3T62gzJ8/X50t/PHHH/UE+tWrV2OlkUnqklP7UO3KJlT1zIFlLs0wbXYY3s5nh1EDowR6+NUL8B3TU/3s+F5JeE5ckKR1ZGYkQAIkkNIErHVMMMZJXj7LbSJy/EkXOnTogD59+qBChQp6SWQHWJcuXdTfZUu8oUC/d+9erDHu22+/Rb169VDovUaY8U0YChWww/Z6+gI9yGcJgtYvg2urLnBt0y2lm5PlkQAJkAAJkAAJWCABkwJdVhECAwMTLazlzJ6p4OHhkaRoBg0ahNq1a6Nhw4bR+cq5cRHbdnZ20X/z9fXFxx9/jOXLlyNjxoxGBXqvXr1i2fbHH39g2an9qHJlIyp7ZsdKt+aYMisM+fPYYfTgKIEe+d9TBPr8oK5bcyhYBF7TFiVpHZkZCZAACaQ0AWsdE4xx2rx5M+QFrTiG04VmzZph0qRJKFmyZPTfxJ/J+fPnMX78ePU3YwJdxpCTJ0/qFSNHpiS/94o2whdzol7g7mxIgZ7SfZblkQAJkAAJkIC1ETAp0BMrrH/44QfIioTOA/z169eRN2/eZPfmPnr0aDXBkmvcJMgZc1n5kElWzDB8+HDImUpZOZdgbAXdWIOK2F9+6gAqX/kVlTyyY7Vnc0z6Kgx5ctlh3NAogS4h/NY1+A7rAod8BeE1Y7m19Q3aSwIkQAJ6BKx1TDDWjBcuXICMFbqjT3L9Z/ny5bFnzx54e3tHJ5GV89OnT0f/LjuyHBwc1A6tmKvvhmXovLgXK9FIvcDNm9sOu5tQoPMjRQIkQAIkQAIkYJqASYGeWHgiZI8ePapWpyWULl0aW7ZsQa5cuRKbtcn0co780aNH6ty5BLlKRyZiUnbMULRoUb1t+zL5lNV8mXQ1bdo0zjKkXj+ePoAPL/+Kih7Z4JPuf5jwZRhy5bTDhOFvBHrEvdt4NfBj2L+VF+lmr0rWOjNzEiABErB0Aqk1JhjjIk7h6tevj7Fjx6JKlSrKQag4iFu5cqVyGCfjQN++fZE5c2a95MZW0I3lrxPoJUs3wsQZUePD3ub6Aj14mw8CV3yjfJS49x5t6c1H+0iABEiABEiABFKAQLwCXVYOxHmanBOPjIxU95l369YN5cqVi9e81JqM3b17F+3bt8eaNWuivbgXKlRInS2ULY3379/HRx99FMt+c1bQV54+iIqXf8EHHlnxi3cLjPsiDDmz22HSyBgC/fF9vOrTRjmKSzffJ15ejEACJEAClk7AGseEuJhevnwZw4YNU2NCgQIFlAO43LlzK78lckxKXvbKOBYzmCvQ3y/bSI0PObIBd9ofwIpnV7AsXw10zvQuwl47E3UsUgqeE+ZbetPTPhIgARIgARIggRQgYFKgb9++Xa0uyBVkstos57dlm7g4UpPzeKZWmcX21BLoUvbWrVuVd145B1itWjVMmzZNrZYvXrwYV65cURMxw2COQF91+hA+uLwB5d2zYnOmlhg9NRTZswJTRjtFZyvn0F9+1hx2GTMj/ffGPcinQBuzCBIgARJIEgLWPCYkCQAzMtGtoJf7oDFGTwlFtiyAU9fTmPjgBMbnKIsJOctRoJvBk1FJgARIgARIIK0QMCnQ69atq7aGi8CNGeRudBG84tHXVBCBfuDAAWTIkEFFk3Pg4nDnrbfe0kvm4uJiVbylXmvO/IVyl9ajrHsWbMvSCqMmhyJrZmDa2BgC3fclXnZrBDvPdEi/dLtV1ZHGkgAJkIAhAY4J2vuETqBX+LAxRkwMReaMgGsPCnTtBBmTBEiABEiABNImAZMC/b333sOJEyfUueyYQZyuiTMduaImPoGuBWtSX7OmpczExBGBvvbMXyh7aT3KuGfB79laYfjrCdj08W8EOoIC8aJjHcDVDd4//pGYIpmWBEiABFKdAMcE7U2gE+iVqjTG0HGhyJAe8PjMuECnI1HtXBmTBEiABEiABGydgEmBXqtWLUydOjXWnbAHDx7E5MmT8fvvv5vkI2fBtYTkdhqnxQZz4ohA9zlzGO9fWofSbpmxO2drDB0figzewFcTYwh0AC/aVFZZe/scNKcIxiUBEiABiyPAMUF7k+gEetVqjTFoTCjSeQHpeukLdMmNY4R2poxJAiRAAiRAAmmBgEmBvnbtWsyePVs5hStSpIhyEier5kuWLFFb3+WO17QYRKCvO3sYpS+uQ0m3TNiXqw0Gjw1F+nTArMkU6GmxT7DOJJAWCHBM0N7KOoFeo2Zj9B8ZCg93IENfCnTtBBmTBEiABEiABNImgXi9uP/5559KkN+4cQNyT2zhwoWVYK9Ro0baJPba+d2Gs0dQ8qIPSrhlwsE8bTBwdCi8PIHZUw0EeodaQEgwvH/aAzg7p1lmrDgJkIBtEOCYoK0ddQK9Tp3G6D0sFOJqJcsACnRt9BiLBEiABEiABNIugXgFetpFE3fNZQX9l7NHUOKiD4q5ZsSR/G2jV0jmfqEv0F92aYBIf1+kX74Ddu6exEkCJEACJJAGCOgEeuPGjdG9fygcHYHsgynQ00DTs4okQAIkQAIkkCgCRgX6kydPkD59erx8+dJk5lmyZElU4daaWAT6xnNHUezCzyjimgEnCrRD3+GhcHMF5n1pINA/bYrIF/8h/eItsEsf5c2egQRIgASsiQDHBPNby1CgSw65hscW6L5DOyP89nV4zVgGh3z6d66bXypTkAAJkAAJkAAJWDsBowL9ww8/RIcOHdT5c1NBq/d1uY98+PDhRrMKCQnBb7/9Bn9/f1SuXBl58uSxeKYi0DefO4YiF9biPVdvnHrnI/QeGgoXZ2DBV/oC/VWvloh4+gjpvt0A+8zZLL5uNJAESIAEDAlwTDC/T2gV6H4T+iDs4ml4jv8GjkXfN78gpiABEiABEiABErApAkYFulyj5u7ujsDAQJOVNbx+La7IImgnTpyIs2fPwsHBAbVr144+w967d2/cvHkT+fPnx/Hjx7F48WKULFnSoiFLfbacO473LqxBYRdvXC72UfQWxu9nGQj0Ae0Rcf9fpJu7BvY5clt0vWgcCZAACRgjwDHB/H5BgW4+M6YgARIgARIgARIATJ5B37lzJ+rWrRuLU3BwMHbt2oVGjRppYiiCtlChQqhfv76Kv337dnTs2BGtWrVCsWLFsG/fPmTPnh1btmzB1q1bsXDhQk35plYkqc+288dR+PwaFHJJjyvF2iuBLuGHufoC3XdIJ4T/ewPpZv4I+zxvp5bJLJcESIAEEk2AY4J2hDEFeq+hoQgJAbIPOY2pj09gfI6ymJCznMqMK+jamTImCZAACZAACaQFAiYFerly5dSqtmEQb+6lSpXC+fPnNTEqXrw4Dh8+DE/PKCdpz58/R+fOnbF8+XKUL18eV69ehZ2dnfISL97hDxw4oCnf1IokAn37+RModH41Crqkw7ViH8ct0Ed2R/iNy/Ca/gMc3n43tUxmuSRAAiSQaAIcE7QjjCnQ+44IhWxIyzboNKY91RfoAQumImTfb3DvNQrO1RtqL4AxSYAESIAESIAEbJKAUYEugllCu3btIPfexgzh4eHYu3cvfHx8INftaAm1atWCrLzI9nYJcu5ctrn/8ssvqFixYrRAl2fyu4h5Sw4i0HecP4mC51fhbed0uFE8boHuN64Xwi6fhdfk7+BQuLglV4u2kQAJkIBRAhwTzO8YMQX6gFGh8PMHsgw8jenP9AV6kM8SBK1fBtdWXeDappv5BTEFCZAACZAACZCATREwKtBHjBiBQ4cO4eHDh3A2uLvb3t4euXLlwujRo5VTNy1h2LBhCAoKUlvaZaV8zZo1uHjxojp3LmJ848aNePfdd3Hnzh106dJFbZ+35CACfeeFk3j73Crkd/bCP8U7xLmC7jd5AMLOnYDnuG/gWIwOgCy5XWkbCZCAcQIcE8zvGTEF+uCxoXj5Csjc/zS+fE6Bbj5NpiABEiABEiCBtEMgzi3ussotgnrz5s2JpiEOhhYsWKBEvwh18Qg8aNAgtQKfNWtWyOSvdOnSOHnyJHr06KHOp1tyEIH+x4W/kf/cT8jr7IlbxT/B50NCERoKfDfTCU4xjqH7TR+KsL8Pw3PUTDiWqmDJ1aJtJEACJBAnAY4J5nWOmAJ9+IRQPHsOVBt6Fx0f7UAz73zYWKCBypAr6OZxZWwSIAESIAESsHUCJs+gP3v2DJkyZYrFQLy7y1Z33ZnyxEK6ceMG9u/fDxG+WlflE1tmYtKLnbsvnELecyuRx9kTt4t/gt7DQhEcHHXNmly3pgv+s0Yj9Og+eAyZBqfyVRNTLNOSAAmQQKoS4JigHX9MgT5qcigePwUaD32C/z3ahGqeObG3cDOVWfA2HwSu+AYuDVvDrXN/7QUwJgmQAAmQAAmQgE0SMCnQxUv7mDFj1LnwmOHIkSOYPn262pquNYjnd9nCLqvphkEczllTEIG+58Ip5Dm3ErmcPHCnREfonADNm+4EN7cYAv2biQg9+Ac8BkyE04e1rKmatJUESIAE9AhwTNDeIWIK9LHTQvHgEdBw8BO0fKIv0MMu/A2/if3gWKQUPCfM114AY5IACZAACZAACdgkAZMCvWjRompl23AV/cWLF6hUqRIuXLigCYo4lRs8eLByDufq6horjTFP8ZoyTqVIItD3XjyNXGd/RE4nd9wr0Qk6J0Bzv3CCh/sbwwK+nYaQvdvh3ns0nKtFbWlkIAESIAFrJMAxQXurxRToE74Mw937kchW+xGm5dyCYiE5cK5ic5UZBbp2poxJAiRAAiRAAmmBgEmB/sEHH2DJkiXqrvKY4cqVK/jkk09w7NgxTYwaNGiAgQMHGr1TXVMGFhZJBPr+i2eQ8+wK5HByx/0SnTBoTChe+QJfT3FCOq8YAn3xTIT8sRHunw6Dc+2mFlYTmkMCJEAC2glwTNDOKqZAn/RVGP69G4kH2R9ie92tyP4wB/6p2VzttqJA186UMUmABEiABEggLRAwKdAnTZqEEydOYOLEiZCVEwnifV1+L1GihPpfS6hevbq6ms1Wggj0AxfPIMfZFcjm6IaHJTtjyLhQvHgJzJrshPTp3tQ0cPk3CN7uA7euA+FSv6WtIGA9SIAE0iABjgnaGz2mQD9wOAL/vYjEeecHGOO9RQn0k2WaIWd2Owp07UgZkwRIgARIgATSBAGTAl3Ojc+aNQurVq1S29MlODo6om3bthg+fDjcYh62NoFLzi3+/PPPSeZULrVbRgT6oUtnke3McmR1dMOjkp0xbEIo/nsOzJjghIwZYgj0Vd8heNMquH3SGy5NPkpt01k+CZAACSSYAMcE7ehiCnRdqr2+91Hj6iYl0HcXbIYihe3Uoxdtoq4s9fY5qL0AxiQBEiABEiABErBJAiYFuq7GIs7v3buHiIgIdQe6i4uLWTB27tyJn376CZ9//jny5MkT6271LFmymJVfakcWgf7XpbPIemY5Mju64knJLhgxKRRPnwHTxzshc8Y3Fgb5/ICg9cvh2q4HXFt0Sm3TWT4JkAAJJJoAx4T4EcYn0NdnbopKH9hToMePkjFIgARIgARIIE0R0CTQE0tEtsPL1WxxhWvXriW2iBRNLwL9yKVzyHxmGTI6uOBZqa4YNSUUj58A08Y4IWuM9w1Bv65E0JqFcG3ZGa5tu6eonSyMBEiABCyRgK2NCcYYxyfQFzs1ReO6FOiW2D9pEwmQAAmQAAmkJgGTAv3WrVuQM4fird3Y9Whavbj7+/ubrKOHh0dqMjC7bBHoxy6fR8bTS5HBwQX/leqKMVND8fAxMGW0E7JnfZNl8Na1CPxxPlyatodbh15ml8UEJEACJGApBDgmaG+J+AT6V/5N0KGNg8qQW9y1c2VMEiABEiABErB1AiYFeocOHfDuu++iSZMmRs+bFypUyNb5GK2fCPTjl88jw+mlSO/gjBelumHc9DDcfxCJSSMckTNH1LlCCcE7NiBw6Wy4NGwNt8790yQvVpoESMA2CHBM0N6O8Qn0Ufcbo28PR5Wh79DOCL99HV4zlsEh3zvaC2FMEiABEiABEiABmyNgUqBXrVpV3YOe0DBt2jRUqVIFcgbdVJg8eXJCi0iVdCLQT1y+AO/TS1T543OUxeF9jsh9pBgmDHdErpxvBHrI7i0IWPglnOs0h3uPIaliLwslARIggaQgwDFBO8X4BHqvS40xdkiUQPeb0AdhF0/Dc/w3cCz6vvZCGJMESIAESIAESMDmCJgU6LVr11bi2t4+6pycuWHevHmQe3N3795tMunIkSPNzTpV44tA//vKRaQ79UO0HZ7Bbmj788dqwpU3dwyBvv93BMyfDOfqDeHea1Sq2s3CSYAESCAxBDgmaKcXn0D/6HAjfD3FiQJdO1LGJAESIAESIIE0QcCkQF+wYIE6e96/f3+4urqmCSBaKikCXRzbTbh/HEGR4fjy4Sm4h7jgo7WfYPRgR+TP80aghx7eA//Z4+BUuQ48+o3Xkj3jkAAJkIBFEuCYoL1Z4hPojXY2wg9zKdC1E2VMEiABEiABEkgbBEwK9G7duqkt7k5OTsiaNWus69Hi27quQ/jPP//grbfeir6e7cGDB9i0aZP6W+PGjWFn90bQWgN2nUAXW/0iQuF16ge4hDmhw+pOGDnAEQXyxxDoJw7Cf8YIOJWvBo8hU62herSRBEiABIwS4JigvWOYEui5n+ZA3e2NMGOCEzJmAAIWTEXIvt/ULivZbcVAAiRAAiRAAiSQdgmYFOh79uwxSaZmzZqayLVp0waffvopZHtkUFAQGjRoAHEwd/fuXdSrVw/9+vXTlI+lRIop0MUmu5PfwSncAR1XdcHw/o545+03Aj3s7HH4TRkI+1z5ke7rlZZSBdpBAiRAAmYT4JigHZkxga4bL+T/bj92x6iBjng7nx2CfJYgaP0yuLbqAtc23bQXwpgkQAIkQAIkQAI2RyBF7kEvVaoU9u3bh/Tp02P16tX47bffsHLlSiXQ27dvnyhHdKnRIsYEum7CNbSPIwq/80agh1+9AN8xPeFQsAi8pi1KDXNZJgmQAAlYFAFbGxOMwdUi0D/v6ogyJSnQLapz0hgSIAESIAESSGUCJgW6j4+PSfNkZVxLKF26NA4dOqSuamvYsCFGjRqlvLuHhoZCJmpa71PXUlZKxDEl0Af3dsR7hd4I9Ih7t/Fq4Mewz5kH6easTgnzWAYJkAAJJAsBjgnasWoR6O1aOKB2NXuuoGvHypgkQAIkQAIkYPMETAr0jz/+WA9AcHCwWvV+9uwZmjVrhpkzZ2oC1LNnT+TKlQuRkZE4duwYtmzZos6d37hxA507d8aBAwc05WMpkUwJ9AGfOaLYe28EeuSLZ3j5aTPYeWdE+kWbLaUKtIMESIAEzCbAMUE7Mi0CvX4te7Rq6oDgbT4IXPENXBq2hlvn/toLYUwSIAESIAESIAGbI2D2FveIiAgsW7YMjx49UivhWoLE/eKLLyBphw4dity5c6tk27dvx61bt9CrVy8t2ZgVZ8OGDZgzZw5CQkJQp04dTJw4EQ4ODnp5PH36FF9++aV6QSCO8OSO3wkTJqifTQVDge51ajH8IsLQaXVnDO7miuJFYji9CwnBiw41ASdneK8yfabfrAoyMgmQAAlYAAFrGROMoTp79ixGjBiBJ0+e4N1338WsWbOUQ9SYQXZ6fffdd1i/fj3Cw8OV/5Rp06YhR44cJulrEegflLFHj44OCLvwN/wm9oNjkVLwnDDfAlqVJpAACZAACZAACaQWAbMFus7QWrVqxXu/eWpV6ubNm+jYsSPWrl2rJluDBw9WW+m7du2qZ9KpU6cgcZs2bapeHoCMWaAAACAASURBVHz22WeQehmuEhnWw1CgZzy9FM/Dg/HJ2o4Y3MkdJYvpe6V/0aayysLb52BqIWG5JEACJJCsBCx5TDBWcRHb8vJWXsrKy9kVK1bgr7/+wsKFC/Wiv3jxQvlOkTHF09MT8+bNU9dsfvPNN4kW6IUL2mFoX0cK9GTtmcycBEiABEiABKyLQIIEukxsqlevrnlrulzHVrhwYeTNm1fRkRXrpUuXqmvWZEVdnMclZVi0aBFevXqFIUOGqGwvXbqEkSNHYuPGjSaLkZ0BsoV/7NixJuMZCvRsZ5bjcVggPv65AwZ18MT7JfQF+svujRH56gXSL94Cu/QZkrKqzIsESIAEUp2ApY8JxgCdOXMGU6ZMwbp169RjeUlbsWJF7Nq1C15eXnEyvXjxIoYNG4atW7cmWqBnzQJMG+OEiMcP8KpPa5VfuvnrYJ/V9Op8qjc4DSABEiABEiABEkg2AiYFujh2MwxyTZpMTHx9ffHDDz9oMkyuVZOJUJkyZfD48WN1tVrfvn0hEx05ly7bCpMyyNb7smXLokWLFipbOTsvv587d85kMXLdm6wCyfl6U8FQoOc6+yPuhfrjo3UfY1A7L5QtpS/QX/X/CBEP7iDd3DWwzxG1vZ+BBEiABKyNgLWOCcY4b9q0Sa2YyzEnXWjVqhXGjRuHEiVKxNk0q1atUo5NZZu7qaBli7uk/2Fu1JEq3V3oztUawL33aGvrGrSXBEiABEiABEggiQiYFOjVqlWLVYyHhweKFSumto1ny5ZNkxlFixbFiRMnlBf3r7/+GnL2WyY3L1++VFsMxXFcUoZBgwapO9fFY7wuiKi+evWqck5nLBw8eBCzZ8/Gzz//DEdHx+goX331VazoskIvWxx1If+5n3ArxBdtN3yEQa3Sofz79nppfEd2R/iNy/CathgOBd9LyqoyLxIgARJIMQLWOiYYAyTf9fKSWPyT6EKHDh3Qp08fVKhQwSjThw8f4pNPPsHy5cvVDjBd2Lx5s8orZpDjU02aNEHjxo31/m538jv1++druiMkFPhmuhPc3cBV9BTrxSyIBEiABEiABCybQIK2uJtbJZnsyKq7u7s7atSooe5AF0c7shovK9vnz583N0uT8UePHo2SJUtCdw2cn5+fmnDFVY44CpIti7LF3dDxz++//x6rLJnAxRTohc6vxrXgl2j9a1sMau6NCmX1BbrflIEIO3scnmNmw7FEuSStKzMjARIgAWsjkNJjgjE+Iqr37dunt4NLdk9NmjRJjR+G4fnz5+jUqZM6liXXhMYMMraIeI8Zfv31V8jusbgEepUbZeDvB/SukQVd8+dXSbmKbm09mfaSAAmQAAmQQNITMCrQe/TooVaTxSGOBFlpaNSoUfTv5poxefJktb1czvjlzJkz2rmOOGkTD7rGRLC5ZcSML+fbxXO8nDuXIAJcRLtc72YYLl++jIEDB2L+/PkoUKCApmINt7gXvbAWF4Oeo9Wm1hjYOCM+LK8v0P2/HovQI3/CY9BkOFWooakMRiIBEiABSyFg7WOCMY6yTV3GBZ1vkrCwMJQvXx579uyBt7e3XhI50tWlSxd069ZNiW4tIb4t7ro8vOCMs8XbIJ+zl94qusfQL2DnETUGxxfsM2fnufX4IPE5CZAACZAACVgJAaMCXQTo0aNHkTFjRlWN0qVLK3Erd5knJMjERxzxiECXM34uLi4qG9naLqvbNWvWTEi2caYRR2/t27fHmjVror24y4q9rHzLisn9+/fx0UcfqXvY5dz53LlzUbBgQc02GAr0Uhd9cCbwGVpsaYGB9bOgcgV9gR6w8EuE7N4C989GwLmm/nZHzYUyIgmQAAmkEgFrHxOMYZPxqH79+sopqKyIixd3cRAnO7zkmWx9F18pcjSre/fuamt7zGNT8TVFXAJ9wv3jKunfZyJwPOIBHmZ/gOpeOfFnoSjfJ7pV9PjyN3zuVK4KnMpVhX3W7NGPHIuUNjcbxicBEiABEiABEkhlAiki0FOjjrKlXpz/yDZ6OTcpZ96dnZ2xePFiXLlyBTNnzlQr5xLP3v6NoJaXB7LibioYCvRyl9bjRMATNN/WHANqZ0O1D/UFeuDKBQjesgZun/SGS5OPUgMHyyQBEiCBBBNIaoGeYEOSOKHsoJLjTfLSVnZQybiQO3du5VhU/JjIbqyTJ08qER9znBAzZGeZXN8ZV4hLoOvir98cjs0HArGh7c8IsAvB7NyVMCBrCbWKHvDtVLNqGnbxtNH4du6ecK7eEC4NW3OF3SyijEwCJEACJEACqUcgWQW6iGJZmZBr1kwF2QJvTcFQoFe8/AuO+D9C0+1NMaBGDtSorC/Qg35ZgaC1i+HasjNc23a3pqrSVhIgARJAUgl0Wx0TjHWR+AT67v0RWLMhHJ51/8Xc7Dvh7eCM5flqoppXTng7RO0y0xoi/X0RevwAQo/tR2SAn0oW6e+H8NvXY2Uhot0h3zux/u5YNPZqu32WHHor8pIorvRabWU8EiABEiABEiAB0wTiFOiy7Vt3Bl22hk+YMAGZM2fWy61q1aomc583bx4++OAD7N6922Q83Vlxa2ksQ4Fe9cpGHPB7gMY7GmNAlbdQq6q+QA/esQGBS2fDpX5LuHUdaC3VpJ0kQAIkoAjIdx7HBPM6Q3wC/eSZSHy3NAwli9phd60/sOnFLfMKiBG7lFsmeDvGFvWRQYGIePYYkb4vUfz+UxR//Bx5XkUJeF2o9O/jBJcbM6Fsp5ft9SLq5QWAnJ/nFvskQctMSIAESIAE0hgBowLd2FU6xrjIee60GAwFeq2rm7HH9x4a7myEARVzoU51fYEecmAnAuZNgnPV+nDvMyYtImOdSYAErJgAxwTzGy8+gf7P7UhM+zoMeXLZod+gcDS/vkMVcjrwKV6Gh5hfYAJT7HIugmr2Xgi7cCpWDuG3rkWvyOsexrUyH1fx9ln0Rbvc826fNUcCrWUyEiABEiABErB9Asl6zZo4h9MSYt47riV+ascxFOj1r23F76/uoP6uBhhQLg/q1dQX6KEnD8H/y+FwKlMJHsO/TG3zWT4JkAAJpAoBWx0TjMGMT6D/9xwYNiFUJc2V0w4flLHH23ntjLaLiHg3t7ibTET9izDTon6v7z3cCvHFrWBfldGL8GDl3DSmg7qEdgrZYi9iPuLJQ3WGPuziqTi32EsZztUbwLVVVwr1hAJnOhIgARIgAZsmkKwCXYSslhDzTnEt8VM7jqFAb3J9O7a+vI26e+phQOl8aFBbX6CHnf8bfpP6wbFYGXiOm5va5rN8EiABEkgVArY6JiREoEuaBT+E4dS5yHjbom1zB9SpoT+uxJsonggi0POd+0mt1osHeRHqyRFEsEc8eaBW6OV8fPDe7UCAvyqKQj05iDNPEiABEiABayeQrAK9UqVK8PLyQpMmTVCrVi11XY2xkDdvXqviaCjQW9zYgV9f3ETtvXXQv/jbaFxXfyIVfvUCfMf0hEOhYvCa8r1V1ZXGkgAJkEBSEbDVMSGhAl3SBQVHXbl28kwEAgP1cwoOAW7fiUT+vHYYPcgxqZohOp85j89i4J1DSbKKrtU4WW0P3uaDoO0+ekJdzq7rArfBa6XJeCRAAiRAArZIIFkFenh4uLp3XO5AlzvP69Wrh9atW6t71a05GAr0tv/shM/zG6i5rxYGFCmIJvUNBPqt6/Ad1lk5zvGascyaq07bSYAESCDBBGx1TEiMQI8P5udDQhEaCnw5wQmZMsQX2/zn+c6txO0Qv2RdRTdmlQj1oHVLEbx9nVGjxcGcXBHHe93Nb1OmIAESIAESsG4CsQS6iOmGDRvCw8MjSWv29OlT/Prrr1i/fj3s7OyUUP/f//6HjBkzJmk5KZGZoUDvcHMXVv13DdUP1ED/Qu+geUMHPTMi7v+LVwPaw/6tvEg3e1VKmMgySIAESCBJCHBMSBjG+M6ga8118Y/hOHoyAm2aO6BuEm9zFxuWP7uMLrf+hHiCb57h7Wiz8jl7IZ+Ll56ZJcVbvJlXwMVXT9kCHyLb3l8HOccecnx/9Op6zPTicE5EO1fY46PK5yRAAiRAAtZMIJZAl9XtQ4cOwd3dHe3atcPatWuTvH4nT55Uq+o7duyAbHlcsGBBkpeRnBkaCvQut/Zg+bMrqHqoGvq/XRgtGusL9Minj/CyV0vI5CLdgvXJaRrzJgESIIEkJcAxIWE4k0qg/302Et8uCVMO5EYlwzZ3qZ1uFT2+mopoX5avZrKdV9eVr7vXXU+4y1n2p4+iTdStsDuVqww7D/0XCfHVg89JgARIgARIwJIJxBLoVapUwezZs1G2bFmUK1cOx48fT1L7AwMD8dtvv6mV9LNnz6Ju3br4+uuvk7SM5M7MUKB/ensvFj+9hMqHq6B/nvfQqqmBQH/1Ai+7N4Zd+gxIv3hLcpvH/EmABEggyQhwTEgYyqQS6CGhQP+RybvNfa/vfYiX95ghpsd3+futkFdqK7yE5t75Uco9s/rZ28EZnTIVTvKVdWPUwy78jZC9vxldYTe8c92tcz91rIyBBEiABEiABKyNQCyBvmHDBowbNw4uLi7w9fWFt7d3nHUyR7yfPn1arZpv27YN+fPnR6tWrdC0aVPlRM7agqFA7/3vfnz75AI+PFoJ/XMWVVsR9UJQAF50rAu4e8B7+e/WVl3aSwIkkIYJcExIWOMnlUCX0r9fHo4TpyKQHN7czandhPvHIY7ljN3T3jlTYXTO/K7Krppn8niE19mqW2EPPbYfoRdPGd0OL3Hde41SW+IZSIAESIAESMCaCBh1Evfq1SvcuXMHffv2Nbm6XapUKZN1ffbsGTZu3KhWy+XnZs2aqbPnhQoVsiZGsWw1FOgD7hzE3MfnUOH4h+iftRjatTAQ6HLnbJvKKh9vn4NWXXcaTwIkkPYIcEwwv82TUqCLOBeRnpzb3LXWUFbWlz+9HB1d7mDf9OKWpuSyRV5W32fnrqQpvtZIunvYdfHVKvu+39SvFOlaKTIeCZAACZCApRAw6cV9+/btymFcQsN7772HPHnyqDyqVasGB4fYwlXyLl68eEKLSJV0hgJ96N3DmPnoND44+QH6ZSyJ9q0o0FOlYVgoCZBAshLgmKAdb1IKdNnm3mtIqCp81mQnpE+n3Y6UiCmifc6jMzgd8EwVt8/vvslik/PedV3BAQumRot0uW9dHMs5Fn0/JXCwDBIgARIgARJIFAFN16xdvnwZ165dQ2RkJAoWLIgiRYpoKlREuZYgV7FZUzAU6KPuHcUXD/9Gub/LoV/60ujQxohA71QXCAyA98pdgIurNVWXtpIACZCAHgGOCfF3iKQU6FLad0vDcPJMpBpfqlfSv8ozfmssI4ZskZ/44ESK3bsu960HrvgmuvIO+QrCzj3qWJ2dhyc8hn5hGWBoBQmQAAmQAAnEIGBSoD9//hyDBw+GeF3Pmzevuh7t1q1bKFmyJObMmWOVV6QlResbCvTx949j0oMTKHO6DPp6lEGndrEF+sseTRD58jnSL9kGO6/0SWEG8yABEiCBFCXAMUE77qQW6JeuRmLWgjBkSA98NclJuyEWFPNFeDBKXfRRzuaW5auBzpmizqwnZ9Bd4xa03SfWWXWXhq3h1rl/chbPvEmABEiABEjAbAImBfrAgQOVKJ80aRI8PT1V5n5+fhg7diwiIiIwd+5cswu0hQSGAn3Kg5MYe/8YSp0thf4u5dG5fWyB/qp3K8j9rum/+wV2mbLaAgbWgQRIII0R4JigvcGTWqBLyRO+DMPd+5Ho2dkB5Upb5yq67t51OY9+qkjrFPH+rms18QIvIdLfD/4zR6mfPcd/w63v2rs1Y5IACZAACaQAAZMCXZzA/f7778iWLZueKY8ePUL9+vVx6tSpFDDR8oowFOjTH/6NkfeOosT5EujnUAHdOhgR6APaI+L+v0g3dw3sc+S2vErRIhIgARKIhwDHBO1dJDkE+uHjEVjyUzjezmeHUQMdtRtjYTGrX9mkzqmXcssEb0cXZZ04j+uftUSKWRrkswRB65fBPkt2eM1YxrvUU4w8CyIBEiABEoiPgEmBXqJECfz555/IlCmTXj5PnjxR95dToEdhmfXoNIbcPYxiF4qhHz5Ej46xBbrvsC4Iv3UNXjNXwCFPgfjahc9JgARIwOIIcEzQ3iTJIdCl9IGjQ+HrB4wb5og8b9lpN8iCYsq96zWuboplUXWvnPi1QP0UW1X3HdoZ4bevQ5zIufcabUGEaAoJkAAJkEBaJmBSoH/++edKnMuWdrkXXUJQUBAmTJiAwMBAbnF/3XO+eXwO/e8cRNFLRdA3rLLafmgYfMd8hvCr5+E1bREcCmpzspeWOybrTgIkYHkEOCZob5PkEujb/4jAL1vDUbKoHerWMH4zijEr8+axg2vUMG4RQUS6LtwKeYUBdw6p+9W9HZxRyj1z9LNl+WpCtsMnR5CX5r4T+qiz6eJATkS6Q753kqMo5kkCJEACJEACmgmYFOgPHz5Er1698O+//+Ltt99WXtxv3Lihfl60aBGdxL3G/N2TC+j17368d+U99A2qjM+7xt566DepP8LOn4TnhHlwLFJacwMxIgmQAAlYCgGOCdpbIrkEun8AMGRcKEKjbl3THMq9b4+enbQLes0ZJ1FEcSDX+daeWHeqd8pUGMvz1UyiUmJnI+fS5Uq2iKeP1EPD8dmxqOnx2j5LDthnzQ47d0+K+2RrJWZMAiRAAmmLQLzXrIkoP378uBLmYWFhKFy4MMqWLQt7e+t0UJMUzWt4Bv2Hp5fQ4/ZeFL5WGH39qqJ399gC3X/6MIT+/Rc8R82CY6kPksIM5kECJEACKU6AY4I25Mkl0KX0bTsjcOFyhDZDAPx7NxJBwVDHrz4oY9ljt25lXQT7/27sUHW8WbxDsq2iS/6R/r4IWrcUwdvXaWZqLKKcZ3dp1EbduW7nkTyr/okykIlJgARIgASsgkC8At0qapHCRhoK9BXPrqg3/+/ceAd9X1RH30+NCPSvxyL0yJ/wGDINTuWrprDFLI4ESIAESCAlCSSnQDe3HmfOR2Le4jC1xX3qGCekT2duDqkTX8ZVGV+TexVdVzvZ8i5iPWYIv3U91t9iPo8M8FP+ZeQ6N90qvO657t512TYv966LcLfPmiN1YLJUEiABEiABqyFAgZ6ApjIU6Kv/u4aPb+5CgZsF0OdpTQz4LLZAD5g/GSH7f4dHv/FwqlwnAaUyCQmQAAmQgLUQsCSBLsyWrgrHX8ciULigHZrWj9rq7uwM5M9ruY7mboX4Iv+5n5Styb2KnhT9KvTYfoTs3Y7Qi6di3bku+cs2eLfO/eBcvWFSFMc8SIAESIAEbJQABXoCGtZQoK97fgNt/tmJ/Lfzo8/D2hjUy4hAXzQDIbs2w/3zkXCu0SgBpTIJCZAACZCAtRCwNIEuW9zHTw/Fs//0CcpqeplS9ihRxB5Or4cuNzcgTy7LEO66VXS5hk08vFtT0K3Iyyq8nHUPPXEw6sVI9QZw69SP2+CtqTFpKwmQAAmkIAEK9ATANhToG1/cVGfl8v6bF33u1cWQPrEFeuDyuep8m1u3QXCp1yIBpTIJCZAACZCAtRCwNIEu3K7/E6k8wOvCw8eReKW/o1s9cnIC5kx1wuvLW1IVecxVdDFEPLrnc/FCda+39O5Rj2lkXomTTJ7fEwNDVtcDls9Vq+uymi7n1V0atqZQTwxUpiUBEiABGyQQr0APDg7G6dOnId57mzVrphCEhISo/51lf1waDIYCfdvL22h8fTty382NPrfrY1g/IwJ99fcI3vgT3D7pDZcmH6VBaqwyCZCALRDgmKCtFS1RoBuz/OqNSBw7GYH7DyPVY/nfzx/o0t4BlT6wDIdyE+4fh7wIPxP4TBv8OGLJFW4DspXE+BxlE5VPYhLLqrq8sA+7eFplI47lxBO8YVBn1qs3hFO5KokpjmlJgARIgASskIBJgX79+nV0794dAQEBePXqFS5fvqyquHbtWhw4cAALFiywwion3mRDgb7z1R3Uu7YVb93PiT43GmHEgNgCPWj9MgT5LIFr2+5wbdk58UYwBxIgARJIYQIcE7QDtxaBblijP/ZG4Odfw9VZ9aF9Y49l2gkkT8zTgU9xK9gXpwOeQn5+ERa1YBAzyL3qt0P84jRAVtfn5K4Eb0f9i+FTcuVdtryL53idUI/LWBHwItRFsOvuaOeVbsnTt5grCZAACVgKAZMCvUOHDqhWrRp69OiBokWL4sKFC8puuRe9devWOHr0qKXUI0XtMBTof/reQ82rm5HjYXb0udIEowbFntQEb16NwJ++hWuLjnBt92mK2svCSIAESCApCHBM0E7RWgW6rx8wcHTUJevTxzkhcybtdbb0mHKFW+dbu02Kd2N1KOWWKZaYl3iyzb5/1uLwdtAX+uZwMOY5XtJHPHmoXuobeoY3zFsn1kXEy9l2BhIgARIgAesnYFKglyhRAkeOHIG7u7ueQP/vv/9QuXJlXLx40foJJKAGhgL9oN8DVLmyEdkeZ0PvC00xdogRgf7begQumwOXxm3h1rFvAkplEhIgARJIXQIcE7Tzt1aBLjWc/0MYTp+LRNMGDmha3zK2uWsnH3/MOY/PYuPzm7Eiyor8y/DYK/KmchTx/mfhZokS6abyl3Pr6gq3Jw8R8eSBimrsSjf5u1zr5tq6m1ptNxUc8hbkuff4uwljkAAJkECqETAp0KtWrYrvv/8eRYoU0RPoGzduVH/fsWNHqhmemgUbCvSj/o9Q4fIvyPI0C/qcaY5xw2IL9JDdWxCw8Es4120O9+5DUtN8lk0CJEACCSLAMUE7NmsW6KfORmLBkjB1X/qsyU7aK22jMY1tpX8RHowBdw6q1fjkFummsIpYD7t4StNqe8x85Gy7U7mqcCpXmWLdRvstq0UCJGC9BEwK9NWrV2Pp0qXo27cvRo4ciW+//RYnTpzAihUrMGXKlGincdZb/YRZbijQ/w54gjKX1iPTs0zo/XcLTBxhRKAf2ImAeZPUWTL3XqMSVjBTkQAJkEAqEuCYoB2+NQt0qWXfEaEIDIQ6hy7n0RliExCRXv3KJpPO6zpnKozxOcslu1f5SH9fBG/zUWLdVIj090P47et6UXRi3T5rdpNpefadnwISIAESSBkC8Xpx37dvnxLp4hwoPDwcBQsWRM+ePVGlStr1LGoo0M8FPkOJiz7I8DwDeh9ricmjYq84hB7dB/9Zo+HwTlF4TV2YMq3LUkiABEggiQlwTNAG1NoF+tpfwrFrXwQK5rfDe4WjBHrx9+zxdj6K9Zg9QItIl/gi1Dtnfjc6aXoHZ5Ryy6ytMyVxLN2qe+ix/dF3s2stQpzWyfVw4rCOW+W1UmM8EiABEjCPQLwC3bzs0kZsQ4F+Keg5ilxYi/Qv06P3X60xdUxsgR5+/RJ8R/VQZ8S8ZixPG6BYSxIgARJIowSsXaD/ey8Sk2aExWq92tXs0aKJA5y58z3eni13uMsVcSueXYk3rlwBV8r9jWAXT/PihK6ke6ZkFfKy8h56/ABErEcGxO35XioQ19l3Y5UzXG1Xgj7fO5BVeq7Ex9sdGIEESCCNEzAp0MuXL49NmzYhR47Yd3TaCrcNGzZgzpw56m73OnXqYOLEiXBwcDBZPUOBfj34Jd45vxouwS5oeqUKfLq8YzT9izaV1d+9fQ7aCj7WgwRIIA0RSAtjgrHmPHv2LEaMGIEnT57g3XffxaxZs5A1a1aTLW/tAl0qt2N3BIJDou5HDwoC/jwYgbAwwDs9kDVz7JV0N1co8f5WDq6yx+wcOqEu18Ppgqy8J/Zedy1fPaY80Mf1LK58S7plgsfJoxDHdSLmw25dAwL8tZgRbxxjol3EvOEd8Y5FS8fKy7FI7L/FWyAjkAAJkIAFEzAp0KtXr45vvvkG4rnXFsPNmzfRsWNHda+7TLYGDx6MUqVKoWvXrmYJ9Nshvsh37ieVxi3QFVff7oxcOWNPUF4N+gQRd2/Ca/oSOLxd2BaRsk4kQAI2TMDWxwRjTSdHu+Tl7YQJEyBO8sQHy19//YWFC00fVbIFgW7I48kzYMWaMFy+FiXa4woN69ijRWPTL7pt+GOSoKqJYD8d8Cw6rTimk7ve9/reM/tauAQZkIBEzb3zo7pXTr2Vf8lGhHz6oBDIFXK6EH7rOuTudxH2xs7BJ6D46CQi7kW4R98TH+POeFP52mfODvustrsAlRimTEsCJJC6BEwK9D179qhJyJdffol8+fKlrqXJUPqiRYvw6tUrDBkS5VX90qVLyhmeeKk3FQxX0F+Fh+DrR2cw985FvHAMwNchTTCwYq5YWYiTuJADO+H+2Qg412ycDDViliRAAiSQfARsfUwwRu7MmTPKKeq6devU44iICFSsWBG7du2Cl5dXnLBtUaDrKnv9ZiTCDXa/R0QC+w9H4PjfESpapoxApgxvXlQ7OgIe7nZwdwM8PAB3Nzu4yc9ugKenHfLmivqdIWkJxOWBXsS/sWemSr8V8irRLwtk634+l9ifm8iQEKQPDUcpB49oE9L7BaD4sze7DiKDAxHx8K6eiZGBgYh4dBeV/n2cKHBytt5wtd5UhnKVne6FQGIKljziuxZPS/7cRaCFEuOQgPUQMCnQe/XqpUTr3bt3kT17drgZjJ47d+60npoasXTUqFEoW7YsWrRooZ4GBwer38+dOxcdO0j29RmE4sWL49q1N2+GdY87HT+CH+1PIe+L7KjgmBOurnbIl9sO+V3SoVOmwgjesgaBKxckHzMn5zd5R8+LYqzk273+Wfc/Yj57nTT6GWCnex7jb2+SGOYFIGY8nSUmy9TlERNJ3Pm+qZKROpmsiykGMcqOZas8M2Lj63jRfFQ0w3jxlWkQX4+dMQbRQGO0sX48vT0bJutiHne9DpvYPmSqj8TkaHZ7muhDRvu0kXbX0t/12trINl4t3PW6VUI/R0b6Zrx9yMBevc911DP9Ph37O2HA6o24APsPNgAAIABJREFU/PAx7j1/iWzpveDulQ6I8b1j7WOCsS9nOeYlK+byoloXWrVqhXHjxkXvLpOxI0z2fscIMr7IynvjxmnrZez1fyKx5pdw3L5jepXdGOu8ue2Ux3gXl9hPa1dzgId78g2fzNk8ArLiv/HFTez1vY+YW/cll4TcJ29e6QmPnScgBHkDQ1UGkUGBQHh4nJlVvpM40S8Zf3TuH+R5afpsf8Jrk7iU5r6U0FKasSMIks61temdqVryZhwSSEsE4l1BNwWjZs2aVs1q0KBBqF27Nho2bBhdD1kdv3r1KuxeT16bNGkSq46XL182KtD/uv8ClR6siRW/Xrrc2PFOY4SdPwm/Sf2tmhmNJwESSLsEDrzQf2HpXKcZnMpUigZi7WOCsZb9+eefcfHiReWfRBc6dOiAPn36oEKFCupPM2fOxMGD+r5FMmbMqF7+pjWBrmMUHAIEBAABgZEICHzzs38AEBgE+Pu//ntgJF6+BG7+a1rQTxvjhKxZ0u5nz1ZqLufxDQW9rm5R2/yfRlfVcNu/KQb7/O5bJKLf7zuhamDcPhnkGEB8zvm0VCzs4mkt0VItDn0vpRp6FmylBNK0F/fRo0ejZMmSaNOmjWo+Pz8/NeE6f/68yeY03OIeM/KKC/fwOCgYz0NCEeEUiiy5w/CWkyfaZSyYNF0kJCRGPq8nNJExJjbRP+uexYwe9bdIGImvNzcyyDdm/rrsTJYZM//oBG8M0aWNkUd0CiPPxOLXhsfOI/qZMQax6w69uhjkq2ePMbYGdTHFIAr0a7tjwjVkG7NbxN2esfio/KMLMMJWG/fohEnSh4xMsJOkPeOvi36f1sA9ZvskuA+Z/hxF22SUrREbjbanYTxjZWrj/sYeI58Lk98JcZfp9H5FOBQskjTfbRaay+bNmyFXy4ljOF1o1qwZJk2apMaPuIItb3FPjqYKDgauXI/E7buRiJD98gaBK+jJQT3t5WnqBYEhDTn/n9ggV+vJtn5LDOrlgP+bIwRJYWPYhVNGs3Ft0y0psmceJJBmCMQr0GW7t6woyxY+w9C+fXurBiX3uz969EidO5cgnnpFtG/ZssVkvUwJdKsGQuNJgARIIB4CtjwmGKv6hQsX1Lig800iW9nFm72cx/f29qZA5yeGBEiABEiABEggSQmYFOgLFizA4sWL1SqBOMopVqwYbt++rVaaRZwPHTo0SY1J6czkbL3UY82aNdFe3AsVKqS2LpoKFOgp3VIsjwRIwBII2PqYYIyxOIWrX78+xo4diypVqigv7uIgbuXKlSabhCvoltBjaQMJkAAJkAAJWB8BkwL9ww8/hKwyy72vchZbVpZlsjJ9+nRkyJABn3/+ufXV2MDirVu3Kuc/4gyuWrVqmDZtGpydYzhbM1JDCnSrb3ZWgARIIAEE0sKYYAyL+B0ZNmwY7t+/jwIFCqgz57lz56ZAT0AfYhISIAESIAESIAHTBEwKdPFWfvLkSSVYxdGNiFkJL1++RL169XDkyJE0yZcCPU02OytNAmmeAMcE7V2AK+jaWTEmCZAACZAACZDAGwImBXrTpk3xxRdfoGjRoujUqZNaQZCfnzx5oq6POX3asr1GJldDU6AnF1nmSwIkYMkEOCZobx0KdO2sGJMESIAESIAESECjQBfvtTly5EC5cuWwfft2dc2MbAOX8+jvvfce5syZkyZZUqCnyWZnpUkgzRPgmKC9C1Cga2fFmCRAAiRAAiRAAhoFuiGo3bt3q23tuXLlQrt27eDi4pImWVKgp8lmZ6VJgAQMCHBMiLtLUKDz40ICJEACJEACJJAQAvFes5aQTG09DQW6rbcw60cCJEACiSNAgZ44fkxNAiRAAiRAAmmVgEmBHhgYiB9//BHnz5+Hv79/LEbi4T0tBgr0tNjqrDMJkADHBO19gAJdOyvGJAESIAESIAESeEPApEAfMmQILly4gGbNmsHDwyMWt08++SRNsqRAT5PNzkqTQJonwDFBexegQNfOijFJgARIgARIgAQ0CvSyZcuqu8/FURzDGwIi0BlIgARIIK0RiIyMVFW2s7NT/8vLW7kTnCE2ARHo27ZtIxoSIAESSPMErl27luYZEAAJmEPA5Ap66dKlcejQIbi7u5uTp83HXblyJWSi2rFjR5uvqyVXUK79E2eF77//viWbafO2NWnSBD4+PnBzc7P5ulpqBW/cuIEZM2Zg4cKFyWoixwTteO/cuYNx48Zh2bJl2hMxJgkA+O2333Dx4kUMHjyYPEjALAJfffUVSpQogXr16pmVjpFJgAQsi4BJgT5ixAj1QW/fvr1lWZ3K1lCgp3IDvC6eAt0y2oECPfXbIaUEOscE7W1Nga6dFWPqE6BAZ49IKAEK9ISSYzoSsCwCsQT62LFjoy0MDw/Hpk2b1J3n+fPnh6urq571kydPtqzapJA1FOgpBDqeYijQLaMdKNBTvx2SU6BzTEhY+1KgJ4wbU3EFnX0g4QQo0BPOjilJwJIIxBLoX3zxhWb7Ro4cqTmuLUWkQLeM1qRAt4x2oEBP/XZIToHOMSFh7UuBnjBuTEWBzj6QcAIU6Alnx5QkYEkEeA96AlqDAj0B0JIhCQV6MkBNQJYU6AmAlsRJklOgJ7GpaSY7CvQ009RJXlFucU9ypGkmQwr0NNPUrKiNEzAq0J8+fQpvb284OjpGVz8iIkI5Lnnw4AEqV66Md99918bRsHokQAIkQAJCgGMC+wEJkAAJkAAJkAAJpAwBowK9d+/eEG+93bt3j7ZCziHu2bMHhQsXxsmTJ/H999+jYsWKKWMlSyEBEiABEkg1AhwTUg09CyYBEiABEiABEkhjBIwK9A8//FAJcPHgLuHmzZv46KOP8PvvvyN9+vRYu3atuh991apVaQwXq0sCJEACaY8Ax4S01+asMQmQAAmQAAmQQOoQMCrQixYtij/++AM5c+ZUVk2bNg2enp7o16+f+l22uTdu3FitpDOQAAmQAAnYNgGOCbbdvqwdCZAACZAACZCA5RAwKtBr1aqF8ePHo2rVqnjx4gXq1q2rrlvLkSNHtECvU6cOzp8/bzk1oSUkQAIkQALJQoBjQrJgZaYkQAIkQAIkQAIkEIuAUYG+aNEiLF26FPXq1cORI0eUU7iYd+EeP34c4kH7zz//TFNIxVHe1KlTsXXrVjg5OeHzzz/Hxx9/nKYYpGRl/f39MXjwYFWkHLnQhf/++w9Dhw7F2bNnkTFjRrXDo0yZMuqxqWcpabutlCV9/dtvv8Xz58+RKVMmjBs3DuXLl1fVE/4jRozAkydPlNPIWbNmIWvWrPE+sxU2KVWPV69eYf78+di+fbsqMl++fJgyZYr6P7522LBhA+bMmYOQkBDIS9WJEyfCwcHBbNM5JpiHzNRnw7ycGNvWCSxYsEB9x+o+l+LnZ926dfF+tm2dC+tnnEBc8yJT81POi9ibSMD6CMR5zdr69etx5swZyNbG1q1b603qZNJ3//599O3b1/pqnAiLZdCUs/cyWQ0ICEC7du3w9ddfo1ixYonIlUmNEZBjFJ999plyVvjw4UM9gT5kyBC89dZb6N+/vxKJ8r/4R3B1dYWpZyRtPgGZPDZv3lzxPnbsmDrmcvjwYchkQATfhAkT1E6bFStW4K+//sLChQsRHh4e5zPzLWAKeQGye/du1Q7Sx5cvX479+/erl6imWIvvkI4dOyqfIfLiRF52lSpVCl27dk0QVI4J2rCx/2vjxFhRBCZNmoRy5cqhQYMGekjYj9hDDAmYmheZmp9yXsS+RALWR4D3oJvRZt26dUPnzp1RpUoVlUomyvKFOXLkSDNyYVQtBPz8/HDlyhW18ifiT7eCLsKwbNmyOHToENzc3FRWspNBXiJVr149zmc1a9bUUizjxENAXpjs3bsXt27dUqu4upUeaRe51WHXrl34559/4nzm5eVFxokkcO3aNfTp00e9lJKXqHG1w5o1ayCr7zI5k3Dp0iX1XbVx48ZEWsDkpgiYahP2f/YdQwLygrlDhw5KpMcM7EfsK4YE4poXSby45qfDhw/nvIhdiQSskAAFuhmNJucwf/zxR7WaKEFWseT3H374wYxcGNUcAiLEV65cGS3QZTVddi6ISNSFr776Ct7e3mjSpEmcz3r06GFOsYxrhMD169fRs2dPtZorPilkxfzLL7+MjtmqVSu1BV5WbuN6prsZgoATRkC2KsquBTlS0KtXL5PtICvn8jKrRYsWqrDg4GD1+7lz5xJWOFNpImDqs8H+rwlhmookY5O81AwLC0P27NkxcOBAVKhQweRnm/0oTXWRWJU1nBdJhLjmp/ICN645E+dFabsfsfaWTYAC3Yz2qVSpEjZv3qzO4kqQLb9yvnP16tVm5MKo5hAwHIhk5Va2vu/YsSM6m3nz5qkt182aNYvzmaxSMCScgEweZfdIp06d1Pb1n3/+GRcvXlRnmnVBVoFkZff27dtxPpOJJ4P5BO7evYuWLVsqHwuyg2fmzJnK/4KpdvDx8UHt2rXRsGHD6ALfeecdXL16FXZ2duYbwRSaCJhqE/Z/TQjTVKSgoCB1hNDR0TH6GJHscpEFgLi+Y9mP0lQX0STQ45qfio+euOZMnBel7X7E2ls2AQp0M9pHJrtLlixB3rx5VSpZSRRxLn9jSB4ChgL90aNHSqgcPHgwukAZgDJnzqwEelzPPv300+QxMA3kKi8/ZJu09HvdgC4vqvbt26ccw+mC8JfzlCLQ43pWsmTJNEAs+aooq+DiuO+7775TL6nEcVxcrEWgC+82bdoog2R7pEzseftG8rWP5Gzqs8H+n7zsbSF3WUGX41ryEo3fo7bQoklfB2Mr6HHNT2V+xHlR0rcBcySB5CZAgW4GYdne27ZtW+jOMy9evBgiGMeMGWNGLoxqDgHDgSgyMlKd1duzZw/SpUunsurevbtqFxmg4nomq74M5hMQ3qNHj4aHh4f6XxcuXLigftedZ5YVdvHuLu1y7969OJ/JUQSGxBOQ1RJx1vns2bM4Wf/yyy/q+0nnI0McKkqbiaNLhuQjYOqzwf6ffNxtJWdxxNm4cWN1lC6u71j2I1tp7YTVw5hAj2t+Kn2I86KEcWYqEkhNAhToZtCXs4UyKdZ5cZeVqS+++CKWcxczsmTUeAgYG4hGjRqlVswHDBigvLjL9i1xTubp6QlTzwjbfAKTJ0+GiHQ5Wx4zyKp6/fr11fWLsuVaHPlJG4i/AFPPzLeAKeR8qrwgyZYtm4IhzuHkukdZXZO2iasdZFt8+/btIc7idF7cCxUqpI4hMCQfAfb/5GNriznLS025CUO3xV1uW5CXaPICOq7Pti1yYJ20EzA2LzI1P+W8SDtbxiQBSyFAgW5mS8yYMUOJdNl+Jl4z6WTDTIBmRjc2EIln6mHDhuHkyZNqEiNOs3Se9U09M7PoNB9dnL3VrVsX9vb2eixkAilHBi5fvqzaQa5cLFCggDoXnTt3bhXX1LM0D9ZMAOJwTwS53EUvk/iCBQtCPPPKfcnxsZbt8OLIT865VqtWDbLd0dnZ2UwLGN1cAuz/5hJLu/HF2aOMZfK5lFVz2fGiOwrBfpR2+4WpmhubF0n8uOannBexH5GA9RGgQLe+NqPFJEACJEACJEACJEACJEACJEACNkiAAt0GG5VVIgESIAESIAESIAESIAESIAESsD4CFOjW12a0mARIgARIgARIgARIgARIgARIwAYJUKDbYKOySiRAAiRAAiRAAiRAAiRAAiRAAtZHgALd+tqMFpMACZAACZAACZAACZAACZAACdggAQp0G2xUVokESIAESIAESIAESIAESIAESMD6CFCgW1+b0WISIAESIAESIAESIAESIAESIAEbJECBboONyiqRAAmQAAmQAAmQAAmQAAmQAAlYHwEKdOtrM1pMAiRAAiRAAiRAAiRAAiRAAiRggwQo0G2wUVklEiABEiABEiABEiABEiABEiAB6yNAgW59bUaLSYAESIAESIAESIAESIAESIAEbJAABboNNiqrRAIkQAIkQAIkQAIkQAIkQAIkYH0EKNCtr81oMQmQAAmQAAmQAAmQAAmQAAmQgA0SoEC3wUZllUiABEiABEiABEiABEiABEiABKyPAAW69bUZLSYBEiABEiABEiABEiABEiABErBBAhToNtiorBIJkAAJkAAJkAAJkAAJkAAJkID1EaBAt742o8UkQAIkQAIkQAIkQAIkQAIkQAI2SIAC3QYblVUiARIgARIgARIgARIgARIgARKwPgIU6NbXZmnG4j179mD69OnYuXNnqtf5v//+w9ChQ3HixAnkypULmzdvhoODQ6rbZYsGNG/eHN27d0fjxo1tsXqsEwmQQBITsKTvjF9++QWzZ8+Gv78/Ro4cidatWydxbZmdELCk+QFbhARIgASSmgAFelITtaH87t69ixo1aqBfv37o27evXs1Wr16N/fv34/vvv0+2GlvSAPzVV1/h2rVr+Oabb9TEK1OmTHr13rBhA0aMGBGLhUzWihcvnmyMJOP79+/jiy++wLx586LLkZ/FTmM2JYUxur5hmNfw4cOVuE5MSOrJ9q+//go/Pz988skn0WZ17NgRnTp1Qq1atRJjKtOSAAkAqFatGnLnzo2ffvpJj8eNGzfQqlUrnDp1Klk5JfV3RkKNffXqFSpWrIgVK1agSJEiiIyMhIeHR3R2yfm9qcVmGQ+6du2KQoUKqeh//fUXvv76a6xfv15L8gTFkb4hY1TMUL16dSxevDhB+ekSJfX8IDXG0UQBYGISIAGbJkCBbtPNm7jKyWSiUaNGapKxadMm5M+fPzrDlBLoM2bMwI4dOxJXkSRI3bNnTzXx6ty5s9HcRKCvXLkSS5cu1XueLl06ODo6JoEFcWchbSETrfnz50dHOnbsGIKDg1GlSpVkKVs30Txw4ACcnZ2jy3B3d4erq2uiykzqyXb//v1RtmxZPYEuE9Ly5csjT548ibKViUmABKIEuq+vL8aOHYv//e9/0UhSUqB/+umnaNiwYao2x4ULF9T3zN9//23UjuT83oyv4iEhIeqF5JIlS6IF+sOHD9VKdPv27eNLnuDn0jfkxW2FChWi85Axw9PTM8F5SsKkFuipMY4mCgATkwAJ2DQBCnSbbt7EVU4mEzJwN23aFGfOnFECVBcMBboMwtOmTUOlSpWi43z88cdo1qwZ2rRpowZTSVOuXDmsW7dOTeZEIA0ZMkRtY798+TLCw8PRpUsX9U83AM+dO1dNupYvX67SfPjhh5g6dSqyZMkSXc7atWvVSr5sQy9RogQmTpyIAgUKqOci9iZMmKBs//3339VEIeZKqi4TmVDJKvTFixeRPn16ZbPsHAgLC0Pv3r1x6NAhJbRdXFyUvYYrryLQ16xZY3QlQp75+Pjg559/jrb56NGjGDx4MA4ePBhtp6zqyoq7cLezs4Pwi7ka/eDBA0yaNEmJcXt7e8gqhAhwqW9oaKhaqcmXL5/iK3UJCAjA5MmTVf4yEZOfpTxd2vHjx8Pb21s9l/girO/du6cml1JvmVBJecYEt26ief78ecUkZhB7pK1mzpwZ/WeJL8xE0AtH6StHjhyBrDjJSpP8/vbbb0ez0G1x18JO2j2u/MaMGQPJw8nJSdnZokULte3U8CVAXO0vrHT9yFT7PHr0CMJT2lVeaBUuXFgx1dUpcZ9EpiYByyYg3/8ikGWHkXzP6r5XDAX6sGHDkD17dgwaNCi6QpLm9u3bmDVrVvRnrUePHuo7W1Y15ftCVn7lu0LEpewMktV6eXn71ltvRadp0qQJdu/ercYq2eEku75ibi8/efKk+j67fv068ubNq75/dd/jMj7J94TElzhShnyWDYOp79Ht27er77w7d+6o+ssYJGNTzGDqe1P37NKlS3ovdd955x3s2rVL2Sx2rlq1Cu+//z5kZ5CIbnnJKN9/upeN8jdhs2XLFrVzSOxYtmyZGlclby8vL3U8S8ZRYWt4jEzGDxlPZbwRzvKCU/fiQ0v5hsykb8jYU7VqVb1H8uJd7N63b58a73RBxjUZpxs0aICtW7eqNv/nn3/U+CZjoozHEgwFenxzEEkjuwV+++03VbecOXOqcqQPyLibEuOojKvCe9u2bao/S5vJZ6FOnTqW/QGndSRAAilOgAI9xZFbT4EyYRBBI6JKJj+9evVSwkZCQgS6rEKLIJf/ZeLQsmVLiLBZtGiREuu3bt1S545ltV4mFTIAy2As8WQyJcJHxHZQUJBKI0Fsk4FVJnkygRG7RCjLICyCTOwV8SovCmSSIeJbJigxw7Nnz1C7dm3I5FHqKSJVypOfxVYJsi1QtvsbE/fyPCkE+tOnT9WkVHYqCHspX15MlCxZUtkgbSECXCZMIjgfP36MUqVKYeHChTh37pzeCrqhQJdtprKtUSYD8iJEJgkvX76MXvGX+DKJ++6779SEJTAwECJIZeIgE2/DYGqiefr0abXTQCa4OvEuNh4+fFjVR9pDJrPyckFW3KdMmaL6gW7LY0zxrEWg/7+9+/e1YXvDAH5aJRGiVxAaUWhUCvwHSHQaEgUtiV6noVL5C/QKep2ORqJV8BfIzWeSV5a5a59Ze++7z805npV8c258Z6+ZedbMet/neX/M0ny9tWvPMbL+jt9vfR49erR3/Pjx6fnmhMlg4JDOxYvD8/bnSoPAOALI0evXr6d9GemznxibEnQCHyKKzBM2kWb7BcHWO/XkyZNpj1LrbXg/v3//vvfixYtJpPX+Iej2UyVGRDyEDyEk8hLk2BZkFAFma5DIkydP7j19+nTv9OnTe2fOnPkXAEv7qL2PuPDx48cueP8FQWeTCJh6ohAQ7Z9fv36diKxhbyfi+nck9MuXL9M9GxcuXJiIfaW4z0kusswOwpXdcR9sobnZGscvnX9+46sIOiHhypUr09wEB6NsB/GWMOz8x44dm67Xs3Tnzp3fa7oJQScenT9/flpb5N9z5Rye2YOwo3wTYsDLly+nDAIBAcEGvktGEAgCQaBFIAQ9z8NKBCrFXURCc7SHDx9O6eaiA5sQdA6TWsRKieYQqet+8+bN72tAxhEqqfVF0BnQSofjhHE2RII5UeqIEVcEvAayrwab8ee4IfsVnendrNRw11UOjmM4CBw4URdjhKBzGhHOGghbRWZGIugiB4hejXv37u1du3ZtihpwOO/fvz9F8jks7VhyLODnt5y2IowEEtkOnN9z585NDvWnT58mcaMGZ1uEnPgxH+VoztMUObxnz56dSL7oxPXr16efWp9aq/lcMCYccA6NdQn60nxLBH1k/V3Tfusj24KjJcU3Iwj8bQggYUiHBpqIsD1DttSmBJ1gyt4YhEQlKvYmfw17BbKNcNWeYT9DWms8e/Zs79evXxNRffXq1SR6+k0N9gg59+4W8Xz37t0kgvbGyD46StB7+yZCSgReiqDDhcBQmU3sMxGVIIr0Xrp0aeoF4O98LBF0AjQhpBVliSKfP3+eMITTfufv4ebZ+PHjxx9NVWVE3Lp1a8pmYjNr37Q+1vv58+fdNWBDZPTxEzYh6O2kBH94aELruT0IO0p0evv27eTzzO3437Zn5H6DQBDYH4EQ9DwhKxHg0Ig6I26GSLW6ZkZ0E4JOrf7w4cPv82m8JirZGuN5Wry0YVHydnD8RHo5a5wyxr9NkRMhNidSiFiZc79Ouo8fP54MtEhBDQSWg4MQnzp1aoigawzEiakhjZBSPxIFdp0i1sSGGhwh0R8RC6mS5kGA52PJsfBbqj2RoB3wEYkRqUfQf/78+cdaiD69f//+X3X15iiCzkFua9CJJqL7IlmiOpw76asEF6IHx1S03DUTRUS/ZUTA2/9vrEvQl+ZbIugj67+0PtJaHzx4MBGCu3fvTuu4bS1+tqYgcFgQQMIIXfYrIq733pcuvn379keTuNEU93YvZHMuXrw42Y5Kae+VCM33efsXwo0MEQBl7bRf3vCuqpdnz5C9nq1p8R/ZR0cJem/ftI+NEPS5HRUhdx/q3+25RFH/3e7LdR9LBJ34LT3+6tWrv29d2YCoPCzhtN/5e8+rZ0PWF+G8BpGfLZBVVaVebLisI+eqUjlrxm7JcjLss54hpXfrEnS2Ro8Y5QKyL5xPaZ3nlYh/EHbUs0xEIrgTKNiKtlzvsLzvuc4gEAR2j0AI+u4xPrRnmBN0dXlS0KujuShGdXHv1X9JB1TLXTXo81o38yDXbVRjTtBFQapOu4C8fPnylErprzpp84pu9sZIwzGRcrXC2xL0dWrQdcAXcW9r0OefFmsJOkGE8j4n2e55ybHgoErnm/9WJEI6ZhH0tmbdvCMEvVeD7rdqBmHPkZbWLipUkXjCgJRG6eDqCjkrolijBH2O3dJ8SwR9ZP17z1G7Pu5ZRIaY5NlU41gpuod2A8iFB4FBBFqC7ifeDWTwxo0bU7Szurj3CDo7oLa7rUFv98Ii6N4tKe9Gj6AjbWxNDYIpEucvglg1x71bGmk4NrKPjhL03r7Zq0Gve29r0Od2tCXoMhZu3ry5MUEnehNXW4Lu3ATvIuj7nX8VQe/VoDuWSIKUqw2XZm4vZhMJKYQBNlLpk7IFA6EVNBgl6K0Pws8QbHB/nqPqFaIcboSgj6z/vLRslR2VkaCkjFBD2Gp79wy+cjksCASBI45ACPoRX+Btbm9O0M3FSWKEpJqJrhZBZzTbpjsMLzVe5GIbgq7uHYHTDd1AfBh06dqUZwZbbRyytylBlw7PgWw7sCOLIqJSCSntIynuqwg6hV7EX219DSmIsBsl6CINnN42Tb3m4sC4Tueo0ToK8HMvvRR316xJ26hjUfPvV0tZxyC11k/qKwIu7V1tKXLu2ZG1YEizV/PYI+hL2I3Mx9nncLYd+FvCPbL+IwS9ff6kiLpPpQUZQeCoIzAn6DKjvDOisUhXEXRZWDJsEK8aUs1Fe7cl6MTa9rOSzoH0ifh6xwl7vQwk1zFC0Ef20W0IOrFalBlWlQKvBIwnB8RGAAAE0klEQVRtHSXoCD17aF/3dz5kOBBq1WH37ps9leJevVccIxuCwMpe9XBqBYLec76qBr21Vfp2VHZDPRua2El39wwZfApzsWU9gr7kgxCk+S0EI0PPGz1WKoL+f9hRZXV8AGQ9IwgEgSDQIhCCnudhJQI9gu5gTpDUMCp0EXRpWwyoaIjGNQwPpZ2R3Yagc95E7RFwireIulHnJRhwAEuhlyqNiEr54/SNRNBFbxh352DEq0mcWsrqGLsNQZfibX5p5rp7Ox9HQUbCKEGHrUg3B0s0iOMpWsIpFQGAs+Y/HDu1bS3h9luRBLXm1SRORIQTXfX/mxJ0aadtKmWd3xpxOmRZiBZZE8dZQyUKCPvt27enSA+HjHPaI+hL2I3Mp7GgNRWpgAV82udiZP2XCLo14PQSHTTvQ9D9z/OUEQSOOgJzgu5+7Uei197hIug+b4gI+atZp/4T0tlFfbcl6N47XdQ1N7OX6OdB/CNAahJHIFRjjdyxUaKpGnJWQ9J5ZHi+ZiP76DYE3fmIzwioZmjINpuEQI4SdHPY79Slux82mq0WgbbvsWn2JHsTUqyEq73vilpXkzi9Z9gM9ta+vSlBdx/tZ9b0QinRXaM04jMhnBignMGQeUVoIGazHYReAgtfo0fQl3wQuCo7Yuv0soGT50QphmfgIOwokce9s8X6BfBbCFbsd0YQCAJBIAQ9z8AQAqsIus+DcKgY/SLKSA6iRfFHHjlDappFBLYh6NW0h7F2XqlgUtV0260h9dt1cAQRRKnv0qlHCbp5dEFnJP3lOFDZ1SaXqr8NQTe/FHVdjjl5J06cmCLyHKNRgm4O9ZyiQdI7XRf1nyDC0eJEIcu6wfq8zpxwc1BFr0SRyhFUc+lajE0J+vxB0hiuPg3HYRaNUf+vUVMNTl51buc8uy6p9pxFY06Gl7Bbmg85JwhwVNX9EXnm51ha/yWCrveA64SzTzwRiDw/bW+EoZcuBwWBQ4hAj6C7Dfsccl4E3V5lD5NBYw8jWMo0EYXdlqDbe6rhI/vgnSdM1kBaCZP+slHOzZZoajkSQTfP0j66LUHXiA5pEzlG5OyLiCmhoz6ztpRirr7aMeq3lS1phIfkso0EbZ+eVNMNC6R9Pp9ML/uZem+CI/JcQuOmBN3n8tqhJK2+2uHfCQeeDfa+ht4kSiKIvIg1ccW/KVXoEfQlH0R9vvkIAoQL/gq/wf0j6AdhR+EHd76V5nj8GUJBfZbwEL76ueQgEAR2hEAi6DsCNtMGgSAQBIJAEAgCQSAIBIEgEASCQBBYB4EQ9HXQyrFBIAgEgSAQBIJAEAgCQSAIBIEgEAR2hEAI+o6AzbRBIAgEgSAQBIJAEAgCQSAIBIEgEATWQSAEfR20cmwQCAJBIAgEgSAQBIJAEAgCQSAIBIEdIRCCviNgM20QCAJBIAgEgSAQBIJAEAgCQSAIBIF1EAhBXwetHBsEgkAQCAJBIAgEgSAQBIJAEAgCQWBHCISg7wjYTBsEgkAQCAJBIAgEgSAQBIJAEAgCQWAdBELQ10ErxwaBIBAEgkAQCAJBIAgEgSAQBIJAENgRAiHoOwI20waBIBAEgkAQCAJBIAgEgSAQBIJAEFgHgRD0ddDKsUEgCASBIBAEgkAQCAJBIAgEgSAQBHaEwD/p8Klom0arSgAAAABJRU5ErkJggg==" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAFACAYAAAAvc1ZOAAAgAElEQVR4XuydB3RUxRfGvzRIIPQivf/pvSO9iDSlV+kgvUsH6b1IR4oiCiqKIk1BFCliQ0WUDoIKCNJ7TYD/+QZf3CzJ5gUCbHa/ew4HyM6bN/Obl533zb1zx+fevXv3IBMBERABERABERABERABERABERABEXiqBHwk0J8qf91cBERABERABERABERABERABERABAwBCXQ9CCIgAiIgAiIgAiIgAiIgAiIgAiLgBgQk0N1gENQEERABERABERABERABERABERABEZBA1zMgAiIgAiIgAiIgAiIgAiIgAiIgAm5AQALdDQZBTRABERABERABERABERABERABERABCXQ9AyIgAiIgAiIgAiIgAiIgAiIgAiLgBgQk0N1gENQEERABERABERABERABERABERABEZBA1zMgAiIgAiIgAiIgAiIgAiIgAiIgAm5AQALdDQZBTRABERABERABERABERABERABERABCXQ9AyIgAiIgAiIgAiIgAiIgAiIgAiLgBgQk0N1gELyhCUuWLMGoUaPCuho/fnzkyJED7dq1Q9WqVd0WQf/+/XH9+nXMnj37qbXx+PHjqFixItavX4+sWbNGqx1Xr17Fu+++a649duwYbt68iZQpU6JgwYJo06YN8uXLF636HqXw4MGDcf78ecybNy/CakJCQvDGG29gxYoVOHHiBBIkSIBs2bKhefPmqFat2qPcWteKgAiIgNsRcJ4X48SJg1SpUqFcuXLo3r07kiZN+ljbfO3aNSxevBjr1q3DH3/8geDgYOTPnx+vvPIKcubMGXbvbt264fPPPw83f2fJkgUvvPACXnrpJbDdMhEQAREQgZgjIIEecyxVkwsCfBGZOXMmFi1ahLt37+LcuXNYu3Yt1qxZYwRk8eLF3ZJfbBbof/75p1kAuX37Nlq0aIE8efLg3r17+Ouvv7Bhwwb07t3bCPUnZVEJ9NGjR+OTTz5Br169zOLNhQsX8NNPPyFv3ryoU6eOaebRo0fBMVm2bFmMNftx1BljjVNFIiACHkvAmhfffvtt00cuqO7fv98sCFMAx+T3XEQQeV+K8yZNmuB///ufWcCdM2cO9uzZYwR54sSJzWUU6Fyo7tu3r/k/F1p//PFHLF26FJkzZzYin+JeJgIiIAIiEDMEJNBjhqNqiYIAX0Q48X///ffhSjZo0ADp06fHtGnT3JIhxeCNGzcwa9asp9a+h/Gg0xtdv359+Pv7gy9h9EY/bYtKoBctWhRdu3Y1nv3IjB72L774Ah988EGMdedx1BljjVNFIiACHksgsnnxww8/xJAhQ/Dzzz8jYcKEj63/XLD18fEJV/+lS5fA7+KFCxeiQoUKYQLdz88PM2bMCFeWi5sNGzZEpUqVMH78+MfWTlUsAiIgAt5GQALd20b8KfU3shcRvoQcPHgQy5cvD2vZ119/bV4E9u3bh8DAQJQvXx4DBw40odm00NBQTJ8+3Xjfz549iyRJkpgXCnpgLSF65MgRjB07Ftu3b0fcuHFRo0YNUCCyPtrHH38MvgR17NjR3Ov3339HsmTJjKe2Z8+e4MsIjQL9zp07yJ07N9555x2cOXPGhJn369fPhCFaxjZOmTLFeB7mz59vPBH0/rIeerInTJiAH374ARTO9Frz+gIFCoQbjc2bNxvPCfsdFBRkPN6MODh58uQDIe5cMHj//fdNH9KlS/fAqH755Zfo3Lmz8Y4wTNyOvfXWW3jvvffw999/Gxa1a9c2LAICAsIup4eH/aR3hS9yGTNmNAwtD7dVkC+W48aNM94gjk+zZs3wzz//4PTp05GGuBcuXNh4atq2bRthc0eMGGGiLRyNHpwSJUpg48aNxotz4MABw5he92HDhhmvEI2LHJUrV8bOnTsxZswYE73B69KkSRNpnXaYqYwIiIAIPCyByOZFfj8xzHzXrl1h4eNRfff++uuvaNy4Md58802ULl3aNInRUwxDL1u2LIYOHWqrmYywqlKliplfOK/S+L0ckUDnZ/xO5tz77bffPvaQfFsdUCEREAER8AACEugeMIixoQuRvYgw9JpikIKbtm3bNrRv396INO47vnz5sgmNv3jxIlauXIl48eJhwYIFJvSPQov79SgoKby4Z4/G8DsKcgrgLl26mLDB4cOHm5cNCmUaBfqrr76KXLlymXooun/77Te8/PLLRjxTUNIo0Cl2KR4pRHl/7pHmS8mnn34atiecAj179uzm3izHhYJSpUoZQV+rVi0jytkn7tX76KOPsGrVKtMGhnLTuCjBcPSmTZuaflNkch82Qw+dPehczKD4pZhm+yMyvozxhY2LGHaM/OlpZ3/JjQsc9IiULFkSU6dONVXQ28L94OzTgAEDDHu+lPFa8m3UqJEpx88phulVYZ9u3bplvDFcsChWrFikAp33/uabb0y0Ank7Gxc9XnvtNfzyyy9GjNO44MIXRy5kkFmZMmVMOynmeV+r/xZDeoQSJUpkFh+4v5PjHlmddripjAiIgAg8LAHneZGC+tChQ2ZBmguIlqi2+93L77LVq1fjs88+M3MVF1OZf4SC31qcjqyt/L7cu3evyRWTIkUKs9BsedddCXQuIHOx+vXXXzfCXiYCIiACIvDoBCTQH52harBBwPlFhEKWQpPim2LX2gvNcLm0adOGCXZWfeXKFfMC0KdPH7OXml53em8jS9xGjzgF/KZNm8JeSiiAKfzppU6dOrURx3wJ4t9MimMZvexcDJg7d675EUUjvbMUovTEW8bQfApyCmUaBTr31nNvN73flvEFiWKcbWG4uWVMrEPPstUHitvkyZOH3dcRqaNAZ0ghvdoMy3a1b5+LAXxBc2bE6APLfH19wT9cwKAQJ1cuEFhGjz8FORci2FcyZL3OXnmOIRcLKK4pltlnviSyz1YkAl88yYjiP7IkcWwHx4TeeQp0LpLUrFkzHLfJkycboR9ViPvWrVvN4gAXbpiQ0GLIhITcauFoduu08ZiriAiIgAjYJmAlieP3MI1zCP/NheUePXqECWS73738nq1Xr55ZCOVcyj+MMipUqFCkbbIixHhv2osvvmgWXB1D610JdC4ecKGZi6LWwrZtACooAiIgAiIQIYEoBTpDfxk2ymyfzmZ5zMRWBKIiENGLCJPLUOBaYXR8uWBW8UmTJhkPp6N16tTJCDUKToZPt2zZEs8//zxatWr1QKg4xS9FOIWiZfTEFylSJGxfHYU5xTg9BpaIZFl6IL777ruwkHsKdIZmM7zd0Vg3vf306tMoPum1p2fZ0egBZ7IfS8hbnzGcnIsATLTDfnORgN5951BxlrfEJYUw2zNx4kRzL1dGPvQUO+6dP3z4cLhs6PTws19cfCBHvgTSK+5ofLGzFkaYJ4CeGC5YOBoZcrwsIU8Rz3qc+8yXTr4ERibQrTp3795tvPmsjyH09ORkyJDBfGxXTPN7q3r16mF9shg67qu07me3zqiecW/6XPOCN422+vq4CFhJ4qytO4wS4vc0vdFcFOX3N73Ydr972U5+H1OY0wvOeYJzRlTGbWbMtcLvSS628m8uglrzgSuBToHPjO/cUqZ3wqhI63MREAERsEfApUCnl47hq1wdjSg8ynk/qL1bqpQ3EnB+EaGHm95mekvp4aQxaze9wgxX5p45R6OYpveY3gAaBQKFHr25DPPm51ZYNF9KeGSM495pXsMXEIpGvrxQoFMQUyA7GgU6BSvD0Gl8uaFn1/KoW2XZRopsiloaBTo9thTGjsa2MNTbyn5rfUavOn/GcEZGEzCcMaJ+s7wlLhmSzRc4RgJY4fyRPUsM0ycjZkW3jCGMfBGjkR0jEyjQGQLJ+rh/3vm4HIaqc9GAn48cORIUz475AlgXFzA4XlY2fu55JA/nPtM7zuiEqAS61V72u0OHDib3gBXSHpGYpujnfkkuHnC/P//PP7yXtehgMWQZa1uBdR8J9Oh9I2leiB4vlRaByAhEtvWLW4y4AM3tXDxi0+53r3UfRpoxIeuWLVtMno3oGLcKcXGT8xbnVZorgW7tWefed8e8LNG5p8qKgAiIgAiEJ+BSoPOlmxNIpkyZxE0EHomA84sIRS/3qzEcz1rhp6hiMjZ6iCPyoNPT7RyezCRxDGmn4KbHlV55JsphZviIRCz3u/M4mOgI9Mg86AzptgQwBSmFM1+MHI0h4vT+RuRBZ18Yrk0POpOa0SvP8EJns8Ql94RzMYPHkFGQRrRP27qWIpr7FxlmHtELGvff88WKAp2J9Bh1EJkHncexceGB3hxGDETmQbfEb+vWrQ1/Jg5yNEZBWIsDdh8min6y4+IBLSIxzcUTikbyY3IkbkXgQkLdunUfEOiWl9/x/hLodkfjfjnNC9HjpdIiEBmByAQ6w8Y5FzJRHOcVu9+9vA9PueB3NpOMclGX3vjoGgU5t0NZi6muBDojnBjdxQUBdzgtJLp9VXkREAERcEcCLgU6V275gi8TgUclENGLCEUkM21TNDEMnEYhyLNXOeFbRjHPlXnuyaP4i8gYrk0PLYU9hRpFJBOEOe77drwuOgKdSeLoVXeMIuF9GI7PBHO0yAQ6RTijBb766qtwHn0KeS4UWC9P9FJzIcxKlufYVuckcewnX4bYv8heiHhmLT0gfMnjS5azZ9xRoNOzzsgFLpRQqFvG6ALuKeR+ckYpcDGBe9Sd96Bz24EVKk/eXEggf74oWkmG6JVhe/jSaNeDznbwxZQi3Tqej//neDACwTKG5/NF1PGoPj5b9P44e9AjEugR1fmoz7snX695wZNHV317kgQiE+g8/YKRSIzo4t92v3sZjUXvNxdD+Tf/cD95RFunIusnF4yZqJQL6FF50BlOzzmCC+2cy2UiIAIiIAIxQ8ClQGc2aobtukpGFTPNUC2eTiCiFxF6zOnlZLI0K4SZSb0oEvncMUEYw7ApWpkplqKMopaCjfurue+NwpOJ3xiuTg8uhT696nypoaik4GfyNf6MLznWsWHREegU19wjTi8CPdjW8WYUqtwj7Uqgc+87+0FhypcmK4s79/fxiDT+nEbRyT3aPAOcoY0UtGTB30Fngc58EPS0c4EgIkFvPUtM8sYQcXrQyZR7Gimgz507Z/bic8HB2lvP8EQKbSaK475zbhGgB5xJ3RwXS9geet754sZ6uV+fEQ+DBg0KE/ccK77csY3kz74wfJ+Cnd7XiAQ662QkBLOwM0kgPUg7duwwWwt4NjqPjKNxWwQjI/hzjj+fB7abWYt5PcPhOc7sD8P57Qj0iOrk8yWLmIDmBT0ZIhAzBJy3flEcc2sSFw05P/J7zUo6aue7l9+NPMqScxSTzXGe4fcz63HOL8IecKGWC8Oc3xhdxu9ufnfypAzOt1buD859XPTltiXuOec9mIOFC6FM8MoIpqiyxMcMMdUiAiIgAt5BwKVA50szPYX88mbSLcdkWsTjHLbrHcjUy4chEJmnwAqv5gsJV+1p9NzSc8AwZQpaes+tY734OcOsGVbH49X4EsJzvilu6aG17NixYyYcmmHo3HvOlw+KQ4pOPsfREeh8/imKuTBAoc+zteltts6adSXQ+RlfeuhV5gsNX8Aoevmi45xZl3vB6VHnvnS+7HBhjGLWWaCzTop3JqDj7yC9F5EZf4fJivfm8Wf0aJMFPetcOHAMqeeCAffV8xqW4Wdc0HD0vtPbbp1BT28NFygYglm/fv1wTaDHm4smFMnMBmwda8YXv4gEOutiFmB+zn+z/1xsYaSBYxsp3Lkfk9EDVsI5CnW+aFKM8+WR0RT0GnH/P5nyxdRiGJEHPaI6mRNAFjEBzQt6MkQgZghYyVOt2jif8V2LC5X87mWiN8ui+u7ldyIXSvk3t3pZxggj6yhK51ZTYFPEc0GW+U34Xcl5h/MptylZRoHOfDE0ziH8Tuf3Lr/XucgeWaRazFBSLSIgAiLgfQRcCnSuxvIFm5NFRKujTEQlEwEREAER8B4Cmhe8Z6zVUxEQAREQAREQgSdPwKVApxeJe0kZRioTAREQAREQAc0LegZEQAREQAREQARE4PERcCnQecSSc8bmx9cU1SwCIiACIuDuBDQvuPsIqX0iIAIiIAIiIAKxmYBLgc69qzQmrnLOAh2bO622i4AIiIAIPBwBzQsPx01XiYAIiIAIiIAIiIAdAi4FOjNpb9261YhzJitxFunMfiwTAREQARHwHgKaF7xnrNVTERABERABERCBJ0/ApUDn8VKuzDFr9pNvuu4oAiIgAiLwpAloXnjSxHU/ERABERABERABbyLgUqB7Ewj1VQREQAREQAREQAREQAREQAREQASeJoEoz0F31TiegeyNxnOweVa1TAREQAS8jQDPQde8EPWo9+rVC1WqVEGtWrWiLqwSIiACIiACIiACIvAvAZcCnUI0MkubNi02b97slSAl0L1y2NVpERABAJoX7D0GEuj2OKmUCIiACIiACIhAeALRCnG/desWjh49ipkzZ6J8+fJo0KCBV/KUQPfKYVenRUAEIiCgeSHix0ICXb8uIiACIiACIiACD0MgWgLdugFfyGrXro3169c/zD1j/TUS6LF+CNUBERCBGCbg7fOCM04J9Bh+wFSdCIiACIiACHgJgYcS6GRDD/qWLVu8BFP4bkqge+Wwq9MiIAJREPDmeUECXb8eIiACIiACIiACMUHApUAPDQ194B43b97EqlWr8OGHH5q/vdEk0L1x1NVnERABEtC8YO85kAfdHieVEgEREAEREAERCE/goZLEpUmTBq+99hqKFCnilTwl0L1y2NVpERABF0nivH1ekAddvx4iIAIiIAIiIAIxQcClQD9+/PgD94gfPz6SJEkSE/d2izru3buHOXPm4K233sLPP/9sq00S6LYwqZAIiIAHEvCGeSGiYdu0aRP69OmDd999F7lz545yZOVBjxKRCoiACIiACIiACERA4KH3oHsCzZCQEPTu3RspU6bEmjVr8OOPP9rqlgS6LUwqJAIiIAIeQeDNN9/EV199hevXr2Ps2LES6B4xquqECIiACIiACLgnAZcC/fbt2/j444+xb98+XLt27YEeTJ061T17FY1Wbd26FWXKlDHh+r/88outKyXQbWFSIREQAQ8k4A3zgvOwff/99yhcuDBatWqFV199VQLdA59rdUkEREAEYhOB9957DwcPHsSIESNMs7dv327mJzof582bh+zZs0fanTx58mDPnj2xqbte11aXAr1v377Yv38/ypUrh8DAwAfg9OjRwyOAMelRsWLFoiXQm8zrH9b3TIGJ0K50I49goU6IgAiIgCsC3jIvRMSgcePGGD58uG2B/r/8+fB7Kj+0SZAUuYKSwj93QfjEC9YDJgIiIAIiIAKPRMBZoDds2BD9+vUzeobm4+Mjgf5IhJ/uxS4FOj3LGzZsQLx48Z5uKx/z3V0J9BdeeOGBu3PR4vdlfcJ+Xub0ZXxdfcBjbqWqFwEREIGnT8Bb5oXoCPTJkyeD0ViOliJFCiT93/8wtWpivL3ya7x44ChCu09D8rL3X55kIiACIiACIvCwBJwFevHixc1WrODgqBeB5UF/WOpP7jqXAr1y5crYuHHjk2vNU7qTK4F+48aNB1qVP39+FOzzCnJk88HYpHeR79R5/FZjyFNqvW4rAiIgAk+OgLfMC9ER6AwpdD5+buDAgYibNQsml46DWWt2o/neX3G+2XhkqVP2yQ2W7iQCIiACIvBYCbRt2xaVKlUKy1NCpyZPukqcOLG576hRo7BlyxYTel6wYEFwe3BAQADOnTuHAQMG4OrVqyZamZ8/99xzmD59eoTttcofPnwYqVOnNtuueC3nmkGDBuGzzz5Dzpw5Ubp0afTv3x9MbDplyhRTJmPGjBgzZgwyZMhg6rYEOuctRoX98MMP4PY1JkBleLzs6RNwKdA5mEmTJsXLL79sHiZPtYcJcS9fYy/emBEAn59fN1juFensqXjULxEQAREII+At80J0BHpEZZnFPUXpQhia5Tomf30J7b9di3P1hiFrk6p6mkRABERABB6SwE877+Hvk3cf8uqHv6xYQV+kSf1g2DgFOjXS3Llz4efnh3HjxiFBggTo3r27udmOHTtAxx7tpZdeQuvWrVG9enUj3NOnT482bdrg0KFD4Jzx6aefRtpAfk6BzdNEzp8/D4a0ly1bNmwPeqFChbBt2zbwtK1jx46hWbNm5tQRXrN+/XrMmjXLJMT29fUNE+h0wq5cudJ8RuN1bJPs6RNwKdCZfKBevXrgUWQM1+OD52ie4l1/WIE+Z1IAAndLoD/9x1gtEAEReFIEvGVeiAmBnrJ0IQzJch1jv7mOLts+wbma/ZC1Ve0nNVS6jwiIgAh4HIH5i+/gx1+evEDv2MoPxQr7PsCTAp1imaKbRpFtea+dC9N7zqOqeQ2TjvIkKXrVaRTYrpJVU+RTgCdMmNCUnzZtGi5duhShQF+0aBFOnDiBoUOHhjWhZs2a4HYsesktDzrn806dOhnv+rPPPutxz0ps7pBLgU5xniVLFlStWjXCJHFMHucJ9rACfcb4AATvuy/QQwJLwD9PYU/AoT6IgAiIQKQEvGVeiEmBPuq7UHTf+gHOVemOrB0a6+kSAREQARF4SALu6EHv0KEDSpYsaXq0bt0647GeMWMGuE12zpw52L17t/Fc//XXX2jatCnat2+P0aNHmyjlrl27YufOncbz/uGHH0ZIhSdplShRwtRj2ZIlS8BwdyuLu6MHnXUlT54cbJdlXBRo0aIFKlasGCbQ+dnPP/9s2njq1CkTLk+vvOzpE3Ap0Lma8s0337jMBPj0u/DkW8Bj1hji/tqYACQ6KIH+5EdAdxQBEXhaBDQv2CPPcMRnShfC4CzXMWK7L3puWoJz5doha7c29ipQKREQAREQAbcnQOHbsWNHI6CdBfqECRNw/fp1DBs2DP7+/hg/fryJSKZAv3jxIpiImo7QRIkSgSekWHvEI+p0vnz58N1334UlgWNYOvelRyTQFy5caAR3VB50x/tQ/Ldr1w6ff/552P55t4fvwQ10KdAZrrFq1SrEiRPHgxFEv2uWQJ88KgBJf5dAjz5BXSECIhBbCWhesDdyjgJ92I646P3FIpwt3gzZ+naxV4FKiYAIiIAIuD0BVwKdx55RM9CTTcHMfeGWB52nZFFwM0mbHePR1jzbvFu3brhw4QKaNGmCUqVKRSjQjx49ava708ueKVMmI7qZfI7h94570E+ePGkipBl2Ty89w+BXrFhhPPuyp0vApUDfvHkzli1bZlZU0qRJ84BQ5yqQN5ol0CcMD0CKP+4L9BuH4yCwUTtvxKE+i4AIeBEBzQv2BttRoA/5NSH6rn8d5wvWQ5bB/x3Raa8mlRIBERABEXBXAq4E+oEDB8w+c26lTZcunRHUPJ+cHvQff/zRhJwHBQUZ73rWrFnNXvBs2bJF2NUzZ86YrO+///47UqZMaTLHnz59OkKBzgqYJ2zSpEkmzJ6eedZNsU6z9qAzgR3D2tk+JrpjXxo31jYsd3jWXAp0JiSI6Jgxq+HMOuiNZgn0sUMDkOqoBLo3PgPqswh4KwHNC/ZGngI9VelCGJTlOgbtTYb+a2biQu7qyDxCR3LaI6hSIiACIuCZBCi2mc2doeh0gPKINZ5rvmvXLnM0mkwEXAp0hju4Mqby90azBPqoQf5I+/f98wLlQffGJ0F9FgHvI6B5wd6YOwr0AQefwcBPXsOFbBWQedwYexWolAiIgAiIgEcS2Lt3L4YMGYKPPvrInJB19+5dcz46/2amdmfr0qVLWJZ4jwSiTj1AwKVAF6+ICVgCfXh/f2T4575Av7rxL8TvP0HIREAEREAERMCcaZu6dGEMzHIN/Q6nx+CPJuBixhLINHmq6IiACIiACHg5AR6TxjB0hpZTmBctWhT9+/dH3LhxvZyMuk8CEQp0pudnmn0mMHBlPCLAG80S6ENf8UfmM/cF+pU1exA8YrY34lCfRUAEvICA5oXoDbKjQH/lz6wY+sEoXElTAOmnz4leRSotAiIgAiIgAiLgVQQiFOhM3c/jAriy48oGDRrkVbCszloCfVAvf2Q7L4HulQ+BOi0CXkZA80L0BtxRoPf+OweGLR2Gq8mzI93cRdGrSKVFQAREQAREQAS8ioBC3B9iuC2B3r+HP3JcvC/QL85ahUSL1z9EbbpEBERABETA0whQoKcpXQQDslxFr1N5MHzxYFxPlAFpFr7naV1Vf0RABERABERABGKQgEuB3rBhQyxfvvyB2zGzO9Pwr169OgabEnuqsgT6K139kfvKfYF+YeK7SPzhg4kdYk+v1FIREAERiJqA5oWoGbGEo0DvcbYARr7ZHzfjp0Sqt1bYq0ClREAEREAEREAEvJKAS4FerFgxc06fs/F4gMqVK+O3337zSmiWQO/VyR/5rkuge+VDoE6LgJcS0Lxgb+Ap0NOWKYL+ma+i+8XiGDW/J0LiJkCKJevsVaBSIiACIiACIiACXkkgQoHevXt33Lt3D1999RUqVaoUDsydO3fMOX2FCxfGzJkzvRKaJdC7v+yPVr7L8euNc/h13irkHfsWfFOm9kom6rQIiIBnE9C8EL3xdRToXa+XxZhZnUwFirSKHkeVFgEREAEREAFvIxChQD9x4gQ2b96MiRMngmfvOZqvry/SpUuH5557Dv7+/t7Gy/TXEuhd2vqjT+BqbLl6Amve/xLV2gyBf57CXslEnRYBEfBsApoXoje+4QT6zTIYM6OzBHr0EKq0CIiACIiACHglAZch7h9//DHq16/vlWBcddoS6B1b+aFf/DUS6HpCREAEvIaA5gV7Q02Bnq5MEfTLfBXdbpXG4Bn9EXTvqkkm6hMv2F4lKiUCIiACIiACIuB1BKLM4n7z5k188cUXOHr0qIGTKVMmVKlSBXHjxvU6WFaHLYHerrkfBiX8T6BXrdUOcSrU8Fou6rgIiIB3ENC8EPU4hxPoIaXxyoxXkfjOOSSa9wl8kmtNvxgAACAASURBVKaIugKVEAEREAEREAER8EoCLgX6jh070LlzZyRNmhTZsmVDSEgI9uzZA+5DnzdvHvLnz++V0CyB3rqZH4Ym/k+gVyleA4GN2nklE3VaBETAOwhoXrA3zo4CvXvos+g+fTxS3DmOhNPfg2+aDPYqUSkREAEREAEREAGvI+BSoL/44oto2bIlGjRoEAaG4nzq1Kn49ttvsXLlSq8Dxg5bAr1FYz8MTyaB7pUPgTotAl5KQPOCvYEPJ9DvlELH6dORNvR3JJi4CH6Zs9urRKVEQAREQAREQAS8joBLgV6mTBls2/bg2d6XLl1CqVKlsHfvXlvA9u3bZzzwAQEBtsq7eyFLoDdr4IdRKf8T6JXzlkNQ657u3ny1TwREQAQemoDmBXvoKNDTlymKvpmvoPvdUmgzfT4yh+xC8Mg58M9VwF4lKiUCIiACIiACIuB1BFwK9Nq1a2PZsmUICgoKB+bQoUPo1q0bPv/8c1vAcufOjS+//BJp0qSxVd7dC1kCvXFdP4xN/Z9ArxCcGsEjZrt789U+ERABEXhoApoX7KGjQM9QtiheyXQFPVASjacvRe5bPyB40BT4FypprxKVEgEREAEREAER8DoCLgX6Z599hk8++QQvv/wy0qdPj1u3buHw4cOYM2cOOnTogKJFi5rz0i1LkSLixDcMke/YsaM5ms0TzBLoDV70w4R0EuieMKbqgwiIgD0CmhfscQon0H1Lou60j1Hw5mbE7z0KAaUq2atEpURABERABERABLyOgEuBXrBgQVy7ds02FHrWI7I///wTgwYNQr169VCiRIkHPPKRCXvbN37CBS2BXremHyZn/E+gl/dNgASTFj/h1uh2IiACIvDkCGhesMfaUaD39C2J6jPWocT1zxCv8yDEqVjTXiUqJQIiIAIiIAIi4HUEXAr06IhzkosfP36EAIsUKYLLly9HCjcyYe+uo2EJ9Ber++G1zP8J9DJHTyHxhw/u2XfXfqhdIiACIhBdApoX7BELJ9D9S6Dy9M0oe20Fgtr0Qtzq/yVetVebSomACIiACIiACHgLgSjPQY8JEFG90EUm7GPi3o+jDkug16zqixnZ1mLL1RNY8/6XkEB/HLRVpwiIgCcS8LR5wXmMKNAzli2GPpkuo2dACZSd/gMqX30XgU07IrBuC08cUvVJBERABEQgFhHYuXMnJk+ejHfffTfCVpcsWRLc1sbjtt3d3nvvPRw8eBAjRoxw96baap9Lgb5x40aTCO7YsWOmMu5Df/7551G5cmVblXtqIUugV6vsi9k5JNA9dZzVLxEQgQcJaF6w91RQoGcqWwy9KdDjlkDxabtQ48pCI84p0mUiIAIiIALeRWDPnj2YPn06Fi5c6BYdl0B3i2GIsBERCvTQ0FD07NkTmzdvNoI8Y8aM8PX1xV9//YX169ejfPnymDFjBvz9/W33bNeuXWZlg4nmnK1Zs2a263GHgpZAf66CL17PfV+gf/btnyj19TcIHj4T/nkKu0Mz1QYREAERiDECmheihzK8QC+OAjOOoO6lGSa8nWHuMhEQAREQAe8icOPGDRw4cADM5eIOJoHuDqMQcRsiFOjz5883x6vxzzPPPBPuytOnT6Np06Zo1KiRycxux5j1natFBQoUwK+//oq8efMasX/16lVQnPfr189ONW5TxhLolcr6YkE+CXS3GRg1RARE4LER0LwQPbThBHpQMeSafhKNL040CeKYKE4mAiIgAiIQ+wksXboUS5Yswe3bt5EgQQIsWLAAqVKlwpEjRzBs2DBz+lXcuHGxePFiXLx4MSyknOJ43rx5CA4OxqlTp4wm6tOnD8qWLYtx48YhYcKE5khr2p07d8zPV6xYYep2Ns7PzPVFbcV7XL9+HSNHjkS+fPlMUSbrHjx4sLlP2rRpMXHiRKROnRrOAn358uWmTXHixEH16tXx8ccfm9O8GOLuqo7333/f1EcOAwYMQPbs2fH666+DScDZprNnz5pk4XTykgu3uA0dOtQkDqfRIcxQ+5s3b5qfMUydbbhw4YLRiLwmJCQEzZs3D9Oe586dM/ciX967cOHChqFHh7hXq1YNPXr0QI0aNSL8zfniiy/w2muvYd26dbZ+s5599lksWrQIOXPmxAsvvIA1a9bg7t27mDBhApIkSYLOnTvbqsddClkCvfyzvjhcdgdGnvwJE/f8gw5rN8qD7i6DpHaIgAjEKAHNC9HDGU6gxyuGrNMvosWFEeaINR61JhMBERABEYg+gZDvN+HO0SPRv/ARr4hTqhJ802cOV8uVK1eMVvryyy+NCD9+/DjSpUtnBHXNmjVNNDKFLoVmokSJ8Ntvv4UT6HR2rly5Erlz5zbbifl/bi0+efIkunfvjg0bNpj7fffdd5g1axa4zzoio0DnQgH1VeLEicGtaG+99Zb5GfVWrVq1jJhlBDRFOPUbdZmjQKfQbdGiRdgiAK/nQsEPP/xg6nRVB4/jbtmypdFzjK5mvewL25MjRw5zP+pK7nUvXrw4fvrpJ4wfP94sALCvLPvBBx8Yod2/f39ky5bNCHG2fceOHeZYb4r8qlWrGtZcMDCJWDNkMIsa58+fR8OGDc0ihkcLdD4oTAqQKVOmCB+EEydOmDPNuZfCjnEF5+effzarIRzgtWvXmssuXbpkQui///57O9W4TRlLoJcp4Ys/K9wX6EPO+6LvwiUIbNAGgY3auU1b1RAREAERiAkCmheiR5EvD5nLFkMv7kGPVwTpZoSg/fkB8C9UEsGDpkSvMpUWAREQAREwBK5NH4aQb7964jTi9xqJgGfD5+CiEKce6tChgzlKmjqHtnfvXiM0Lb1jNdZREPPf9GpTb1lGgVu3bl0jRGvXro0xY8YYLzi9zXny5DERzJEJdApdS5xSzLKer7/+2rRl4MCBWL16tbmU29Xy589vIpqp46wkcYx0poed96IxIoD35uLAP//847IOLiZs3boVPj4+5lrnvh09ehSNGzc2ddEY6l+uXDn8+OOPZiGBunLIkCHmMy4IcJ8+vfLORiE/fPhww4J92LZtm4k0oE2bNs3oSo8W6IUKFTLAItsjwcF+6aWX8Msvv9j6BXnxxRfNSgmBtmrVyjy0/PeZM2fMg82BjE1mCfRSxXxxrJIEemwaO7VVBETg4QhoXoget3ACPX4RpJjhj67nesA/VwEEj5wTvcpUWgREQAREwBBwJw862/P333+DW3kpFtu0aWP+bNq0yXiv33zzzXCj5izQqY3oObaMIpX6iNt/3377beORp7immKXYZ9RxREYPOsPD6bGn0aNMzz4doGwLf+4YGk8hy/rYdkugsy3JkiUziw2WFStWzHj0KeZd1TFp0qRw3n320/Fn7Efbtm3DIgKYj4wZ4qkjGU3NMHpGGNC46EGPPb3rFPYMlecCAcU/28GtAlmyZDGh8Lt37w5rK8PrGQXg0QK9devWJtyCQjoi48oG4ROSHeOqDcMWONBcKeK+CIZZEHSuXLnMSklsMkugFyvsi5PPSaDHprFTW0VABB6OgOaF6HGjQM9Stjh6ZrqEHsGFkWhGQvQ5+zL8MmdHgomLoleZSouACIiACLg1ATodGepNIZs8eXLjHWeIt6M5C3SGZ3/11X/RABT39JLTg06RXb9+feNFp95ylfmdAp2il2HkzgKdTtVXX33VCF5nc2wP67f2iltCmTnDvvnmGyOQ7dRh1e+8t92VQKdDmOwi0pyMAuC7B6MJaHXq1MHo0aONZ9/y7nMPP41bALgv3aMF+vbt2w0QhixwT4F1TjlDErgiREHNVSGufjyMcW8EV3W4T6NJkyZm30ZsMkugFy7gg9PVfjEh7kPvpsArk6cjoGgZxO8/ITZ1R20VAREQgSgJaF6IElG4Ao4CvWdwYQTOegYDTzeHb+r0SDjjwdC96NWu0iIgAiIgAk+bAHURxWvmzJnNfmkKZOba4nHU3MJL7zcjhZm8jB7gQ4cOhduDzn3T9BBXqVLFOD7bt29vBLsVts2Qd+5zZzlLpEbUZ1cCnR5pXtu1a1ezH/7evXv4448/jBfaUUizbfRyf/TRRyZBOPUeHaoMOad3204dDyPQGd7ORYk33ngD1FdcaGBCch7tzcgBCm8mGWc4PLUpE5hTnJM1k9ExkR73+FNPlipVyrMFOgEzMQEHhpA4UHywuDeBq0LMSsiEQVEZV5K4J8Ba3WAYB5MmWP+P6np3/dwS6AXy+uBczfsC/VW/tOgzbhL8cxdE8IjZ7tp0tUsEREAEHpqA5gX76MJ50BMWht/MTBh2qj58kiRHovkr7VekkiIgAiIgAm5JgJnT6fWm55nJ0ZikjJ5mPz8/7N+/3+yXZhbzePHiGccmQ8utkHKK4ylTppgIYyZC4/Xc/806LGNCtN69exunpuUsja5AZ3mGitOzzDZxIYGLB9R4zp7uDz/80GRxZ/srVapk7ksPN5Oy2a2D94uOB53l6aVnZnlqTu7jp4OYixKMQCAj9p1Z2rkvnonsKNDpdWfiu99//x0pU6Y07eX1Hu1BtwafKe15fjkzC9Lo8eam/ICAAFu/KBSyXHnhwNK4h5GwWc/jNoZy0NPPweTqFR9EPnDOxgeRGQ1pXE3iXgjuwXBllkDPm8sHF1+UQH/cY6n6RUAE3IdAbJ4XnCkyoy49HJzoecrI1KlTzUTvbNzDx5cE7vGjZ4MvXVGdY0uBnrVscfTIdAk9ExVCyMxcGPtPTSAoHhK/fT8zr0wEREAERMA7CVgCnZ7qyOzTTz8FT86KbVuBvXNEY7bXEZ6DHlO3eFoCnaEbDM1nGARftl555RXzMsXQDUdjcgK+aLEcV7f4C8DzA6NafbEEeq7sPrhSVwI9pp4X1SMCIuD5BJ7WvOBM1sq+y+97htExIc+3334Lhgo6GhckypQpA3oWMmbMaLLQjho1KspjRsMJ9CSFcHVGEUw5WdFUnfjDbZ4/0OqhCIiACIhApAScvczOBbkgzLBtetV5zBitb9++OHDgQLiinL94VrjMswh4pEBfsGABGHbCB5m2b98+DBo0yJw16GibN282L11z5841P+Y5fdwfT0+JK7MEevasPrjeQALds34l1BsREIHHScBdBDqTlDL5jhVBxbA/7l9jSGGCBAnCEHDvIKOwmKGXUVhM3MO9eDy+xpVRoGcrWwLdM11EjyQFcW1GUYz7pzri3LuJxEs3AnFiV+6Vx/lMqG4REAER8DYCrgQ6M6ozqTYFOveOy7yPwGMX6DNmzAjbc86N/PRWcB+7o3H1JyaNmRO52sQzCWlMOMD/M1zf0ay9DM8++6wJ3Z89e7bZA5EtWzZbAj1rZh/cahReoPtlyoYEk+xlt4/JPqsuERABEYgNBCjQn8a84Mxm1apVxmPO73zLGjRoYHKscD5wtHHjxplzWrn3jduimFm3Vq1aUQv0ciXQPeNF9EhaENemF8WI03URfOciEr2xFj4JE8eG4VIbRUAEREAEREAEnjCBxyrQeZSaHduyZYudYrbL8NgCZkTkGYCW8aXw4MGDJtmdo3FvB1/I6D2hV4Rp/pmowTImRXI2rmaVr7EXmTL4ILTpfYE+PHVR9OrV2xRV+KLtoVJBERABLyPwtOYFZ8xMWsrjZ5ifxLLmzZubjLDOJ5QcOXIE7dq1g6+vL9KkSWMWGKzcKryWe9mZydfRGLGVu0rZ+wI9WQFcm1YMg880Q9LQk0g4+0P4pkzjZSOv7oqACIiACIiACNghYEugM+sf0+8zNT+9yzwj3Z1tyJAhJiV/o0aNTDMZosgXLscD7flzhijOnDnTZFYMDAzE2LFjwf2G9JZYNmnSpAe6yrMCKdDTp/XBveYS6O78LKhtIiACj4dAbJsXnCmsXr0aXBxmYjjLuEjL/eWcPyzjuaqcS3gUDo90WbFihTmPlh54ZpulMfkpt1I5GjPLFqhWEd2MQM+Pa9OKo+/ZdkgVcgRxq9ZFUIuuQNzAxzM4qlUEREAEREAERCDWEnAp0HmuHBOs/fzzzyY5Dr3Pf/75p3l5YUI1Rw+COxFYtGiRORKO+85p9G5QtPMlytGYeIGZ5RmuSGPIO4U8jztwZdYe9DSpfeDbUgLdncZebREBEXi8BGLrvOBMZc+ePWZesHKThIaGonjx4uYM2sSJ/ws/57zBxVzHxVoe/0LPu6vFau5B/1+5Ekag90yZD1enlEDXs92QOWSPaUqCUXPhlzN8KP3jHTnVLgIiIAIiIAIiEBsIuBToPHuPopweBevscnqjecYfQ8IZ5ueOdvz4cTRr1gzvv/9+WBZ36zB7eky4l7Bp06bGc86XNL54Max9/fr15rw/hj7aEejPpAQC2uxUiLs7PgRqkwiIwGMhEFvnBWcYnMOqVatm5jOeO8ss7kwQt2TJEjO/UYDzLFaGrnPbFBOKUrjzLFjOL0wq6phMzrl+CvTs5UqgKz3oKfPh2pQSKHrjc7yUYg3uHNqDoJbdEbdW48cyRqpUBERABERABEQg9hJwKdB5NNnnn3+OZ555JlwP6Z3miw2PKXNXW7t2rUn+w2MKuOeRYesMR2RoIo8oYKZ2esyZxZeJgpidl/3kYkSmTJlsCfTkyYBUnfah97FvtAfdXR8EtUsERCBGCcTmecEZBMP0mXeEi7ZZs2Y180L69OlNYlHmMWE0FiOmKNrfffdds82L26Eo2KPaS+8o0LunzIfrU0qY28994TNcXzAZAaWrIH7PETE6NqpMBERABERABEQg9hNwKdCZyXbTpk1IlixZuJ6eOXMGVatWdWuB/jiHxgpxT5IYqNn3DCoeXIXywWmw8tXJ5rZKEvc46atuERCBp0lA84I9+o4CvWuKvLg5taS5cH7PI7gysB18U6VFwpmuo7Xs3UmlREAEREAEREAEPImAS4HeuXNnI84ZAhg37v0zW+mR5lFpN27ceKgQ99OnTxsvhLNXPjZBtQR6wgTAiwMcBPr4ucD1a0j01jr4xP/vHN3Y1De1VQREQARcEdC8YO/5oEDPUa4kumS8gC4p8uDezFK4HQLMnRKA6y+VMZUkWrwePvGC7VWoUiIgAiIgAiIgAl5BwKVA5967Ll26mD13WbJkMcL68OHD5t8LFiywnSSO+/kYWs5rLl++bMByT3v79u3RqVMnE14em8wS6PHjAXUH/yfQ177/BUL37kTw8Jnwz1M4NnVJbRUBERABWwQ0L9jCBEeB3ilFHvjNLoWbt4DZkwIQMrQ17vz1OxJMeAN+WXLaq1ClREAEREAEREAEvIJAlMesUZT/+OOPRpgzy22OHDlQtGhRcx6sXZs2bRo2btwIZk3PmzevuYxHnnH/d8WKFU2m+NhklkAPjAs0eFUCPTaNndoqAiLw6AQ0L0TNkAI9Z/mS6JzhAjomz424857FtevAjPEBuDep2/3F3BGz4J+7UNSVqYQIiIAIiIAIiIDXEHAp0Dds2GD2mjsbE+gw223NmjVtgSpVqhQWL15sxL2jMVlbmzZtTJK22GSWQA8IABoPl0CPTWOntoqACDwaAc0L9vjdF+il0DnDeXRInhvxFz6Ly1eAaWMD4DOrL0J/+R7BAyfDv3ApexWqlAiIgAiIgAiIgFcQcCnQixUrZrznzkZPOjP50gtux3hW7Pbt28OOarOuuXLlCije7dZj515Poowl0Hmv5mMk0J8Ec91DBETAPQhoXrA3Do4CvX3yXEj0ZmlcvARMHR0A/zeHIeS7rxC/1ygEPFvJXoUqJQIiIAIiIAIi4BUEIhToBw8eNJ1v0qQJli1bFg7EnTt3sHnzZnMmLDO827H69eujUaNGaNw4/JmvPLZmzZo1D9zDTp1Ps4wE+tOkr3uLgAg8DQKaF6JHnQI9V/lS6JThPNolz4lkb5XBuQvAxBEBCFo2Hrc3fYp4nQYiTqVa0atYpUVABERABERABDyaQIQCfeDAgfjmm2/AZEA8O9zRuPc8Xbp0GDJkCMqUuZ+JNiqjF75Dhw4oXLgw6E3n/sW9e/di586dePvtt5EvX76oqnCrzynQK7+4F6Gh8qC71cCoMSIgAo+NgOaF6KF1FOhtkuXEM++UwZlzwPhhAQheNQ231n+MoDa9ELd6g+hVrNIiIAIiIAIiIAIeTSDSEPfbt2+jQYMGWL16dYwAOHv2LN5///1wyeboVY+Nx61RoFetuxe3bgFNRpzBc0fun4P+6arvEPLTNsTvOw4BxcvFCDdVIgIiIALuQkDzgv2RoEDPXb4UOmY4j9bJciDNu2Vx6jQwdkgAEn05HzdXLkFg044IrNvCfqUqKQIiIAIiIAIi4PEEXO5B515zf39/j4cQ3Q5SoNdosNdk5G007Aye//O+QF//61nc/OgtBDZog8BG7aJbrcqLgAiIgNsT0Lxgb4gcBXqrZDmQYVk5nDh5D6MG+SPpt+/g5rKFCKzXEoFNOtirUKVEQAREQAREQAS8gkCUx6w9CoUdO3YgSZIkyJw5c1g1586dw4wZM3Dy5ElUqlQJTZs2fZRbPJVrKdBfaLzXZOStP/QMahyVQH8qA6GbioAIxDoCnjovOA+Eo0BvkTQ7si4vj2N/38Pw/v5I+ety3Fg8E3FrNERQ656xbgzVYBEQAREQARF4XARKliyJzz77DEmTJn1ct3D7eh+rQH/ppZdQu3ZtkyDOMiaeS5AggTlLfenSpejcuTOaNWvm9qAcG0iBXqfpXly4BNQdfAa1jkugx6oBVGNFQASeGgFPnRciEuh5ypdChwzn0TxpdmT/uDz+OnYPr/b1R+qDa3F9/kSTII6J4mQiIAIiIAKeT2DPnj2YPn06Fi5cGKOd5faz7777DuXLl4/Reh+lssiOZLVT59MW6F9//bXRqUFBQXaa+1jKPFaBzs699957yJ49u2n8Dz/8gJEjR2Lt2rVgsrmtW7di4sSJ+PTTTx9L5x5XpRTo9ZvvxdnzwIsDz6D2CQn0x8Va9YqACHgWAU+dF1wJ9GZJ/4c8n1TAkb/uYXAff6Q/vhHXZoxAwLOVEb/XSM8aYPVGBERABEQgQgI3btzAgQMHzFHVMWk8XYt/RowYEZPVPnRdly9fRosWLbBq1aqHquNpCnQmMm/YsCEWLFjwVD34UQr0W7dumWzrzOhObziNKzU05wzvzqPA7Ozr1q0zWd9pPXv2BKFbYe1nzpwxYe67du16qAF8WhdRoDdqtRenzgC1+p1B3VMS6E9rLHRfERCBJ09A80LUzBninrf8s3g5wzk0TZoN+VdXxO9H7mFgT39kPP8Nrk0aiIDCzyL+wElRV6YSIiACIiACbkmA0cBLliwx2ogRwhR2qVKlwpEjRzBs2DCTHDtu3LhYvHgxLl68iMmTJ4PHTFNbzZs3D8HBwTh16hSuXr2KPn36oGzZshg3bhwSJkyIbt26mT7ziGv+fMWKFaZuR6Pg7969Oy5duoTUqVOjXbt2SJ8+vUnMzf+zbQMGDDDX8d+O3nuexsVk4AwlL1euHNq0aYNt27aBib158tbw4cPNrSha58+fb47YvnbtGl544QUMHTrU9GH06NG4cOGCcbyyvyVKlDBt+OWXX0C9xP8PGjQIf/75JwYPHmz6mjZtWuOgZftoy5cvNyyoK6tXr46PP/4Yn3zySaQCmW3hIsBff/1lmF6/ft04gK1TwSK6V7JkyUxbvv32W+MZ3759OxjRx1PLUqZMiUOHDhmdSs7vvPMOsmXLhkSJEplob47NqFGjwFPJ2E9Gg7/88sum7VG15WEfWpcC/ffff0f79u1Nxwli//795j48G53u/zlz5ri8b506dcwqBAHwWLVWrVqZFZ748eOb644ePWpEPwcxNhkfuKZt9+HEP/fQYcBNlDi5FAWDkuG73VeUJC42DaTaKgIiEG0CmhfsIXMU6I2TZEPRzypi/6F76NfNH1lv/YKro3rAP09hBA+faa9ClRIBERABEcBHFw5j943zT5xEw6RZkScw/J7oK1euoEaNGvjyyy+NCD9+/LhxSlJQ16xZ0wg+Ck4KWIq93377LZxA5xbglStXmiOojx07ZrYEf/755yZPF0U3w8RpDF+fNWuWiUqOyCicqbMsDzqFMwVky5YtzVZiJvxm1LIrgZ4nTx7TXh6LzfZTv/F41eLFixsRT6H6xhtvmEUI9oeinmL75s2byJgxI7Zs2YIJEyYYxyyFc6dOncy/aXfv3kWtWrXMQgHD8CnI+dmiRYvMAga97dbiw1tvvWUWKBh1HdkedIpitmfNmjVInDgxNm7cCF7Hn7m6F+/TpUsXlCpVyowDtSx/xr6SLd9vuMjguHDB9nNhgePXv39/s0DRtm1bs5jBsXXVlkd5SF0K9ObNmxuQHGQOHPdOWMKanSE8V0ZgPXr0MCs5fGi5+lCvXr2wS7766itMnTo1Voa4N395n0n4M2KAP9KfnGf6dPOfZLjxthL/PMoDqWtFQATcm4DmBXvj4yjQGyXJipKfV8Ke/ffQp4s/cvjtw5XBHeCXNScSjH/DXoUqJQIiIAIigCZHvsAHF35/4iSWZXkOXGx1NArZ5557zoha6hsrsphimWKOW3odjcLZ0YNO4cdkaJZRTNetWxdVq1Y1DswxY8YYrzC91dRhkSXWjkigU+BTlPv4+Jjq7Qh0ClZLFFOo8t7UexTb7B/bFZmFhISgWLFixqvuLNDJg2LfOrqbp8Hkz58fv/76q4ksoNBnH2mMROB9uSjhSqBzEcNakKDHn9zYflf3ophmNADZcMGAvLlQMHv2bPTu3RvVqlXD888//4BAL1SokFmAYFQDjYso9PDT6886I2vLozykLgU64X3//feIFy9eOIF+/vx503hCiMr++OMPI+xz5cqFrFmzhitOkNyP4WrAo6r/aXxOD3qrTvvw59H7CX8ynb4v0EMCS+DqyB7wz10QwSNmP42m6Z4iIAIi8FgJaF6wh5cCPV/50mif4SwaJsmK0l9Uwq6999Crkz9yJ/gTl/u0gG+6TEj42lJ7FaqUCIiA+emSJQAAIABJREFUCIiAW3nQORx///23iShmaDi9qvyzadMm48198803w42Ys0AfP348Pvjgg7AyQ4YMMXqLybPffvtt49yksGX4OcU+T8aKyCIS6JMmTQrncY9IoJcuXdp4oSmEed/du3eHCXqKX+YQY1sofvn/AgUKhLs9NSLDwelFp/30008mSsBZoJMHvfOO4fkMyWef6JVn+DkXOSyj0KcIdiXQeU/WSaMuZSQD2+PqXgx9nzt3rvHQd+3a1USEV6xY0YhvbrnmnnkydvSgM7yd27PJxjKOI0PqKdIp0CNry6P8uroU6HwguDrA0AtHDzrDMfjz9evXP8q9Y+21FOhtu+7D4T/uJ/zJelYCPdYOphouAiIQLQKaF+zhchTo9RNnQfmvKuPX3ffQvYM/8qU8hctdG8An+TNINPdjexWqlAiIgAiIgNsSYF4tRhxTNCZPntyERVP8OpqzQOeec0YTW0ZxTy85HZcUnfXr1zdedHqZXWV+Z8g4naGOIe6Wp96qm3utGVJuLRrQk5w3b17jdbYEuhUpzWscBTr7xfB7RgtYxr3fVapUMfvSs2TJYkK/GTpOgc4tzB07dgwLcadD99VXXzV7y52N/aIHnPvUaYxKYLvYXlcCnblwGKXtLNBd3YveeUaGc28/+dKTzugAes3JxYp44D50inXen5yY1I8LHAxzpzl70CNry6M8rC4FOuPxOZjsAMFx1YGrI1zV4QNjJY17lAbExmsp0F/uvg8HD9/DgJ7+yH5BAj02jqPaLAIiEH0CmhfsMaNAz1++NNplOIt6iTOj0uYq+OW3e+ja3h8FM13GpXY14ROcAIkW3d+jJxMBERABEYhdBBgFzCTamTNnNnufKRiZQK1y5cpG9NH7TVFLLyxDzZmIzDHEneHjr7/+uhG6FO/M+0XBboVSMwSb+9xZzpXm+uKLL4zHnvqM5rgQYBHlHnfmBGNZ7penGGVYt7XX29ERy2scBfpHH31kxDXFNJPasc8MaW/QoIHxWDPSmsnxGEnAsHV6x+mRpqhl3jGKbrafXmvu26boZYQ1hT2ZcE837/HMM8+YftA7HdUe9MhEsat7sV/cc872jR071oTSM5ke78nFBSvMnmPIBHk8dYbGxRb2m1rY2oPOvGrMM0AP+hMX6GwU3f4U6dw4z04zqx1XRbi64K1Ggd6p1z7sO3gPfbv5I9dlCXRvfRbUbxHwRgKaF6IedSPQK5RGu/RnUSdxZjy/tQp+2nkPndv6o0iuEFxsXslUkvjDbVFXphIiIAIiIAJuR4AJtOn1pgeYidiojegp9vPzM4m1KfIY7k0BSw8thaGjQJ8yZYrJZL5jxw5zPQWio75i8jmKaIZuWwm2I4JAzzC93AzhpghmaLqzB53XUUAz+pkefm49Zlg+vfNRedC5+DBjxgyT0I7h3BTbFK0M0edR2QxRp4edIeNW1ABD7LnnnB5rimF61Sn6yYX1cQGDQpxGLzwjs8mNwp79ZdK3h/Ggsz5X9yIDJsvjHncumnD/OCMD6YS2IgTIiG2mx5wLGVxgYdt5TWBgoOkrQ/J5/VMT6G732+AGDaJA7/rKPuzedw+9O/sj7zUJdDcYFjVBBERABNyGgKNAr504E6pvq4ofd9xFx9Z+KFbIFxcblZFAd5vRUkNEQARE4MkSoJebAp3e28iM4pce7+nTpz/ZxuluT52AyxB3hmrwLDvnpABcQeDGeK6O2DGGZnB/hLMxNKRx48ZhWf3s1OUOZSjQe/TfZ/YT9ujgjwI3JdDdYVzUBhEQgcdPQPOCPcYU6AUqlEbb9GfxYqJMeOG7qvj+p7t4uaUfShTxxcVWVYEb15Fo8Xr4xAu2V6lKiYAIiIAIeASBiMLQHTtGTzXP26ZX3Qq17tu3L3juuaPR+9uvXz+PYOLcCW/rr2P/XQp0CnNuhHfMuseLmQiBCQzsnl/ObHw83N3ZWA/3aTChQGwyCvTeg/Zhx6/30LWdPwqH3Bfoocmq4Er/NvBNkQoJ53wUm7qktoqACIiALQKaF2xhgqNAr5UoI+r+8Dy+3X4X7Zr7oVQxX1zqWAf3LpxFonmfwCdpCnuVqpQIiIAIiIBHEHAl0Bk6zuPXKNAZsi7zPgJRHrPG2PsMGTKEI3PixAmzd2DXrl0uiTG5HBMBMOEB9xQ4Gvez8/rChQtj5syZsYo8BXrfoftNuGInhivenW/af69IZ4UtxqqRVGNFQASiS4DHrGleiJoaBXrBCqXRJv1Z1EyUEQ1+fB7bvr+L1s38UKaELy73aoa7J44i4fT34Jsm/Bwbde0qIQIiIAIiIAIi4KkEXAp0pp5nUgJmbA8KCjIMmKmOSQ/OnTvnMuU/y1LIb968GRMnTkSXLl3CMfT19UW6dOnMhnwmRohNRoE+YNj+sHDFkpBAj03jp7aKgAg8PAHNC/bY3RfoZdAm/RlUT5gBTXZUw9Zv76JVEz+ULeWLK4Pa487h/Ugw4Q34Zclpr1KVEgEREAEREAER8HgCLgU6BTaFNbPhZc2a1WSrO3z4sMk4yGx3zp71yGgxNT/P8vMUo0AfPHI/vvnhLtq+5IfSfhLonjK26ocIiIBrApoX7D0hjgK9WsL0aL6zOjZtu4vmjfxQobQvro7sgdA9OxA8Yhb8cxeyV6lKiYAIiIAIiIAIeDwBlwKdvWeIOvePHzlyxKTF51l/JUqUAD3gdo3Xpk2b1py7R2NKex4Az5/VqlXLCP/YZBTor47ZH+YNKRdHAj02jZ/aKgIi8GgENC9EzY8CvVCFMmid/gyeT5geLX+rjq+23kWzBn6oVNYX1yYNRMhP2xB/wEQEFCkddYUqIQIiIAIiIAIi4BUEohToMUHBOi+uSpUq5vw8HlLPM/qOHz9u9rIzK3BsMgr0EeP3Y9PXd/FSQz9UCpJAj03jp7aKgAg8fQKeNi84E3UU6M8lTIe2u2rgyy130aSeH6qU98X1maNwe9sGxO8xHAFlnnv6A6IWiIAIiIAIiIAIuAWBKAU6swzu2bPHHNLubB07drTViYIFC2LLli3mwPf33nsP69atM4fEU6A3a9YMW7dutVWPuxSiQB89cX/Yy9ZzwRLo7jI2aocIiMDjJ6B5IWrGRqBXLIPW6c6gSoJ06LCvBj7/6i4a1fFD1Yq+uL5gMm5/uQrxOvRHnCovRl2hSoiACIiACIiACHgFAZcCff78+Zg3b57JtG4liXOkMnv2bFuQChUqhG+++cbUUaNGDQwePBhly5ZFSEgIKN65ABCbjAJ93JT95mWrYW0/DEj1EX69cQ5/5GuOpL1a4+7ZU0g4ezl8U6aOTd1SW0VABEQgSgKaF6JEZAo4CvRKCdKi8/6aWL/xLhq86IdqlX1xY8kc3FrzPoJadkPcWk3sVapSIiACIiACIiACHk/ApUCvUKECli5darKtP4rR0846uG9x+/btWLNmTVjCudatW+Prr79+lOqf+LUU6BOn7cdnX9xFvVp+mJRhDbZcPYFN2Wuj6NRxCN27E8HDZ8I/T+En3jbdUAREQAQeJwHNC/boUqAXrlgWrdKdRsUEadD9UC18uuH+nFHjOV/cXL7I/Als1A6BDdrYq1SlREAEREAEREAEPJ6AS4FesWJFbNq06ZEhnDp1CuPHjzdJ5vr164f06dObOj/77DP8+eefDxzB9sg3fMwVUKBPmbkfa9bfRe0afpiaSQL9MSNX9SIgAm5CQPOCvYGgQC9SsSxapjuNCgnSoNfvtbDm87uoU8MPtZ73xa21y3DjndmI+0JTBLXoaq9SlRIBERABERABEfB4Ai4FevPmzTF69GiTuV32HwEK9GlzDmDlp3fMi9b0rGvlQdcDIgIi4BUENC/YG2ZHgV4uODX6/vkiVn12By9U80Xt6n5m/zn3ocd5rg7ivdzXXqUqJQIiIAIiIAIi4PEEXAr0FStW4LXXXkODBg3Mmedx4sQJB4RHpNkxes4/+OADrF27FvSmf/nll+aybdu24dq1ayaTe0wbz16fPn06bt++jeeeew4jR46En5/fA7e5fv06Jk+ebNrEo+OGDh1qyrsyCvRZ8w7go9V3UL2KL2Zll0CP6fFTfSIgAu5JIDbPC85Ef/vtNwwcOBBnzpxBzpw5MXXqVKRMmTJC8G+//Tbeffdd3Lp1y+RSGTBggMsBchToZYNTY8BfL+ITLupW9UWdmn4I2fYFrs0ciThlqiJej2HuOdhqlQiIgAiIgAiIwBMn4FKg16lTx2WDVq5caavBTCZHcU7Py7hx47B3715z3U8//YRhw4aZUPeYtD/++AMtW7bEsmXLzMvWK6+8YpLRtW3b9oHbdOrUCbly5TJh9gEBAbaaQYE+d8EBfLDyjsnGOzeXBLotcCokAiIQ6wnE1nnBGfydO3fMYuyIESNQrlw5UIB/++23YBI8Z1u0aBG+//57TJgwAUmTJrU1ho4CvXT8VBj6d+2wRd36L/iZM9B5FnpA0TKI33+CrTpVSAREQAREQAREwPMJRHnMWkwgYMZ2vvxkyZIFefLkCcvafuHCBZPNfffu3TFxm7A6FixYgMuXL6Nv3/thg/v27cOgQYPgvKCwf/9+DBkyBPS2R8co0Oe/eQDvfXwHlcv5Yn5eCfTo8FNZERABEXjS84Iz8V9//RVjxozB8uXLzUeM9CpVqpSJpkqQIEFYcQr5SpUqmfkjSZIktgeOAr1oxbJoke40no2fCsNO1MbyVXfwfCVfc/pH6J4duDqyB/zzFkbwsJm261VBERABERABERABzybwRAR63rx5jfchODg4nED//fff0ahRI+zYsSNGKfMYt6JFi6JevXqmXoYk8v+7du0Kd5933nnHePN5xvvhw4eRKVMmDB8+HKlSpXLZHgr0NxYfwJIP76BCaV+8UeA/gV78nbdwe8s6xOsyGHEq1IjRfqkyERABEfAUAk96XnDmtmrVKuMxnzhxYthH3M7FqK78+fOH/ezAgQMmnJ3ifcuWLUa8M9kp5xRXRoFerGI5NE93CiXjP4PRp+pg2Yo7eK6CLxrX9cOdI/txZWB7+GXNiQTj3/CUYVU/REAEREAEREAEHpGAS4F+5MgRk3394MGDRuQ6Gvdz82xzO/byyy+bF57u3buHCfSLFy+iT58+SJQoEaZNm2anGttlWG+VKlXMPkHLKKrZDx8fn7Cfce85w+tff/11s/+QR8p99dVXYDijZV27Pphdd8OGDXhryQEsfv8OypbyxVuF/hPoJdetw82P3jLH5vD4HJkIiIAIeBKB2DovOI8B86JwgZb5SSzjNqxu3bqhZMmSYT/bunWr2QLF+YL5UngNt0ZxHogXL54pxznj559/DncLzpkVX6hhBHqJ+Ckx7nTdsKirpvX9cPfEUVzu1Qy+aTMi4bR3PekRUV9EQAREQAREQAQegYBLgd6kSRNQ2HLPIT0I3D/O/d2LFy82yXRy585t69YnT5404pwh7ceOHQM9J/SeUxTPnTsXyZMnt1WP3UIMWy9QoIDxztPoIecLl3MoPRPgMTEcPR00hjLSK0KPviXkKeqdrWbNmnjnvQN4c+kdPFvcF+8UlUC3OzYqJwIiELsJxNZ5wZn66tWrjUecc5lltWvXxqhRo8z8YRkXoplH5f333w/7WYsWLcJym/CHnOOuXLkS7hazZs1CySoVjUAvHi8lJp6vi6Uf3kHFMr54qaEf7p0/i0ud6sAnaQokmvdJ7H4o1HoREAEREAEREIEYI+BSoOfLlw8//vgjAgMDwYztTPRGo4CdNGmSScIWHaOHgcKcQjhbtmwoXrx4dC63XZbeDGaL575zGjP1UrSvWbMmXB3ce2jtQ+QHzPjOMEZnT4jzjblo8e4HB7Dg7TsoUcQX75aQQLc9OCooAiIQqwnE1nnBGfqePXvMvGDlJgkNDTVzEqOoEidOHFb86NGjaNeuHb744ouwnzVu3Nhsh3K1SO0Y4l40XgpMvVAP73xwB+Wf9UWLxn7A9Wu42Pp5+MQLRqLF62P1M6HGi4AIiIAIiIAIxBwBlwKdYvXTTz81WWvpWaAHgSF9FLKFChUKS/YW3ebcu3cP/EPv9eOw48ePo1mzZqa9Vhb37Nmzm9BFekxOnDiBpk2b4tKlS6hWrRrefPNN86LF7L18aZs503XCHgr0ZR8dxOuLQlG0kC+WlZJAfxzjqDpFQATcj0BsnRecSTIpHL//X331VZOslIlMmSBuyZIlJmEcQ98Z+cUIL0YN1K1bFxTmXKDmNiqGuDsfPep4Dwr04hXL4aV0p1AkXgpMv1wPi9+7gzIlfdG66f0jPy82KmP+TvzhNvcbaLVIBERABERABETgqRBwKdD5ElK+fHkjzq1zxFu3bm08DHyZ2bhxo8tGU8hzf/ehQ4fMnnCGylMEM6ydAt06n5zJ42La6O1n8p+bN2+aPjA8ny9TCxcuBJP+TJkyxdyS+wuZyZfnsTP0fuzYsVGG3FOgL19xELPfCEWh/D5YXuZTbLl6Apuy14b2oMf0SKo+ERABdyIQm+cFZ448yaN///5m0TZr1qxmXkifPr3JucI5i9FY/L6nF53l+DcXfTkfOobBRzQ+FOglKpZHs3T/oFBQcsy+Wh+L3r2/LartS/8K9OaVgdu3kHjpV0CcOO40zGqLCIiACIiACIjAUyLgUqCfP3/eZKzl+eAMGe/QoYNJkMPwP77IUPi6Mr7EbNq0ySRroxBu2LCh8WpboedMusO94UOHDn1K3X+42/KFbcWqg5gxPxT58/hgRXkJ9IcjqatEQARiGwHNC/ZGzFGgFwxKhtevN8AbS+6gZFFftG9xX6BfevkF3Lt0AYneWAufhP+F1du7g0qJgAiIgAiIgAh4IoFoH7PGRDj0eDtmQ48MTIUKFUwWeIZEMokOPRJMtlOxYkVzyU8//WQS7TDsPDYZBfqqtQfx2txQ5Mnpg1WV/hPoz/68E9fnjkOc8tURr+uQ2NQttVUEREAEHoqA5oUHsTkK9AJBybDwZgPMf/sOihf2RYdW9wX65e6NcPfUCSSc9SF8n0nzUOx1kQiIgAiIgAiIgGcRcCnQ6fFmIjVnu3HjhtmLxyy4rixXrlzmKDbuYacxJJCJ2jJkyGD+zz3gxYoVM8efxSajQF+77iAmzwpFzv/54Gq9XzDy5E+Ylr40up0JxdWRPeCfuyCCR8yOTd1SW0VABEQgSgKaF6JEZAo4CvR8QUmx6HYjzHsrFEUL+qBTG39T5krfVrhz9DASTnkHvhmy2KtYpURABERABERABDyagEuBTvHMLO7OdubMGVSuXNlkR3dlFLI7d+5E/PjxTTHWR4GeKlUq83/u+y5YsKDZox6bjP1at+EgJkwPxf+y+OBGw/sCfXjqohh6wU8CPTYNptoqAiIQLQKaF+zhokAvWak8mqb9B3kDk+KdO40w581QFM7vgy7t/hXog9rjzuH9SDDhDfhlyWmvYpUSAREQAREQARHwaAIRCnRmrmUSNyaDq1SpUjgAPCJt165dKFy4sK1s50wIFzduXFNHz549MWLECCRJksT8n4l4unTpEisF+oaNBzF2aiiyZPTB7SYS6B79W6LOiYAImIzmmhfsPwgU6KUqlUeTtP8gd2ASvHevMWYtDEWBvD7o/vK/An1YF9zZ/xsSjH4dfjny2a9cJUVABERABERABDyWQIQCnRltN2/ebLKgU0A7Go9GS5cuncnA7u9//yUjMosqiZx1XWzcg75x80GMmhSKjOl9cKeZBLrH/oaoYyIgAoaA5oXoPQiOAj1XYGJ84NPEJBbNl9sHPTvenzuvjuqJ0N0/I3jYTPjnLRy9G6i0CIiACIiACIiARxJwGeL+8ccfo379+h7Z8UfpFEPct2w9iGETQpEujQ/QQgL9UXjqWhEQgdhDQPOCvbFyFOg5AxPjI78mmPb6/cSivTv/K9DH90XoL98jePAU+Bcsaa9ilRIBERABERABEfBoAi4F+oYNG5AjRw5kzJjRQPj666/NubBp06ZFv379kChRIo+GE1nnKNC3fXMIQ8aGIPUzgF/rndqD7pVPgjotAt5HQPOCvTF3FOjZ4ybCyjhNMXVOKHJl98ErXe8L9GtTBiNk+1bE7zceAcXK2qtYpURABERABERABDyagEuBXr16dYwZMwZFihTB6dOn8fzzz5t9iDwLnXsRp06d6tFwXAn0774/hIGjQpAyORCn3X8CfZh/Olzu1hC+KVIh4ZyPvJKPOi0CIuC5BDQv2BtbCvRnK1VA47Qn8b+4ibAmsKk5+SNHNh/06/6vQJ8+HCHfbkT8XqMQ8Gz4fC/27qJSIiACIiACIiACnkbApUDPkyePOas8KCgIr732Gs6ePYtx48aZ49G4B3379u2exsNWf+hB3/7jIfQbHoJkSYCgDv8J9BFpiuFiozKmnsQfbrNVnwqJgAiIQGwhoHnB3khRoJeuVAGN0p5E1rgJsT5eM0yYcf/kjwE97wv063PG4vaWdYjXbSjilKtmr2KVEgEREAEREAER8GgCLgV6yZIlsXbtWsSLFw8VK1bEkiVLkD17dty8eRNFixbF7t27PRpOZJ2jQP95xyH0GRqCRAmBBJ0l0L3yQVCnRcALCWhesDfojgI9S5yE+CJBM4ybFoqsmX0wqNe/An3BJNz+cjXidRyAOJVfsFexSomACIiACIiACHg0AZcCffTo0eZItbt37yJNmjRhx6r98ssvGDhwID7//HOPhuNKoO/89RB6DgpBcHwgcTcJdK98ENRpEfBCApoX7A26EeiVK6JRmhPIFCcBNiV6CWOmhiJzBh8MeeW+QL/x1nTcWvcRgtr2RtxqSshqj6xKiYAIiIAIiIBnE3Ap0ENDQ7F8+XIj0Bs0aBB2njlD269evfrAGemRoTp27JjZr75v3z5cu3btgWLbtsWuUHB60HftPoRu/UMQFAQk6yGB7tm/JuqdCIiARUDzgr1ngQK9TOWKaJjmBDLGCcbWJM0xavL9ozlf7fuvQF86F7dWv4eglt0Qt1YTexWrlAiIgAiIgAiIgEcTcCnQY6rnTZs2RebMmU2SucDAwAeqLVGiREzd6onUQ4G+d+8hdO4bgjhxgJS9JdCfCHjdRAREwGMIeNq84DwwjgI9Q5xgfJOsOUZMvH8054gB9wX6zWULcXPF2whs2hGBdVt4zNiqIyIgAiIgAiIgAg9PIEKB/uWXX5q95r/99pvLmmvVqmXrzmXLljVHtHmKUaAfOnQI7XuGmC6lGyCB7iljq36IgAhETEDzQvSeDAr0spUrokGaE0gXEB8/pGyBYeNDkSa1D0YN/Fegf7wYNz94A4ENWiOwUfvo3UClRUAEREAEREAEPJJAhAK9ZcuWePHFF7F06VKXnV65cqUtKPScr169OixE3tZFblwoKoF+pV9r3PnrdySY9Bb8Mv3PjXuipomACIiAPQKaF+xxsko5CvS0AfHxc6qWGDI2BKlSAmOGBJhiDG+/sXQu4tZ+CUEvdY7eDVRaBERABERABETAIwk8kRB37mPfuHEj2rdvj9SpU8PPzy8czFSpUsUquM4CPe+Qfeh97BsMT10UPGbt6ohuCN27E8HDZ8I/T+FY1Tc1VgREQASeBAFPmxecmTkK9NQB8bAzTSsMHh2ClCmAcUP/FeifLceNxTMQt0YjBLXu8SSw6x4iIAIiIAIiIAJuTsClQGdyOCZ2Y5I3imruI8+WLVu0u7Rhwwb07t0bt2/fjvBahovHJrMEepd+IWCXmo48gyqHV6F8cBpszlFbAj02DabaKgIiEC0Cmhfs4aJAL1e5IuqnOYFU/kHYlb41Bo4MQfKkwITh9wX67S9W4vrCKYhTtQ7ite9rr2KVEgEREAEREAER8GgCkQr0H374AYMHD8bRo0cRHByMOHHi4Pz588iRIwcmTJiAvHnz2gZTqVIldOzYEdWqVYswSVzcuHFt1+UOBS2B3n1gCG7cABoNP4Pn/5BAd4exURtEQAQeHwHNC/bZOgr0Z/yDsC9ja/QbHoKkSYBJI/4V6Js/w/W54xCnYk3E6zzIfuUqKQIiIAIiIAIi4LEEIhToBw4cQP369c3Rap07d8YzzzxjAPzzzz+YM2cO1q5da/aUp0+f3haYcuXKYevWrbbKxoZClkDvNTgEV68BDV49g+p/SaDHhrFTG0VABB6OgOaF6HGjQC9fuRLqpfkbKfwDcShzG7zyaggSJQSmjr4v0EO2fYFrM0ciTpmqiNdjWPRuoNIiIAIiIAIiIAIeSSBCgc4XC4a08+zyiKxHjx5ImDAhxowZYwtKkyZNMGPGjDChb+siNy5kCXS+bF26DNQbcgY1j0mgu/GQqWkiIAKPSEDzQvQAOgr05P6BOJK1DXoPCUHCBMBrY/4V6Nu34NqUIQgoWQHx+9ibT6PXCpUWAREQAREQARGIbQQiFOilSpXC7NmzUaRIkQj7s337dgwYMACbNm2y1V963KdNm4a6desiTZo0Jlze0ewe12brZk+gkCXQ+48IwfkLQJ2BZ/DCCQn0J4BetxABEXhKBDQvRA+8o0BP6hcXR7O3Rc9BIYgfD5gx/r5AD93xHa5O6IeAIqURf8DE6N1ApUVABERABERABDySQIQCnWegf/fdd0iWLFmEneZe9DJlymDv3r22oNSpU8dlObvHtdm62RMoZAn0QaNCcOYc8EL/M6jzz38CnVl5b322HEGteiBuzUZPoEW6hQiIgAg8XgKaF6LHlwK9QuXKqJvmOJL4xcXfOdui+4AQBAXh/+ydB3RUxRfGv3RICEQp0osgIB0ERKVK74gUQUR6E1SKSBGkicCfjihFmooiRWmCIFWKKCC9g4AgvYT0vv9zB17Y3Wx23yabsptvzuGQZOdN+c3bN/O9e+cO5kx6ItBPHELI+A/hWa4Ksnwyw74KmJsESIAESIAESMAlCVgU6CJAjx49Cj8/P4udDg0NRYUKFeBs0dcdNYKaQP/ks2jcugM0HXIXre88FegRKxchYvXp9JFKAAAgAElEQVQSZGrTFZnadXdUtSyHBEiABNKMAOcF+9AbC/QAD2/cKtUd730UDR9vYO7/ngj0s8cRMrofPEtVQJYxX9hXAXOTAAmQAAmQAAm4JIFEBXrXrl3h5fV4EWGeoqOjsWTJkiQJ9Dt37sBgMDj1fnRNoH86KQb/3TSg8aC7aHOPAt0lvyHsFAmQgCIgzz3OC/pvBmOBntXdC48q9kCPD6Ih0+pXUx/PrbEXzyB4RE94vFAa/p/N1184c5IACZAACZAACbgsAYsCfejQobo6PGXKFF355NzchQsXYsGCBQgKClLXyNFtPXr0QJ8+fVRAOmdKmkAf978Y/HvdgAYf3kX7BxTozjSGbCsJkIB9BDgv2MdLBHqdunXRKu91+Lt7IeiJQJdSvp71RKBfvYjgj7rAo/AL8J+yxL4KmJsESIAESIAESMAlCSR6DrojeysB4rZv345PPvkk/vz0kydPqijwderUweDBgx1ZXYqXpQn0z6bH4PJVA+q9fxcdAinQUxw8KyABEnAZAq42L5gPjLFA93P3REjFnsqCbizQ4278i6APO8I9XyFknbHcZcaWHSEBEiABEiABEkg6gVQR6BL9d+nSpShRooRJS+VcXXGZ3L9/f9J7kAZXagJ90qwYXPzHgDr976JTEAV6GgwFqyQBEnBSAq42L1gS6K/Xq4uWea7D190ToZYE+p2bCOrfFu658iLrFyuddCTZbBIgARIgARIgAUcSSBWBXqpUKcjRbOLWbpyCg4MhizSxpjtT0gT6/76IwbkLBtTqexedQ58K9KhdmxD25UR412oM3/dGOlPX2FYSIAESSBUCrjYvWBLo9erVQ/M815DZzQNhlXolsKAbHt7Do96t4PZsDmSbtzZVuLMSEiABEiABEiCB9E0gVQT6m2++iXbt2qF9+/YmNJYvX44NGzZgxYoV6ZuSWes0gT79yxicPmdAjd530SX8qUCPOfU3Qsa+z8i8TjWqbCwJkEBqEnC1ecGaQJfPDC/1Rd8h0YiOfhwkToLFGUKC8ahbY7j5Z0O2Rb+kJn7WRQIkQAIkQAIkkE4JpIpAP3jwIHr16oVKlSpBrCYSxV3OUJej3JYtW4ayZcumUzyWm6UJ9FnzY3DitAGv9byLbpEU6E41iGwsCZBAmhJwtXlBj0B/b2g0IiMfH7Mmx60hMgKB79QDMvki4JutaToerJwESIAESIAESCB9ELAp0CMjI3Ht2jWEhIQkaLGcha433bt3Dz/88AMuXbqEmJgYtR9drOrPPfec3iLSTT5NoM/9OgZHThjQukc4mkYtR4XM2XGkVDvQgp5uhooNIQESSAECnBdsQ5UgcZqLu+QWC/qAYdEIDwfmTPZC5kyPywhsV139H7Byr+1CmYMESIAESIAESMDlCVgV6Lt27VIR1qOiopAp05PVhBESsYDoSWfOnEGxYsUSPVddTxn25lmzZg1mzpyp2l6/fn2MHTvW6nFue/bsQbdu3VTAupw5c1qtThPo85bE4NBRA/p280TlmHnqGlmExV65gOChXeFRuBj8pyy1t+nMTwIkQALploAzzwupCdWSQP9geDRCw4BZn3vBz5cCPTXHg3WRAAmQAAmQgLMQsCrQGzdujIEDB6JBgwbJ6o+4tW/btg158+ZNVjl6L758+TI6d+6s9rbnypVLvWQQa78IcEtJvAMkf0REhHK51yvQF34Tiz8Px6HXux542TA/XqDLD7SK6B0t5iMBEnAmAs46L1hifPz4cQwbNgx3795FyZIlMW3aNDVnJJYkn/R/zJgxaNasmdVhsyTQB30SjaBgYMZnXvB/EjM1sFNdICqSFnRn+hKwrSRAAiRAAiSQggSsCvTatWtDrCXJTW3atEHv3r2VJTs10oIFCxAUFIQhQ4ao6sSCP3z4cKxdazlKrnz26quvQq5bvHixboG+eHks9v8Vh+6dPPCqOwV6aowt6yABEkhbAs46L5hTi42NVXOSiO2aNWuql7PiQTV//uNnuaXUp08fhIaGqoCnSRHog0dF41EQMG28F7JlfVzDo66NYQgNRsDSLYCvX9oOLmsnARIgARIgARJIcwJWBXrTpk3x448/Jjgezd5WX7lyRQnk1q1b4+WXX0bmzJlNirBlsba3vhEjRqBy5cqqPkmyX1J+P3HiRIKidu/ejVWrVuGLL75QlpFvvvlGt0BftiIWe/6IQ5cOHqjhRYFu7zgxPwmQgPMRcNZ5wZz0sWPHMGHCBPX8lxQXF6eO/RRvL39//wQDIy94Dx06pLZ7iUdWUgT60DHRePAQ+N9YLzwT8ESg92wOw6OH8GnREZnbdAUymc6PzneHsMUkQAIkQAIkQALJIWBVoG/duhXfffcd+vbti4IFC8LbW8LOPk16hfVLL72kLNqJpQsXLiSnDwmuHTRokArO06RJk/jPZN/4+fPn4ebmFv83OYf97bffxtKlS/Hss89aFOhifTdPLVq0gLT5u5Wx2LUvDu+080DtTBToDh1EFkYCJJAuCTjrvGAOc926dcpiPnny5PiPxNtr9OjRKFeunEn2O3fuoGfPnpCjQadOnape+BoL9Fu3biWY4+bMmYOGDRuqc9AlSXySYWOjce8BMOlTL+R49nEVQf3eRNy92+rnbPN+htuz1mOgpMubgo0iARIgARIgARJwGAGrAl0WKeEScjaRpFdYi0ugteTn51i3vpEjR6J8+fIqSrwk2WNerVo1nDx50qQZH3/8McRdUyznkixZ0AcMGJCg6b/++qsS6D+sicX23+PQ8U0P1PUzFeghY/oj5vRRZPl0NjxLV3LYgLEgEiABEkhLAs46L5gzE+8wOe5TAohqqVOnTujfv7+aL4yTbNHq2rWr+ru4xJsLdNkaJdZ14yQBSlu1amUi0EdMiMadu8DEUV7IleNx7sjNqxGxcpFyc886ZyXcn0udWC1peQ+xbhIgARIgARIggcQJWBXoyRXWX3/9NWTBo0WAv3jxIgoVKpTi0dxlsXT79m3lVi9JAgGJaN+wYYMJidKlS5t4BUh/5WWBLNjESp5Y0qK4r1wbi60749C+lQcaZKVA5xeNBEjA9Qk467xgPjLr16+HbHGSwHBaatmyJcaNG6de8GpJTgSRl7uffvqp+pMlgW5p1C0Fifvks2jcugNMGOmF3Eax6IIGvo24/64i6/Tv4J6/sOvfROwhCZAACZAACZBAogRsnoOeHHYiZP/880/lPi6pYsWKSiTnz58/OcXavPb69evo2LGjOnddi+JevHhxZRmRBdmNGzfQoUOHBOXYuwd9zYZYbN4WhzYtPNA4gALd5sAwAwmQQIYnkFbzgjn4U6dOqRe3WvDQmJgYVK1aFTt27EBAwJMN4oCynB89ejT+colp4uHhoWKcGFvfzcvXBHrbvDcQYYhVLu6jJ8Xgxk0Dxg33RN7cRtuthnZVx3P6T1kCj8IvZPh7hABIgARIgARIICMTsCnQZWEi0c3FpdtgMKjzzLt3744qVarY5JaWC7GNGzeqvYVydFqtWrUwceJEZS1fuHAhzp07p/YRmid7BfraTbHYuCUOrZp6oHl2CnSbNwQzkAAJuAQBZ50XjOFLULhGjRph1KhRqFGjhoriLgHivv32WxUwTsS3bHHKkeOJL/qTi+21oLfLewPhTwT6mMkxuH7DgDEfeyJ/XiOBPrI3Yi+cgv9n8+HxQmmXuEfYCRIgARIgARIggaQRsCrQN23apBYvcka4uINLgDVx9ZNI5+LuZ80NXJqTlgI9aTj0XaW5uG/YEod1m2LRorEHWuY0FejhS2chctMqZH73ffg0fbwXnokESIAEnJ2AK80LZ8+exdChQ5VXVdGiRdWL2wIFCqiTPyTQqGyXkue9cbJXoLfPdxNhcTEIq9gTU6cDV68ZMPojTxTM/1Sgx8csGfMFPEtVcPZbhO0nARIgARIgARJIBgGrAr1BgwbKBVAs0MZJzkYXi7RE87WWZGGzZ88ePPPMMyqbBNiR/Xz58uUzuczHxycZXUj9SzWBvum3OPy0MRZNG7ijde4FqiHixihJgv5ErF6CTG26IlO77qnfSNZIAiRAAilAgPOCPqiai3uHfDcREheD0Io9MWMGcPlfA0YO9kSRgkYCfcJAxBw/iCwjp8OzfFV9FTAXCZAACZAACZCASxKwKtBffPFFFZnWPMq6REWXvXoSAdeWQNdDTW80eD1lpUYeTaBv2RGHVeti0aiuO9rmo0BPDfasgwRIIG0JcF7Qx18T6B3z3UJwXDSCK/bAnNluuHTZgBEDPfF84acCPXTKMEQf2gu/oZPgVbm6vgqYiwRIgARIgARIwCUJWBXodevWxWeffZbgyJm9e/di/Pjx2LJli1UoEqxNT0rpoHF62mBPHk2gb9sdhxU/xaJ+bXe8VZAC3R6GzEsCJOCcBDgv6Bs3TaB3yn8bj2KjEFSxB76c44YL/xjw8QeeeOF5I4E+fRSiD+yE36Dx8KpWR18FzEUCJEACJEACJOCSBKwK9BUrVmDGjBkqKFypUqVUkDixmi9atEi5vsuRNBkxaQJ95944LF8Vi9druOPtIqYCPfKXlQhfNhvetRrD972RGRET+0wCJOCCBDgv6BtUTaC/k/82AmOj8KhCd8z/yh3nLhjw0QBPlCj2VKCHzRmHqD1b4TtgNLxrNNBXAXORAAmQAAmQAAm4JAGbUdx37typBPmlS5cgx9CUKFFCCfY6dTLuW35NoO/5Iw7LVsSi1qvumFZ2DY6F38flsp1Q2NsfMaf+RsjY91XAnyxjvnDJm4edIgESyJgEOC/YHndNoHfOfwcPYyPxsEI3LJrngTPnDRj8nideLG4k0OdNQtSOjfDtMwzerzezXThzkAAJkAAJkAAJuCwBmwLdZXuejI5pAn3/X3FYvDwW1V92x9KXNmJ3yA3sLN4Stf3zUqAngy8vJQESIAFnJ6AJ9C757+B+bCQeVOiGZQs9cPKMAQP7eqJ0yacCPXzRdERu+QmZewyGT4M3nL3rbD8JkAAJkAAJkEAyCFgU6Hfv3kW2bNnw6NEjq0XnzJkzGVU776WaQP/zcBwWfhOLV6q449sqFOjOO6JsOQmQgC0CnBdsETL9XBPoXQvcxb2YCNwr3xXfLfLEidMGfNDbE2VLGQn0b+YgcuOPPJbTPsTMTQIkQAIkQAIuScCiQH/11VfRqVMntf/cWtIbfX3y5Mn4+OOPLRYVFRWFzZs3IzQ0FNWrV0fBggXTPWhNoB86Eod5S2NRpZI7fqhmWaB7FC4G/ylL032f2EASIAESsEaA84J994cm0LsXuIc7MeG4W74rfljiiWMnDRjQ0xPlyzwV6BHfz0fE2m+RqWNvZGr1jn0VMTcJkAAJkAAJkIBLEbAo0OUYNV9fX4SHh1vtrPnxa4llFkE7duxYHD9+HB4eHqhXr178Hvb33nsPly9fRpEiRXDw4EEsXLgQ5cuXT9eQNYF+5LgBcxfFoFJ5N6x87RcTF3fpQGC7x8flBKzcm677w8aRAAmQgC0CnBdsETL9XBPoPQrcw+2YcNwu3wWrl3nh7+MG9OvuiUrljAT66iWIWLkImdp2U/+YSIAESIAESIAEMi4Bq3vQt27digYNEkaUjYyMxLZt29C0aVNd5ETQFi9eHI0aNVL5N23ahM6dO6NNmzYoU6YMdu/ejdy5c2PDhg3YuHEj5s+fr6vctMqkCfTjpwyYvSBGWULW1KRAT6vxYL0kQAKpR4Dzgj7WmkDvVfA+bkaH4Vb5Lvj5Wy8cOmpAn66eqFzhqUCPXPsdwr+fp6znYkVnIgESIAESIAESyLgErAr0KlWqKKu2eZJo7hUqVMDJkyd1kStbtiz++OMPZMmSReV/+PAhunTpgqVLl6Jq1ao4f/483NzcVJR4iQ6/Z88eXeWmVSZNoJ86a8CMr2JQ5kU3rK1DgZ5W48F6SYAEUo8A5wV9rDWB3rvgfdyIDsPNcu9i/fc++OvvOPR+10NtjdKSdiynT7P2yNx5gL4KmIsESIAESIAESMAlCVgU6CKYJb311luQM2+NU2xsLHbt2oWVK1dCjtrRk+rWrQuxuoh7uyTZdy5u7j/99BNeeeWVeIEun8nvIubTc9IE+tkLBkz9IkYdl7OhHgV6eh4zto0ESCB5BDgv2MdPE+h9Cj7Af9Gh+K9cZ2xakQkHDsWhxzseqFb5qUCP2roWYV9PhU/D1sjcfZB9FTE3CZAACZAACZCASxGwKNCHDRuGffv24datW/D29jbpsLu7O/Lnz4+RI0eqoG560tChQxEREaFc2sVS/sMPP+D06dNq37mI8bVr16JkyZK4du0aunbtqtzn03PSBPqFfwyYPCsGxYu6YVPDhAI9+KMuiL16EVk+nQ3P0pXSc5fYNhIgARKwSoDzgn03iCbQ+xV8iGvRIbherjO2rMwEOZ6z29seeLWqkUDf+QvCvvpcnYEuZ6EzkQAJkAAJkAAJZFwCibq4i5VbBPX69euTTUeCC82dO1eJfhHqEg140KBBygKfK1cuyMKvYsWKOHz4MHr27Kn2p6fnpAn0f64YMHFGDIoWccOWxgkFesiY/og5fZQCPT0PJttGAiSgmwDnBd2ooAn09wo9xL9RIfi37DvYviYz9h6IQ5cOHqhezUig792KsNnj4F2zIXz7j9JfCXOSAAmQAAmQAAm4HAGre9Dv37+P7NmzJ+i0RHcXV3dtT3lyqVy6dAm///47RPjqtcont87kXK8J9KvXDBg/NQaFC7phWzMK9OQw5bUkQALOQYDzgr5x0gT6gEKBuBIVjKtl38HunzNj9/44dG7vgZqvPhXo0X/uRui0kfCqVgd+g8brq4C5SIAESIAESIAEXJKAVYEuUdo/+eQTtS/cOB04cACTJk1Srul6k0R+Fxd2saabJwk450xJE+jXbxgwZnIMCuRzw86WFOjONIZsKwmQQNIIcF7Qx00T6O8XCsTlqGBcKdsJe9f5YufeOLzd1gN1qhsJ9L/3I3TSUHhVrg6/oZP0VcBcJEACJEACJEACLknAqkAvXbq0smybW9EDAwPx2muv4dSpU7qgSFC5wYMHq+BwmTJlSnCNpUjxugpOo0yaQL95Gxg1MRpZ/IBtzX/BKe+bWODZEj3L51UtC5v7GaJ2b0bmd9+HT9N2adRaVksCJEACjiPAeUEfS02gf1DoEf6JCsI/Zd/GgQ1+2P57HDq+6YHXaz4V6DHHDyJkwkB4lq+KLCOn66uAuUiABEiABEiABFySgFWB/vLLL2PRokXqrHLjdO7cObzzzjv466+/dEFp3LgxBg4caPFMdV0FpLNMmkC/cxcYMSFate6XBr/gVu6beO9sM3zxdgH1t4iVixCxegkytemKTO26p7NesDkkQAIkYD8Bzgv6mGkCfWDhR7gYGYRLZd7GwU1++G1XHNq/4YH6tY0E+pljCPn0PXiWqogsY+boq4C5SIAESIAESIAEXJKAVYE+btw4HDp0CGPHjoVYTSRJ9HX5vVy5cup/Pal27drqaDZXSZpADwsHftsVq7o13H8DzmS+iXcPN8PSXhTorjLW7AcJkIApAc4L+u4ITaAPKhyEC5GPcKFMRxz5NQu27IhD25YeaPj6U4Eee/EMgkf0hEfx0vCfMF9fBcxFAiRAAiRAAiTgkgSsCnTZNz5t2jQsX75cuadL8vT0RPv27fHxxx8jc+bMuqDInsUff/zRYUHldFWagpk0gW5cxYirB/H5vUOoefwV7O76eE89LegpOAgsmgRIIE0IcF7Qh10T6EMKB+NcZCDOl+mI41uzYPO2OLzZ3AON6xkJ9KsXIcdyehQpDv/Ji/VVwFwkQAIkQAIkQAIuScCqQNd6LOL8v//+Q1xcnDoD3cfHxy4YW7duxXfffYe+ffuiYMGCCc5Wz5kzp13lpXVmSwJ9zI2DGHvzECoeq4i/u1VTTYz8ZSXCl82Gd63G8H1vZFo3m/WTAAmQgMMIcF6wjlIT6B8VCcbZiECcK9MBp7f5Y+PWOLzR1ANNGzwV6HE3/kXQhx3hnr8wsk7/zmFjxIJIgARIgARIgAScj4AugZ7cbok7vBzNlli6cOFCcqtI1ettCfQtLashZ3Yg5tTfCBn7PjxLVUCWMV+kahtZGQmQAAmkZwKuNi+Ys9YE+tAiwTgTEYgzpTvg3E5/bPg1Di0be6B5IyOBfvcWgt5rA/fn8iLrnJXpedjYNhIgARIgARIggRQmYFWgX7lyBbLfUKK1WzoeTW8U99DQUKvd8PPzS+FuOrZ4WwJ9Ra2XUbyoGwW6Y7GzNBIggXRAgPOCvkHQBPqwIiE4FfEQp0u/hYu7s2Hdplg0b+iOlk084gsyBN7Ho14t4fZsTmSb97O+CpiLBEiABEiABEjAJQlYFeidOnVCyZIl0bx5c4v7zYsXL+6SUGx1ypZAn1ehKqpWcqdAtwWSn5MACTgdAc4L+oZME+jDi4TiZMQDnCzdHlf3BOCnjbFoUt8drZsZCfSQYDzq1hhuWQOQ7euN+ipgLhIgARIgARIgAZckYFWg16xZU52DntQ0ceJE1KhRA7IH3VoaP358UqtIk+tsCfTPC1dVEXo1F3ePwsXgP2VpmrSVlZIACZCAIwlwXtBHUxPoI58Pw/Hw+zhRqj2u7w/A6vWxaFTXHW1aPBXoiIxA4Dv1gMy+CFhmfb7UVztzkQAJkAAJkAAJOCsBqwK9Xr16Sly7uz/dK2dPR+fMmQM5M3f79u1WLxs+fLg9xaZ5XlsC/eNnqqhzbiUFtquu/g9YuTfN280GkAAJkEByCXBe0EdQE+ifPB+GY+H3cbxUO9w88AxWro1FgzruaNfKSKBzrtAHlblIgARIgARIIAMQsCrQ586dq/aef/DBB8iUKVMGwKGvi7YEei/3KujThQJdH03mIgEScCYCnBf0jZYm0Ec9H4aj4fdxtFQ73P3rGaz4KRb1arnjrdYU6PpIMhcJkAAJkAAJZCwCVgV69+7dlYu7l5cXcuXKleB4NFuu6xrKf/75B/ny5Ys/nu3mzZtYt26d+luzZs3g5ubmVNRtCfR2QZUx7ENP1Sda0J1qaNlYEiABGwQ4L+i7RTSB/mnRcPwddg9HSrXFg0PP4vvVsXi9hjs6tjET6OLiHhlBbyt9eJmLBEiABEiABFyWgFWBvmPHDqsdf/3113WBadeuHXr16gVxjYyIiEDjxo0hAeauX7+Ohg0b4v3339dVTnrJZEug17/2EiZ/6kWBnl4GjO0gARJwGAHOC/pQagJ9TNEIHA67i8MvtkHQkez4bmUsar/mjk7tTAX6o25NYAgJQraFG+CW7Rl9lTAXCZAACZAACZCAyxFIlXPQK1SogN27dyNbtmz4/vvvsXnzZnz77bdKoHfs2DFZgejSYkRsCfRKx17C17MeC/Tgj7og9upFZPl0NjxLV0qL5rJOEiABEkh3BFxtXjAHrAn0cUUjcDDsLg692AZhx7Jj2YpY1HjFHe++ZSrQ5Rz0uLu3kPWLlXDPlTfdjRcbRAIkQAIkQAIkkDoErAr0lStXWm2FWMb1pIoVK2Lfvn3qqLYmTZpgxIgRKrp7dHQ0ZJGm9zx1PXWlRh5rAv3l0xVR5tBLmPGZF/yzACFj+iPm9FEK9NQYGNZBAiSQ4gQ4L+hDrAn08UUj8VfYHfz14puIPJEDS7+PRfWX3dGlo6lADx7aBbFXLsJ/8mJ4FMmYR5jqI8tcJEACJEACJODaBKwK9Lffftuk95GRkcrqff/+fbRs2RJTp07VRad3797Inz8/DAYD/vrrL2zYsEHtO7906RK6dOmCPXv26ConvWSyJtBrXaqEYvsqYfRQTxTM50aBnl4Gje0gARJwCAHOC/owagL9s2JROBB6G3+WfBOxp3Ng0XexeKWKO7p3MhXoIWMGIOb0EWQZPRueZehtpY8yc5EACZAACZCA6xGw28U9Li4OS5Yswe3bt5UlXE+SvJ9//jnk2o8++ggFChRQl23atAlXrlxBv3799BRjV541a9Zg5syZiIqKQv369TF27Fh4eJguiO7du4fJkyerFwQSCE/O9x0zZoz62VqyJtAb/lcJ+bdXwvu9PFGuNAW6XYPGzCRAAk5JwFnmBXO4x48fx7Bhw3D37l2ULFkS06ZNUwFRjZN4en311VdYvXo1YmNjVfyUiRMnIk+ePFbHShPoE4tF4Y/Q2zhQsjVwNicWfhOLl19yR8/OpvNR6P+GI/rgHvgN+QxeVWs55X3ARpMACZAACZAACSSfgN0CXauybt26Ns83T37zklbC5cuX0blzZ6xYsUIttgYPHqxc6bt162ZS4JEjRyB5W7RooV4e9OnTB9IvcwuReSssCfSZd45j4LV9aHmvEnJsqoR32nug1qvuCJv7GaJ2b0bmd9+HT1N9WwKS1mteRQIkQAJpSyA9zwvmZERsy8tbeSkrL2eXLVuG/fv3Y/78+SZZAwMDVewUmVOyZMmCOXPm4MKFC5g9e7Yugf55sWjsD72F/SXfgOf5XJi/NBZVKrmj97umAl2bK3z7jYB37SZpO5CsnQRIgARIgARIIM0IJEmgy8Kmdu3aul3T5Ti2EiVKoFChQqqjYrFevHixOmZNLOoSPM6RacGCBQgKCsKQIUNUsWfOnMHw4cOxdu1aq9WIZ4C48I8aNcpqPksCfVfwDdQ5vw6lo/Kg2oqmaN7QHS2beCDyl5UIXzYbnqUqIsuYOY7sJssiARIggXRDIL3PC+agjh07hgkTJmDVqlXqI3lJ+8orr2Dbtm3w9/dPlOvp06cxdOhQbNy4UZdAn/xCNPaG3MK+km/A5+Jz+GpxDF4q74a+3R4fxaml8KWzELlpFV/mpps7mg0hARIgARIggbQhYFWgS2A38yTHpMnCJDg4GF9//bWuVsuxarIQeumll3Dnzh11tNqAAQMgCx3Zly5uhY5M4npfuXJltG7dWhUre+fl9xMnTlitRo57EwuQ7K+3lqwJ9PKxeVB5eVNUr8A8EUgAACAASURBVOaOLh08YAgNxqP32gBhoQwU58hBZlkkQAJpQsBZ5wVzWOvWrVMWc9nmpKU2bdpg9OjRKFeuXKJsly9frgKbipu7taS5uE95IQZ7Qm5iT4lW8LucG3O/jkHFcm54r7upQI9YuQgRq5cgU5uuyNSue5qMLSslARIgARIgARJIewJWBXqtWgn3wfn5+aFMmTLKbfy5557T1YPSpUvj0KFDKor79OnTIXu/ZXHz6NEj5WIogeMcmQYNGqTOXJeI8VoSUX3+/HkVnM5S2rt3L2bMmIEff/wRnp5PF06TJk1KkH3RokXKxdE4aRb0l9zyosKyJijzohs+7PO4HG3hRSu6I0eZZZEACaQFAWedF8xZybNeXhJLfBItderUCf3790e1atUsor116xbeeecdLF26VHmAaUkCn549e9bkmosXL6J58+aY+kIsdofcwO8lWiHr1dyYsyAG5Uu7YUAvU4EeufFHhH8zBz5N2iJzlw/SYmhZJwmQAAmQAAmQQDogkCQXd3vbLYsdsbr7+vqiTp066gx0CbQj1nixbJ88edLeIq3mHzlyJMqXLw/tGLiQkBC14EqsHgkUJC6L4uJuHvhH3B3NU9++fRMV6Pnd/ZHrSHGIh+Ta1uUR4OFDK7pDR5eFkQAJuAKB1J4XzJmtX78eu3fvNvHgEu+pcePGqfnDPD18+BDvvvuu2pYlx4QaJ5lDbt68afI3KV+8x6YVj4W8wN1doiWevZYHM+fFoGwpN3zQ21SgR+38BWFffQ7v2o3h22+kKwwx+0ACJEACJEACJJAEAhYFes+ePZU1WQLiSBJLQ9OmTeN/t7ee8ePHK/dy2eOXN2/e+OA6EqRNIuhu2bLF3iKt5pf97RI5XvadS5LFk4h2sXKYJ7F6DBw4EF988QWKFi2qqx3WXNyNC2gVUAQ/F22k/mRsRc/UzjRYnbVKxerORAIkQAJpTcDZ5wVzfuKmLvOCFpskJiYGVatWxY4dOxAQEGCSXbZ0de3aFd27d1eiW0/SXNynF4/FzuAb2Fm8JXLdyIPpX8agVAk3DOpnKtCj/9qN0Kkj4VWlBvw++lxPFcxDAiRAAiRAAiTgggQsCnQRoH/++SeeffZZ1eWKFSsqcStnmSclycJHAvGIQJc9fj4+PqoYcW0X6/brr7+elGITvUYCvXXs2BE//PBDfBR3sdiL66JYTG7cuIEOHTqoc9hl3/msWbNQrFgx3W2wJNCvRAVj6b3HLo7rf43FqRdPIco7CjMKvIYPc5UzsaLrrgiAm28WeFWtAa8qNeHm9/iFifzNo/AL9hTDvCRAAiSQLALOPi+Yd17mo0aNGqmgoGIRlyju4jElHl7ymbi+S6wU2ZrVo0cP5dpuvG3KFkxNoM8sHoftwf9hR/EWyH0zL6bNjcGLxd0w+D1TgR5z8m+EjHufAUVtgeXnJEACJEACJODiBFJFoKcFQ3Gpl+A/4kYveyZlz7u3tzcWLlyIc+fOYerUqcpyLvnc3d3jmygvD8Tibi1ZEujG+YeOicYR/6vYVvs3BHh440ipdijs7a8iukcf/F03DkNoCGKvXrSY36NwMfg0aQ+vKtXh5pd4xGHdlTEjCZAACVgh4GiBnh5giweVbG+Sl7biQSXzQoECBVRgUYljIt5Yhw8fViLeeJ6QtotnmRzfmVjSBPqs4gZsC76ObcWbo8CdfJgyOwbFi7ph6PumAj32n3MIHtYd8mz3n7I0PeBhG0iABEiABEiABNKAQIoKdBHFYpmQY9asJXGBd6ZkS6BPnBGDf64Y8KDH7/g56jwqZM6OmQWrW+xiIW9/Jd4TS3F3biJq1ybEnD4SnyXmygUVFd48uefMDfeceUz+LFZ3S9Z2z9IJXefdc+SGey7T651pXNhWEiCBlCPgKIHuqvOCOXlNoM8pYcDWoOv47YXmKHwvHybNikGx590w7ANTgR53+waCBrRTz+CsXzw++o2JBEiABEiABEgg4xFIVKCL27e2B11cw8eMGYMcOXKYEKpZs6ZVYnPmzMHLL7+M7du3W82n7RV3Fvy2BPqXi2Pw9zEDOnSOQXfv1bgaFZLsrtX2z2tSRlzgfRgCHyDrgwcoeycQZW8/QLbIqPg8BR6FoeCj5NeriX4R+SL2RdhTyCd7OFkACTgdAXnucV7QP2yaQP+iBLAl6Bq2vtAcRR/mw8TpMXi+kBtGDDIV6IaQIDzq1kR5RGVbsll/RcxJAiRAAiRAAiTgUgQsCnRLx+hY6rXs586IyZZA/35NLHb8Hoe2LT3gU+UWxtw4mCimK1FBDhHw5hUUcvPBIZ8yyBYagVixuJslY4u89lFilvnEGi+umG6+/o9Fe848dLfPiF8G9jnDEOC8YN9QawJ9bgng16Br+PWFZigRmB8TpsWgcEE3fDLYVKBL6YHtHntaBazca19lzE0CJEACJEACJOAyBFL0mDUJDqcnGZ87rid/WuexJdA3b4vDmg2xqpkVyrqhaiV3ZPNPeP66HLdetIjlc9nN+yjH9FhKgbGROBp2Tx3joyVN9H+apzLG5K2SLFziYh939yZiTh2BISxEiX31t3u3E5Qrwet8mrZT5/hyX3yysPNiEnBZAq46L5gPmCbQvyrphk2P/sXmF5qiVHABjJsSg4L53DB6qAWB3rkBEBGGgGVbgcy+LnsPsGMkQAIkQAIkQAKJE0hRgS5CVk+6cCGhhVfPdWmVx5ZAv3zVgO9WxeLqNYPNJk4d54WAbDaz2ZVBxHqd8+tUgLrLZTups9hTIsWc+hsqkN2VC2qPfMzpo6oaCvWUoM0yScA1CLjqvJCYQJ9X0h2/PLqKX4o1QbnQghgzOQb587phzMcJBfqjXi3U1qVsCzfALdszrjHg7AUJkAAJkAAJkIBdBFJUoL/22mvw9/dH8+bNUbduXXVcjaVUqFAhuxqd1pltCXStfXfuAn8ejsPZi3EwxJm2+u59Ax4GAh3e9EDdmk+jyDuqb7XPrcPukBtwhBVdb5tEsEesWmwi1L1ry57Kx8fD0Q1eL0nmIwHXJeCq80JiAn1BSXdseHQVE/O9jBJRubFoeSzKeGTH5KEJLeRB/dsqD6Wsc1dD4n8wkQAJkAAJkAAJZDwCKSrQY2Nj1bnjcga6nHnesGFDtG3bVp2r7sxJr0C31sfDxwz4arHlaL6OYJNaVnRLbTUX6sZ5tHPdRbhriUHnHDHiLIMEnIOAq84LiQn0hSU9sP7RFZOPO//ZHMv65U8wYEGDOiHu+hVknbEc7vmc68W1c9x9bCUJkAAJkAAJpH8CCQS6iOkmTZrAz8/Poa2/d+8efv75Z6xevRpubm5KqL/xxht49tlnHVpPahTmCIEeFQ18MDwa0dHAtPFeyJbV8S1vdWkz1gVeUce4FfZJ/Cg3cYFfUriOw13hRajL3nUtGbvBm/fWs1RFiGjnue6Ovw9YIgkklwDnBfsJanvQD1TMib0ht1QBx8LuIzAuEh3+bIrv+xVMUKicgy7noftPWWLxeEz7W8ErSIAESIAESIAEnI1AAoEu1u19+/bB19cXb731FlasWOHwPh0+fFhZ1X/99VeIu+PcuXMdXkdKFugIgS7tEwu6WNJTys39SlQwipz4ThcKOat9Z4mWDhfp5pWL+2bkppUmkeWNo8drFnavKjXhVaWGrrYzEwmQQMoS4LxgP19NoDdr1iz+4oanN2Fr+FW0+ashVvV9PqFAH90PsWePw3/CPHgUL2N/pbyCBEiABEiABEjA6QkkEOg1atTAjBkzULlyZVSpUgUHDyZ+RFhSeh8eHo7NmzcrS/rx48fRoEEDTJ8+PSlFpdk1jhLoB/+Ow/xlsXjheTd8/EHCgEGO6ODR8HsIjHl6PrqlMj+8thfHwu8jtUS6eRsMocGIPrgHUbs2xe9f1/Jo57Brv8t+dt9+Ixgl3hE3B8sgAZ0EOC/oBGWUzZJAb3luC9aH/IOWB+thbZ+EQVRDJgxEzPGDyDJ6FjzLvGR/pbyCBEiABEiABEjA6QkkEOhr1qzB6NGj4ePjg+DgYAQEBCTaSXvE+9GjR5XV/JdffkGRIkXQpk0btGjRQgWRc7bkKIEubu79hkSr7qeUm7setnJUW4XTK9V57K0CiuDnoo30XJYiecTCLkJdBHvs1YsW65Dz17N8OociPUVGgIWSQEICnBfsvyssCfT257djZfB5NDlUB7/0Lpmg0NDJHyP68D5kGfY/eFZ6xf5KeQUJkAAJkAAJkIDTE7AYJC4oKAjXrl3DgAEDrFq3K1SoYBXA/fv3sXbtWmUtl59btmyp9p4XL17cqcE5SqALhLlfx+DIiZRzc9cLWiztEvn9UWwUPshVFjMLVNd7aYrm085h1yoJXzpbCXeK9BTFzsJJIAEBzgv23RSWBHqXi7uw7NEZ1D9cE1t7lU4o0GeMRvQfO+A3aAK8qtW2r0LmJgESIAESIAEScAkCVqO4b9q0SQWMS2p68cUXUbBgQVVGrVq14OHhYbGosmXLJrWKNLnOkQL9wKE4fP1tyrq564UkIr3i6VUqu1jRxZqe3pK4w4eMGaBEuri/S2A571qN4Z4rT3prKttDAi5JgPOCvmG1JND7XNqD+YEnUfvIq9jZo3yCgsLmfoao3Zvh238UvGs21FcRc5EACZAACZAACbgUAV3HrJ09exYXLlyAwWBAsWLFUKpUKV0QRJTrSXIUmzMlRwr0iEig/9Bo+PkCo4Z4IUf2tCUx885xDLy2DwEe3jhSqp2KAJ/ekrFI19omUeC1JMHlfJq2S2/NZntIwKUIcF6wPpyWBPqHV/7ArPtHUf1oNezpnvC40bCFUxH121r49v4Y3nWbu9T9ws6QAAmQAAmQAAnoI2BVoD98+BCDBw+GRF0vVKiQOh7typUrKF++PGbOnOmUR6Tpw2I9lyMFutS0bEUs9vwRh/p13NG+lWUvA0e0W28Z2vFsEjTuw+fKo2VA4RSP7q63bcb55Bi3qF2blcXJPPGYoqQQ5TUkYJsA5wXbjCSHJYE+4tpf+PzOYbx8vDIOdK2SoKDwZbMR+ctKZO76IXwat9FXEXORAAmQAAmQAAm4FAGrAn3gwIFKlI8bNw5ZsmRRHQ8JCcGoUaMQFxeHWbNmuRQMvZ1xtEC/dQf45LNo+PgAMyZ4wdtbb0tSJp9x0DitBnF3r+2fF7X886JC5hwpU3ESSzXepy7B5SI3rVLu7yLS3fzSnwdAErvJy0ggXRDgvKBvGCwJ9Im3/sbI//5EpZMVcPjdhEHgIn6Yj4ifv0Xmt/vCp+Xb+ipiLhIgARIgARIgAZciYFWgSxC4LVu24LnnnjPp9O3bt9GoUSMcOXLEpWDo7YyjBbrUO3NeDE6eSftgcRoDEelrAy+rf+sCrySKRkT7ksKvpytX+OCPuqg96j5N2iJzlw/0DivzkQAJ6CDAeUEHpEQs6NNvH8Pg6/tR9lRZHO+cMBBnxOqliFj5NTK17ab+MZEACZAACZAACWQ8AlYFerly5bBz505kz266Mfru3bvq/HIKdMfdMKfPGTD9yxi1B33SaC/HFeyAkjSxviv4BnYF/6eOYzNPXbKXQGGfrCZ/ln3sFXytW9trZcnrgBaaFhF75QKCh3ZVf/QbMhFeVWs6vA4WSAIZlQDnBX0jb8mC/uXdk3jv3z0odeZFnOqUMEp75PrvEf7dl/Bp1QmZO/bRVxFzkQAJkAAJkAAJuBQBqwK9b9++SpyLS7uciy4pIiICY8aMQXh4OF3cHXwrfDopBv/dNKD9Gx4omM9NV+le3sDzhfTl1VWgHZlEuI+5cRCz7pyw46qEWSUQnbjQf/BcOYdZ4iNWLkLE6iWqMp8m7ZCpbVe6uydrlHgxCTwmwHlB351gSaAvvncW3a/uRIkLJXD2rdcTFBT56xqEL55B7x99iJmLBEiABEiABFySgFWBfuvWLfTr1w///vsvnn/+eRXF/dKlS+rnBQsWMEicg2+J/X/FYfHyWLtL/aC3J8qWShuRLo29EhWMpffOJmi3/P1KZLDV/uwOuWHyuVjixWXeEclYpMuedPecT49ic/PLAo/CL1itRj6XfO45cvMYN0cMCMtwCQKcF/QNoyWB/v2DC3j78jYU+6cYLrStn6CgqB0bETZvErzrtYBvr6H6KmIuEiABEiABEiABlyJg85g1EeUHDx5UwjwmJgYlSpRA5cqV4e7u7lIg7OlMSuxB1+oXN/eYGH2tkXz/XDUgix8wYaSX+t8Zk5y/PvP2cbXf/VFsFBwp0sXdPXzpLMScPposNHJ0m5y5Lv8zkUBGJ8B5wfYdYEmg/xT4D968tAWFrxbGueaN4W22myl6728InT0W3jUbwbf/J7YrYQ4SIAESIAESIAGXI2BToLtcjx3QoZQU6PY2b86CGBw7ZUCpEm4Y1M/T3svTVX4R6rXPrYsX6V1ylEy0ffbuXZcj2YyTITQEIt6tJfncEBZiUdxr5657lq6orOziRs9EAiRAAhoBSwJ906OraHpxEwpcL4ALjZqpkzuMU/RfvyN06gh4VasDv0HjCZMESIAESIAESCADEqBAT8KgpyeBHhoGjJoYjaBgoFVTD7xQ5LGre/bsbsjxbBI6l8aXGIt0W02RIHRj8lbBB7nK2cqarM8NocGPz1vftUlFh7eUPAoXg2+/kTbd5pPVEF5MAiTgNAQsCfQdwf+h7vn1yHszDy7UbQXfzKbdiTl6ACETh8Cr0qvwGzbFafrKhpIACZAACZAACTiOAAV6ElimJ4EuzT911oAZXyX0iy9UwA2VK7ibBJF7LpcbArIlodOpeImI9A//3ZdojRKc7lj4/fjPJcicsbW9ZUDhFD2rXQS7sq4/scKLcI+7dxtuvlmQqV03WtNT8V5hVSSQXglYEuh/hN7Cq2d/xnO3n8PFWq0TbEuKOX0EIWMGwLNsZWQZNTO9do3tIgESIAESIAESSEECFOhJgJveBLp0YcOvcThzPk71Ji4OuHjZYLFnL7/kjp6dPZLQ6/R3iRz71uXK9gTHvollfUaB19Ale+Iu8o7sjQj28KWzEbV7sypW3N8larxn6UqOrIZlkQAJOBEBSwL9SNg9VDqzCjnu58ClV9oiq79ph2IvnkbwiF7wKFEW/uO/cqLesqkkQAIkQAIkQAKOImBToEdGRuLo0aOQyL0tW7ZU9UZFRan/vb29HdUOpyonPQp0c4DhEcDRE3H4+1gcxA1e0vlLBnh6ArMmeiXY++hUA2DW2KX3z8ZHixfr+7rAKyrHksJ1Uk2kS32yf1QC0ok1XZK4vbv5mq3AAbjnyo1MbboxMrwz33QZvO2cF2zfAJYE+pmIhyh1agWeeRiAf6p0SODNFPvvJQQPeRceRYrDf/Ji25UwBwmQAAmQAAmQgMsRsCrQL168iB49eiAsLAxBQUE4e/bxUVorVqzAnj17MHfuXJcDoqdDziDQLfXjs2kxuPyvAe+090CtV103Cr+czT725qE0EelSqTrebdNKICzU6u3kXbuxOvpNO85NifpCxXheu54vIfOkGQHOC/rQWxLol6OC8PyJ5cga7I9/yndC9mdMy4q7dR1B778F93yFkHXGcn0VMRcJkAAJkAAJkIBLEbAq0Dt16oRatWqhZ8+eKF26NE6dOqU6L+eit23bFn/++adLwdDbGWcV6Dv3xmH5qlg8X9gNIwY6d8R3W2MlVvWuV3ammUjX9qlbaqcKOPfEHd5aP8QCLwI+U9tuDD5na8D5eaoR4LygD7UlgX4zOgx5jy+Db5gvrpZ6Fzmym5ZleHAXj/q8obxrsn6xSl9FzEUCJEACJEACJOBSBKwK9HLlyuHAgQPw9fU1EegPHjxA9erVcfr0aZeCobczzirQw8KB94dFq25OGu2VYHGot//Oks9YpB8p1TZFA8fZy0SLDB8fcC4sRBURI0e/WbC8i7VdzmG3liRInVjjmUggJQlwXtBH15JAfxgbiWePLoZPhA+uFu+G53KaCfTgR3jUvSncAp5FtgXr9VXEXCRAAiRAAiRAAi5FwKpAr1mzJubNm4dSpUqZCPS1a9eqv//6668uBUNvZ5xVoEv/5i2NxaEjcWhS3x2tm7lGsDhr49blyg4su38OEjiugm8Oq0NcIXMOFVwuvSSJFC/72iNWL9HdJPecueFVpSa8qtZQweqYSMDRBDgv6CNqSaCHx8XA98hCeMZ44t/CPZHnObOyIiMQ+E49wNcPAUu36KuIuUiABEiABEiABFyKgFWB/v3332Px4sUYMGAAhg8fji+//BKHDh3CsmXLMGHChPigcS5FREdnnFmgnzhtwKz5MciWFZg23ktHb50/S6tLm+MDx9nqTZfsJbCk8Ou2sqXq53F3bqrgc4YnVvbEKpd8WoA6ySMWdRHqItjd/LJYbbN7jtwMWpeqo+q8lXFe0Dd2lgS6+l4efhyd/XrePsiXxy1BYYHtqqu/Bazcq68i5iIBEiABEiABEnApAjajuO/evVuJdAkMFBsbi2LFiqF3796oUaOGS4GwpzPOLNCln4M+iUZQMFDrNXd1zI+nhxtqV3eHn689FJwnr5ybfjTs6bnpllouecTa/ig2CiLSxZIe4OHjPJ180lKxusu57GJ5NxbrejoiFndxo5e973SV10Ms4+bhvGB77G0J9H9z90GBfBTotkkyBwmQAAmQAAlkLAI2BXrGwqGvt84u0Fevj8Wv2x+fma4l/yxAhzc9ULWS60Z3tzW6ckRb7XPrlEi3lGr757VVhMnnhb39Uds/H8r7Zk+T/e8i1mNOHUH0wd9ttjuxve+WLjQ/Ps6zdMX4SPS0xNtEzQwZhEBiAj3zn4sQ4RmFU7m6o1SBhEeVBr3fHnG3/kPW6d/BPX/hDEKL3SQBEiABEiABEtAIWBXoVatWxbp165AnTx6XJbZmzRrMnDlTne1ev359jB07Fh4e1vdmO7tAv/cA2PdnbPyY/nvdgGMnDer3gvndkMmC4Vj+3qqph8XPXOnmsCXSHd3XVgFF1HntaW2tl2B10Qf3KOu7ITQEsVcvOqyrls6DNz5aTiqSaPVyPrxxoth32BA4tKCMMC+YAzt+/DiGDRuGu3fvomTJkpg2bRpy5cpllWtiAj3rgaUI9grHfv938UrxhG5LodM/QfSBXfB9fzS8qzdw6NixMBIgARIgARIggfRPwKpAr127NmbPng2J2uuK6fLly+jcubM6110WW4MHD0aFChXQrVs3q911doFuqXNHjhuwbEUMQqwc3f1MNuDdDp4o82JCt0xXvD/M+7Qr+IZd3RSxvyv4PxwNu4erUY+jtFtKEsBuZoHqKOzjrz4u5O0Psb6n1ySWeRH0kpSYF0v96SPqd3ss8Xr6J0HvxEIvAl6SJSFvqRwGyNNDN2l5XH1eMKciW7vk5e2YMWMgAfIkBsv+/fsxf/58qwATE+jP/fUt7niEYP7tjujVJFuCMiJ++gYRKxbAp9lbyNy5f9IGiVeRAAmQAAmQAAk4LQGrAn3Hjh1qETJ58mQULux6rnYLFixAUFAQhgwZogbwzJkzKhieRKm3llxRoEt/5Ri2a9cfW9KNU1CwAWs3xeL23cd/fb6QGzyNjlHPlAnwzewGX1/ALzPg6+sG3yf/i6gvXDBjCnpbT4UrUcHocnkHdofYJ/ylXBHwmqC3VI9Y5M2j1tvroq+VWz5z9mRZ+I0FvVZm7JWL8SJf/hZ39xbi7t406YqjxL4lC761sTG37tsax8Q+lxcLyU3p0YvA1ecF8zE7duyYCoq6atXjc8nj4uLwyiuvYNu2bfD3T/xFWmIC/fm/f8BlQyA++rs9pvR8NsEtEnPkAEI+HwLPMpWQZfTs5N5CvJ4ESIAESIAESMDJCFgV6P369VOi9fr168idOzcyZ85s0r2tW7c6WXdNmztixAhUrlwZrVu3Vh9ERkaq30+cOBGfMTQ0oUlZrOwXLlxw6r4npfG/7YzDhi2xSsjbk3y8geLF3FCogBvczLR6QDY31Ho14+57F45rAy9j5u3j8UivRAVZtbjbwz4t8+o52i6x9smRdwGePjAEPlDC3RD1OC5AgYeP0PHUFZvdijl91GYeV87gaA8C2X6geTF8+N0anL15G/89fITcObIjs39Wl5oXzO8L2eYlFnN5Ua2lNm3aYPTo0fHeZdHR0SqIqnESl/h69eqhWbNmJn8vf2oljkfcR+kLL6JMnsdz6pSK5VEwayb1syHwPh71apmyt6fXk73vJs/jJ79oD2mTh7X2mVGznnzuBrPrJEt8uUYVWCz3SXlW6zQuQ6vfUp2P/2baJQv54ttrVrfx1cZ9N5+0LH5moY3mfFTjLHC0yE8rL3HuJj1NUK517k+Hx0K+FB9PvfeQhRf7Ce6TxLk/rkXHvWlhPOPvaeMbKj6fJbbGX1dr3yML95yOck3bY+me1vM9Ssjd8j2kh7tcaXZvWnxePG1rpnbdU/aZxtJJwMUI2LSgW+vv66+nr+Oo7B2bQYMGqQVUkyZN4i8V6/j58+fh9uRh06pVqwTFnjp1KkMKdA1EaBgQHg6EhhkQHiH/A2FhBiXcw8MNj39/8vmt2wbInvfEUpGCbhg52Mgcb+8gZtD8Yn2/EvnYzdxSehy5/l78R3oi2SdWlrjqJxY4L7Xx18qSF7tK2CdeYk79bVczza37dl1slFlz+0/q9XKd+dF5ySnLUdfuCYyIL8qrRgN4v1bPpGhnnxfMOf344484ffq0ik+ipU6dOqF///6oVq2a+tOUKVOwZ88ek0tz5sypXv6aC/RqZ9fgz9A7JnmPFOyECjmfWuMfdWsCQ0iQo4aM5ZAACZBAmhLgsZFpip+VOyGBDB3FfeTIkShfvjzatWunhi4kJEQtuE6ePGl1KF3VxT2l7t/7D4HTZ+PwIDCh+/yzAW6o8UrGtqCnFPe0Lje5LwUCYyITdEHc+rtkL5nWXUv39dv7UsJWh9QWhDumWxDkGs8yL8GzVAVblzv15+vXr4ccKyeB4bTU4+1+6AAAIABJREFUsmVLjBs3Ts0fiaXEXNwPh93FsdshuBYYhcDoKDyKjsKUSuWQI7OXYzk98ToBjJ67hic/a/+bfPak+vjP5Eqz/CaPcPOyxPyf8Bkf/zeLdWplGHfdvM6nZcb/ZFyPrr5YY2BUdwI+8pmFNj7JF89HZTPPZ6tOs/wm7Cyx1dqZeLmmw2OhjOSOp93cLd1DVu4RY45WuFu+p/XeQ4mP59OxNmZsm7vJF9fqPZSw3ATfMRMGdt6bNu8hM/YWxtP0njZ/Jli696xw1/ri5oZMba3HdnLsw4+lkYDzE7Ap0MXdWyzK4v5tnjp27OjUBOR899u3b6t955IkUq+I9g0bNljtFwW6Uw87G08CJJBMAq48L5ijEY8pmRe02CQxMTGQSPayFz8gICBRkokJ9GSi5+UkQAIkQAIkQAIuTsCqQJ87dy4WLlyorAQSKKdMmTK4evWqsjSLOP/oo4+cGo/srZd+/PDDD/FR3IsXL65cF60lCnSnHnY2ngRIIBkEXH1eMEcjQeEaNWqEUaNGoUaNGiqKuwSI+/bbb61SpEBPxk3GS0mABEiABEggAxOwKtBfffVViJVZzn1t3ry5sizLYmXSpEl45pln0LdvX6dHt3HjRhX8JyIiArVq1cLEiRPh7f0kgE4ivaNAd/phZwdIgASSSCAjzAvmaM6ePYuhQ4fixo0bKFq0KKZOnYoCBQpQoCfxHuJlJEACJEACJEACiROwKtDLli2Lw4cPK8EqgW5EzEp69OgRGjZsiAMHDmRIthToGXLY2WkSIAEAnBf03Qa0oOvjxFwkQAIkQAIkQAKmBKwK9BYtWuDzzz9H6dKl8e677yoLgvx89+5d1K9fH0ePZsyjjCjQ+TUiARLIqAQ4L+gbeQp0fZyYiwRIgARIgARIwA6BLtFr8+TJgypVqmDTpk3qmBlxA5f96C+++CJmzpyZIXlSoGfIYWenSYAEAHBe0HcbUKDr48RcJEACJEACJEACdgh0c1jbt29Xbu358+fHW2+9BR8fnwzJkwI9Qw47O00CJGCBAOcFy7cFBTq/LiRAAiRAAiRAAkkhYPOYtaQU6urXUKC7+gizfyRAAiSQPAIU6Mnjx6tJgARIgARIIKMSsCrQw8PD8c033+DkyZMIDQ1NwEgivGfERIGeEUedfSYBEhACnBf03QcU6Po4MRcJkAAJkAAJkIApAasCfciQITh16hRatmwJPz+/BOzeeeedDMmTAj1DDjs7TQIkAIDzgr7bgAJdHyfmIgESIAESIAESsEOgV65cWZ19LoHimJ4SEIHORAIkQAIZkYDBYFDddnNzUy9v5UxwpoQERKD/8ssvREMCJEACGZ7AhQsXMjwDAiABewhYtaBXrFgR+/btg6+vrz1lunzeb7/9FrJI7dy5s8v3lR10LAE5qlACLFaqVMmxBbM0lyfQsGFDdZqGh4dHmvaV84I+/NeuXcPo0aOxZMkSfRcwV4oQ2Lx5M06fPo3BgwenSPksVB+B6dOno2TJkmjSpIm+C5grRQh069YNY8aMQcGCBVOkfBZKAiTgGAJWBfqwYcNQrlw5dOzY0TG1uUgpFOguMpBp0A0K9DSA7iJVpheBznlB3w1Fga6PU0rnokBPacL6yqdA18cppXNRoKc0YZZPAo4hkECgjxo1Kr7k2NhYrFu3Tp15XqRIEWTKlMmk1vHjxzumFU5WCgW6kw1YOmouBXo6Ggwna0paCnTOC/bfLBTo9jNLiSso0FOCqv1lUqDbzywlrqBATwmqLJMEHE8ggUD//PPPddcyfPhw3XldKSMFuiuNZur2hQI9dXm7Um1pKdA5L9h/J1Gg288sJa6gQE8JqvaXSYFuP7OUuIICPSWoskwScDwBnoOeBKYU6EmAxksUAQp03ghJJZCWAj2pbc7I11Ggp4/Rp0BPH+NAgZ4+xoECPX2MA1tBArYIWBTo9+7dQ0BAADw9PeOvj4uLg0x0N2/eRPXq1VWwDyYSIAESIIGMQYDzQsYYZ/aSBEiABEiABEggbQlYFOjvvfceJFJvjx494lsnexB37NiBEiVK4PDhw5g3bx5eeeWVtG09aycBEiABEkgVApwXUgUzKyEBEiABEiABEsjgBCwK9FdffVUJcIngLuny5cvo0KEDtmzZgmzZsmHFihXqfPTly5dncHzsPgmQAAlkDAKcFzLGOLOXJEACJEACJEACaUvAokAvXbo0fvvtN+TNm1e1buLEiciSJQvef/999bu4uTdr1kxZ0plIgARIgARcnwDnBdcfY/aQBEiABEiABEgg7QlYFOh169bFp59+ipo1ayIwMBANGjRQx63lyZMnXqDXr18fJ0+eTPsesAUkQAIkQAIpToDzQoojZgUkQAIkQAIkQAIkAIsCfcGCBVi8eDEkavCBAwdUUDjjc3APHjyoolHv3LkzQyGUQHmfffYZNm7cCC8vL/Tt2xdvv/12hmLAzuon0LlzZxw5cgRubm7qok6dOqnvjaQ1a9Zg5syZiIqKgrzsGjt2LDw8PPQXzpwuR+DKlSvo3bs33nrrLXTt2jW+f8ePH8ewYcNw9+5dFZxz2rRpyJUrl/rc2meOBsR5QT/R1BwX/a1yzZwGgwFz587FkiVLEnj1Jfac5Vzu2HtBjDVTpkzBuXPn4Ovri+7du6v5TpI11g8ePMBHH32knmPPPvus8tZ86aWXHNu4DFTa3r17MXv2bFy9ehWZM2dGx44d0atXL0XAGms+rzLQTcKuOg2BRI9ZW716NY4dOwZxa2zbtq2JeJBJ78aNGxgwYIDTdNQRDV21apXaey8L1bCwMLWQlqNDypQp44jiWYaLEWjatCnkSD5ZeBgniekg4l1iOYjQGjx4MCpUqAA5/oQpYxKQF6HykuaFF15QATo1gR4bG6te4IwZM0Z5NC1btgz79+/H/PnzYe2zlKLIecE22bQYF9utcs0c0dHRGDhwoHqOytwsxgMtWXvOci537P0ga8IiRYqgUqVKuHPnDlq3bq1emMjzzBrrIUOGIF++fPjggw+USJf/JdZRpkyZHNvADFKaeLqWKlVKcX/48CHatGmjXujK+iIx1mJsSmyOySDY2E0SSJcEeA66HcMib4W7dOmCGjVqqKuWLl2q9uMPHz7cjlKYNaMQkPvk999/j7ega/2WFzxBQUFqwpR05swZdQ+tXbs2o6BhP80IXLhwAf7+/uqljQTi1AS6vCSdMGGCWuRKEmuUnJ6xbds2/PPPP4l+JmUxpQ0Ba2PGcXH8mMgzVrz8xPIqHkt6nrOcyx0/DsYl9unTR4l02R6ZGOuPP/4YlStXxr59+5S1V5J4JYpB6PXXX0/ZBmaQ0sWI1qhRIzRu3DhR1tmzZ+c8kkHuB3bTuQhQoNsxXrIH85tvvlFvfCXJwkB+//rrr+0ohVkzCgGxhObOnVt5W4gniojwAgUKYMSIEWqylAWMpMjISPX7iRMnMgoa9jMRAuKR88wzz8QLdLGIiMV88uTJ8VeIVWT06NHqdI3EPtNO4CDo1Cdgbcw4LikzHjExMahSpYqJQLf2nOVcnjLjIKVq27Z++OEHFWg4Mdby4lG8EHft2hXfmP/9738ICAhAz549U66BGaBkeZErLz7E80pe7sqYJMZavE84j2SAm4JddDoCFOh2DNlrr72G9evXQ944Svrrr7/UPuLvv//ejlKYNaMQCAkJgZ+fH2TxKK7uP/30k4pfMGjQINSrVw9NmjSJRyEuaefPn09gbc8orNjPxwTMBfqPP/6I06dPK/d3Lcnezv79+6t9hol9Vq1aNSJNIwLWxozjkjKDYkmgW3vOisWdc3nKjMWMGTMQGhqKTz75RFWQ2LpJ9puLpf3XX3+Nb8icOXOUl5C4ujMljYCIctly4OnpqQR6y5YtIfFNEmMtRgTOI0ljzatIICUJUKDbQVdE1aJFi1CoUCF11fbt25U4l78xkYAtAnKOtIh0WYSUL18e7dq1U5eIkJeFO09FsEXQ9T83F+giInbv3q32EWpJFlzjxo1TAj2xz+T+YkobAtbGjOOSMmNiSaCPHDky0ecs5/KUGQdZD23dulXF6fH29laVJMZaBPqbb74JCWymJflbjhw54gObpUwrM0ap//77rwpKK+sMeUmSGGsR6JxHMsY9wV46FwEKdDvGSyIst2/fPn5/1MKFC3H79u34N8V2FMWsGZDAyy+/rBYv8nZb7hstdoEEx5HFpAQ5YsrYBMwF+qlTp9S9ocUnECFStWpV7NixA//991+in4mbKFPaELA2ZhyXlBkTSwJdTqJJ7DnLudzx4/Dzzz9j5cqVasufeI5pKTHW8lyTbQnyLMuaNavK3qNHD7XGkqBlTMknIN48EhNDTh9KjLVsQ0hsjuHzKvljwBJIIKkEKNDtICd7C0VcaVHc5c3k559/rh58TCRgTEAWhhLNtmzZspBjgGTRIm+pv/vuO1y/fl0dfyJ79LQo7sWLF1duy0wZm4C5QBd3TwnyI8dcStBBieIuAeJky4S1zzI2xbTtPccl9flbEujWnrOcyx07Rps3b1bxeMRokSVLFpPCrbGWOAFiMf/www9VFHdxw5bnm3kZjm2t65Ym2y4lWKIc2SpR3CVIXIsWLZQVPTHWcixeYnOM65Jiz0gg/ROgQLdzjOSsTxHpcra1RCdlMBM7AWaQ7GLdlH10165dg4+Pjzo6S95Sa+dXy150CfwVERGBWrVqqfNfNZfADIKI3bRAwFygS5azZ88qV0U52rJo0aKYOnWqCjZo6zMCTjsC1sYs7VrlujVbEujSW2vPWc7ljrsfZPvWvXv3TGKoyAtFLYBuYqzlNBN5th0+fFhZ0WXPtHZKjuNal3FKkpNhJOCbCHQ5qu6NN95QkfFlvWqNNZ9XGeceYU+dhwAFuvOMFVtKAiRAAiRAAiRAAiRAAiRAAiTgwgQo0F14cNk1EiABEiABEiABEiABEiABEiAB5yFAge48Y8WWkgAJkAAJkAAJkAAJkAAJkAAJuDABCnQXHlx2jQRIgARIgARIgARIgARIgARIwHkIUKA7z1ixpSRAAiRAAiRAAiRAAiRAAiRAAi5MgALdhQeXXSMBEiABEiABEiABEiABEiABEnAeAhTozjNWbCkJkAAJkAAJkAAJkAAJkAAJkIALE6BAd+HBZddIgARIgARIgARIgARIgARIgASchwAFuvOMFVtKAiRAAiRAAiRAAiRAAiRAAiTgwgQo0F14cNk1EiABEiABEiABEiABEiABEiAB5yFAge48Y8WWkgAJkAAJkAAJkAAJkAAJkAAJuDABCnQXHlx2jQRIgARIgARIgARIgARIgARIwHkIUKA7z1ixpSRAAiRAAiRAAiRAAiRAAiRAAi5MgALdhQeXXSMBEiABEiABEiABEiABEiABEnAeAhTozjNWbCkJkAAJkAAJkAAJkAAJkAAJkIALE6BAd+HBZddIgARIgARIgARIgARIgARIgASchwAFuvOMFVtKAiRAAiRAAiRAAiRAAiRAAiTgwgQo0F14cNk1EiABEiABEiABEiABEiABEiAB5yFAge48Y5XhWrpjxw5MmjQJW7duTfO+P3jwAB999BEOHTqE/PnzY/369fDw8EjzdrliA1q1aoUePXqgWbNmrtg99okESMDBBNLTM+Onn37CjBkzEBoaiuHDh6Nt27YO7i2LEwLpaX3AESEBEiABRxOgQHc0URcq7/r166hTpw7ef/99DBgwwKRn33//PX7//XfMmzcvxXqcnibg//3vf7hw4QJmz56tFl7Zs2c36feaNWswbNiwBCxksVa2bNkUYyQF37hxA59//jnmzJkTX4/8LO201CZHNEa7N8zL+vjjj5W4Tk5y9GL7559/RkhICN555534ZnXu3Bnvvvsu6tatm5ym8loSIAEAtWrVQoECBfDdd9+Z8Lh06RLatGmDI0eOpCgnRz8zktrYoKAgvPLKK1i2bBlKlSoFg8EAPz+/+OJS8rmpp80yH3Tr1g3FixdX2ffv34/p06dj9erVei5PUh65N2SOMk61a9fGwoULk1SedpGj1wdpMY8mCwAvJgEScGkCFOguPbzJ65wsJpo2baoWGevWrUORIkXiC0wtgT5lyhT8+uuvyeuIA67u3bu3Wnh16dLFYmki0L/99lssXrzY5POsWbPC09PTAS1IvAgZC1loffHFF/GZ/vrrL0RGRqJGjRopUre20NyzZw+8vb3j6/D19UWmTJmSVaejF9sffPABKleubCLQZUFatWpVFCxYMFlt5cUkQAKPBXpwcDBGjRqFN954Ix5Jagr0Xr16oUmTJmk6HKdOnVLPmb///ttiO1LyuWmr41FRUeqF5KJFi+IF+q1bt5QlumPHjrYuT/Lncm/Ii9tq1arFlyFzRpYsWZJcplzoaIGeFvNosgDwYhIgAZcmQIHu0sObvM7JYkIm7hYtWuDYsWNKgGrJXKDLJDxx4kS89tpr8XnefvtttGzZEu3atVOTqVxTpUoVrFq1Si3mRCANGTJEubGfPXsWsbGx6Nq1q/qnTcCzZs1Si66lS5eqa1599VV89tlnyJkzZ3w9K1asUJZ8cUMvV64cxo4di6JFi6rPReyNGTNGtX3Lli1qoWBsSdUKkQWVWKFPnz6NbNmyqTaL50BMTAzee+897Nu3TwltHx8f1V5zy6sI9B9++MGiJUI+W7lyJX788cf4Nv/5558YPHgw9u7dG99OseqKxV24u7m5QfgZW6Nv3ryJcePGKTHu7u4OsUKIAJf+RkdHK0tN4cKFFV/pS1hYGMaPH6/Kl4WY/Cz1add++umnCAgIUJ9LfhHW//33n1pcSr9lQSX1WRLc2kLz5MmTiolxkvbIWE2dOjX+z5JfmImgF45yrxw4cABicRJLk/z+/PPPx7PQXNz1sJNxT6y8Tz75BFKGl5eXamfr1q2V26n5S4DExl9YafeRtfG5ffs2hKeMq7zQKlGihGKq9Sl530ReTQLpm4A8/0Ugi4eRPGe154q5QB86dChy586NQYMGxXdIrrl69SqmTZsW/13r2bOnemaLVVOeF2L5lWeFiEvxDBJrvby8zZcvX/w1zZs3x/bt29VcJR5O4vVl7F5++PBh9Ty7ePEiChUqpJ6/2nNc5id5Tkh+ySN1yHfZPFl7jm7atEk9865du6b6L3OQzE3GydpzU/vszJkzJi91X3jhBWzbtk21Wdq5fPlyVKpUCeIZJKJbXjLK80972Sh/EzYbNmxQnkPSjiVLlqh5Vcr29/dX27NkHhW25tvIZP6Q+VTmG+EsLzi1Fx966jdnJveGzD01a9Y0+UhevEu7d+/ereY7Lcm8JvN048aNsXHjRjXm//zzj5rfZE6U+ViSuUC3tQaRa8RbYPPmzapvefPmVfXIPSDzbmrMozKvCu9ffvlF3c8yZvJdqF+/fvr+grN1JEACqU6AAj3VkTtPhbJgEEEjokoWP/369VPCRlJSBLpYoUWQy/+ycHjzzTchwmbBggVKrF+5ckXtOxZrvSwqZAKWyVjyyWJKhI+I7YiICHWNJGmbTKyyyJMFjLRLhLJMwiLIpL0iXuVFgSwyRHzLAsU43b9/H/Xq1YMsHqWfIlKlPvlZ2ipJ3ALF3d+SuJfPHSHQ7927pxal4qkg7KV+eTFRvnx51QYZCxHgsmASwXnnzh1UqFAB8+fPx4kTJ0ws6OYCXdxMxa1RFgPyIkQWCY8ePYq3+Et+WcR99dVXasESHh4OEaSycJCFt3myttA8evSo8jSQBa4m3qWNf/zxh+qPjIcsZuXlgljcJ0yYoO4DzeXRWDzrEei2yrM0dsZ16Bl/yW9tfD788EM888wz6v6WRZh4MMiC1PzlhfN8+9lSEtBPQMTR119/rZ7LIvrkeSIpqQJdXvCJEBUxLy82RTTL80Je2Mp3asSIEeoZJXu9Jcn38+7du5g5c6Z6SSvfPxHo8jyVLUbyEk8EnwhCeckrL+RkbhExKgJY5hoRkTly5MDIkSPx3HPPIU+ePAkA2HqOyrNPXi4cPHjQIjxHCHSZk+QFpsREkReI8vy8fPmyErKS5NkuL3Hl7yJCz58/r/osqXTp0krYay7u5iJXxLLMg8JV5h3ph8yFUrbMNZLfVv3mHU9MoMuLhJdfflmVLS8cJGlzh7y8lRfDUn/mzJlVe+Ve6tChQ/yYJkWgy8ujF198UY2tiH+5r6QOuWdTYx6VtYm8DJg7d67yIBCDgBgbZO3CRAIkQALGBCjQeT8kSkBzcReLhARH69+/v3I3F+tAUgS6LJhkL6LmEi0LItnX/c0338S3QcS4CCpxrdcEukygmjucLMJksSGWYFlEyT5iEa4iwLUkYl/2YMvkLws3EfuadcZSZ8U1XNqlLXAkjywQZAEnVhdJegS6LBpFcGpJBJtmmdFjQRfLgQg9LXXv3h2vv/66shrIgrNPnz7Kki8LFuNka2Eh/ORaWbRpglFekIi3gyx+S5YsqRbUx48fVy83tCSLbbGQy8sP86QtNM3dFGXBW6xYMSXyxTrRoEEDdamMjzZW5mUJY3lxIItDSfYKdFvl2RLoesZf2mRtfMTbQhZa4uLLRAIZjYCIMBEdEkBThLA8M8RbKqkCXV6YynwjSV4kyhYVeTbJ/5LkWSFiWwSX9syQ55mIVi2NHj0acXFxSqh++eWX6qWnXKMlmY9EnMt3VxOev/32m3oJainpeY7qFeiWnpsiSOUlsC0LunCRFwyaZ5PMz/ISVV6IiuitWLGiigUg/5snWwJdXkDLixDjl7LyUuTcuXOKoXCyVr8lbnJvPHz40CSoqnhEtG/fXnkzyZypPTdlfGS8J0+ebHEMZA4Rjz5ZJyRFoBsXKi/8hYcEoZX7NjXmUXnptHbtWrXmMZ/HM9ozg/0lARKwToACnXdIogRkQSNWZxFuksRSLfuaZRJNikCXt9W7du2Kr08Cr4lV0ngyNneLF7dhsZIbJ1n4iaVXFmuyKJPJ39hFTizEUqaIQhFWUqa1SLoDBw5UE7RYCrQkAlYWOCKIc+XKpUugS2AgWcRoSdwI5U29HiuwtFMs1vKyQUuyEBLrj1gsxFVSyhEBbJ5sLSzkWnlrLy8JjJPwEUuMWOpFoAcGBpqMhVifdu7cmWBfvZShCXRZIBvvQZeXJmLdF0uWWHVkcSfuq/LCRV56yMJUrOXSZnkpItZv8YgQ3vK5JHsFuq3ybAl0PeNva3zErbVv375KEHTq1EmNY3L34vPRRALOQkBEmLzokueVvMSV772cdPHvv/+aBInT6+Ju/CyUOadMmTJq7tBc2i1tETJ/zsvzSwS3iCF5ASheO8Ynb8h3VfbLy3wmYs/SXGPMX89zVK9At/TclOeYHoFuPo+KhVz6Ifvf5ZkrL0XlZ+PnstYPWwJdXn6Le3z16tXjuy7bBsQqLyyFk7X6Ld2vcm+I15e8ONeSvOSXuUC8qrStXjKHi9eR1KVtlZMxk3lLvJwkyXNW7iHZemevQJe5RmLEyHYB8b6Q+mRrndyv8hI/NeZRuZflJZK8cJcXFDJXGG/Xc5bvO9tJAiSQ8gQo0FOesdPWYC7QZV+euKBrEc3FiqFFcbe0/0vcAWUvt7YH3Xyvm5Qj4trYqmEu0MUKou3T1kC+9P/27ga1cSWIovAespVZRLKE7H8ljy9Q0Ahl1LbwPBJOw2AYlJZ1JHfXrT/9+fOVSulTnbR5RTfPxk7DMZFytcJ3BfojNeg64Iu4rzXox1eLrQKdQ4Tn/SiyXfOVYcFAlc53/FuRCOmYI9DXmnXz7gj0sxp0f6tmEHuGtLR2UaGJxHMMSGmUDq6ukLEiirUr0I/srua7Eug79//sOVrvj2sWkeFM8myqcZwU3R+7APTFI7BJYBXo/sRvgxh8f3//inZOF/czgW4fUNu91qCva+EIdL8tKe/GmUAn2uw1MzhMiTifBOLUHJ9d0k7DsZ11dFegn62bZzXoc+1rDfpxH10FuoyFj4+PpwU6pzfn6irQnZvDewT6387/nUA/q0F3LCcJUa42XJq5tdieyJHCMWCPVPqkbMEgaAUNdgX6aoOwMwQbXJ/naHqFKIfbEeg79/9YWvbdPiojQUkZRw3H1tq7Z/Mn12ERiMAvJ5BA/+U3+M7lHQW6uRhJNiGpZqKrI9BtmmvTHRsvb7zIxR2Bru6dgNMN3SB8bOjStXmebdhq44i9ZwW6dHgG5NqBnVgUEZVKyNO+k+L+nUDnoRfxV1s/QwoidrsCXaSB0bumqc9cDBjf0zlmrIYCfq7lLMXdd9akbdewmPn/Vks5xxC17p/UVwJc2rvaUuLcsyNrwZBmr+bxTKBfsduZj7HP4Fw78K+Ce+f+7wj09fmTIuo6lRY0IvDbCRwFuswovxnRWKJrBLosLBk2hNcMqeaivXcFOmft+lpJ5yD6RHz9xjn2zjKQfI8dgb6zjt4R6JzVosxYTQq8EjB7665AJ+jth9Z1n8chw4GjVh322XXbT6W4T+8Vx8iG4GC1X51xWh0EZ8/5dzXo616lb8dkN8yzoYmddHfPkMGmMJe97EygX9kgHNLsFg4jQ88bPVYmgv5/7KPK6tgAxHojAhGIwEoggd7z8C2BM4HuYEaQ1DBe6BHo0rZsoKIhGtfYeHjabbJ3BDrjTdSeAOfxFlE35rwcBgzA8dBLlSZEpfwx+nYi6KI3NnfnsIlPkzi1lNMx9o5Al+Jtfmnmuns7H0NBRsKuQMdWpJuBJRrE8BQtYZSKAOCs+Q/DTm3bKrj9rUiCWvNpEiciwoie+v9nBbq00zWVcs7vHjE6ZFmIFrknjnMPlSgQ7J+fn1+RHgYZ4/RMoF+x25lPY0H3VKQCC3zW52Ln/l8JdPeA0cvpoHkfge6f56kRgd9O4CjQXa/1SPTab3gEutcbEkI+NevUf0I6u6jvXYHud6eLuuZm1hL9PDj/OCA1ieMgVGNN3NmjRFM15JyGpMfI8PGe7ayjdwS683E+E6CaoRFCFeJEAAADJ0lEQVTb9iQCclegm8N6py7d9dij7dUi0NY9e5o1ydpEFCvhWq97otbTJE7vGXuG/da6/axAdx3ra9b0Qhmnu0ZpnM8c4ZwByhkMmVccDZzZ9g6OXg4WtsaZQL+yQXBVdmSv08sGJ8+JUgzPwL/YRzl5XLu9WL8AdguHlf27EYEIRCCB3jOwReA7ge71IAwqm/4IZSKH0OLxJx4ZQ2qaRQTuCPRp2mOzdl6pYFLVdNudIfXb92AIEohS36VT7wp08+iCbpP0yXDgZVebPF79OwLd/FLUdTlm5L29vX1F5BlGuwLdHOo5RYOkd/pevP8cIgwtRhSxrBus1+scBTcDVfRKFGkMQTWXvovxrEA/Pkgaw82r4RjMojHq/zVqmsHIm87tjGffS6o9Y9E4iuErdlfzEeccAgxVdX+cPMdzXN3/K4Gu94DvibNXPHEQeX7W3ghbP7oOisAPJHAm0F2GdY44H4FurbKGyaCxhnFYyjQRhb0r0K090/DR/uA3zzE5g2jlmPRpj3Jue4mmljsRdPNcraN3BbpGdESbyDEhZ10kTDk65jVrVynm6qsdo35b2ZJGeESuvZFD26sn1XRjQbQf55PpZT1T783hSDyPo/FZge51eetQkjZv7fD/HAeeDfv9DL1JlERw8hLWnCv+T6nCmUC/skHU55uPQ4Djgr3CbnD9BPq/2Efxw51tpTkee4ajYF5L+AN/+n3lCETgRQSKoL8IbNNGIAIRiEAEIhCBCEQgAhGIQAQeIZBAf4RWx0YgAhGIQAQiEIEIRCACEYhABF5EIIH+IrBNG4EIRCACEYhABCIQgQhEIAIReIRAAv0RWh0bgQhEIAIRiEAEIhCBCEQgAhF4EYEE+ovANm0EIhCBCEQgAhGIQAQiEIEIROARAgn0R2h1bAQiEIEIRCACEYhABCIQgQhE4EUEEugvAtu0EYhABCIQgQhEIAIRiEAEIhCBRwgk0B+h1bERiEAEIhCBCEQgAhGIQAQiEIEXEUigvwhs00YgAhGIQAQiEIEIRCACEYhABB4hkEB/hFbHRiACEYhABCIQgQhEIAIRiEAEXkTgP2SPUmjrOxgUAAAAAElFTkSuQmCC" }, "metadata": {}, "output_type": "display_data" @@ -230,7 +230,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAFACAYAAAAvc1ZOAAAgAElEQVR4XuydB3RUxdvGn2RTCCl0pBdBUKQjIEgv0g1dekeqIL1JVbqFjtSAFGlSRAEBJSCgdARFeu8dQhJI/c4zfDf/zbLZ3A2bZHfzvud4kGTu3JnfXXbuM28Zl+jo6GjEYbVq1UKPHj1Qu3ZtpEqVKq5m8nMhIASEgBBIAQRkTUgBD1mmKASEgBAQAkJACCQrARdLAr1KlSoIDAxM1gHKzYWAEBACQsA+CMiaYB/PQUYhBISAEBACQkAIOC8BiwK9cePGmDNnDrJkyeK8BGRmQkAICAEhoIuArAm6MEkjISAEhIAQEAJCQAgkmIBFgX78+HEMGzYM9evXR9asWWEwGGLdyN/fP8E3lguFgBAQAkLAsQjImuBYz0tGKwSEgBAQAkJACDgeAYsCfdq0aZg3bx7y5ctnNgd93bp1jjdjGbEQEAJCQAgkiICsCQnCJhcJASEgBISAEBACQkA3AYsCvVy5cvj+++/x1ltv6e5QGgoBISAEhIBzEpA1wTmfq8xKCAgBISAEhIAQsB8CFgV61apVsWvXLvsZrYxECAgBISAEko2ArAnJhl5uLASEgBAQAkJACKQQAhYF+sCBA9GiRQu89957KQSHTFMICAEhIATiIiBrgnw2hIAQEAJCQAgIASGQuAQsCvQZM2Zg7ty5SqBny5YNHh4esUbzxRdfJO7opHchIASEgBCwGwKyJtjNo5CBCAEhIASEgBAQAk5KwKJAnzhxosVps8K7Hvvvv/+QP39+uLu762kubYSAEBACQsAOCciaYIcPRYYkBISAEBACQkAIOBUBiwLdVjMtVKgQdu7cqbzwYkJACAgBIZCyCciakLKfv8xeCAgBISAEhIAQiJtAkgj0pk2bolu3bqhZs6Y8CyGQIggsW7YM48aNi5kr00OyZMmCSpUq4dNPP0X69OkTlUNwcDCWLFmCrVu34tKlS/Dx8UHRokUxYMAAvP322zH37t27N3799deYv3t7e+PNN99EgwYN0Lp161fSWhJ10NJ5iiEga0KKedRWTdT0e5PfRwULFkTnzp3x4YcfWtVXUjYePHgwQkJCMGvWrKS8bax7Xb9+HSziuG3bNnU0rjX27NkzrFixQl177do1PH/+HJkzZ0bx4sXRsWNHFClSxJruXqvt8OHD8fDhQ3z33Xdm+wkPD8fChQuxfv163Lx5E76+vipCs02bNqhdu/Zr3VsuFgJCQAjYCwGLAr1ChQoWx7l3715d87h8+TIYDt+4cWOULVsWXl5esa7LlCmTrn6kkRBwFAJ80WS+7tKlS9WQ+QJ0+vRp9QJHAbxq1apEnQrvS3HOIo88JpEvXLNnz8a///6rBHnatGnV/SnQ+WLJ4l80vhgdOnQIy5cvR968eZXIp7gXEwIkIGuCfA4Sk4D2vbl48WJERUXhwYMH+Pnnn7F582YlIMuUKZOYt09w344s0Pl+xg2QsLAwtG3bFu+++y6io6Nx5coVbN++Hf369VNCPaksPoHO2kcbNmzAZ599pjZvHj16hMOHD6Nw4cJo2LChGubVq1fBZ2LLdTYx+kwqpnIfISAEHI+ARYF+4MCBWDN68eKF+uLjItqnTx/Uq1dP14xLlSqFp0+fxtn23LlzuvqRRkLAUQjw3wgF8V9//RVryGvWrMGIESNw5MgR+Pn5Jdp0+ILl4uISq/8nT56ogo8LFixAlSpVYgS6wWDA9OnTY7Xlv/NmzZqhWrVqiC/vONEmIR3bHQFZE+zukTjVgOL63mTERc6cOfHtt9/a5XwpBkNDQzFz5sxkG19CPOj0Rjdp0gRubm5qM5ne6OS2+AQ617BevXopz35cRg/7jh07sHr1aptNJzH6tNngpCMhIAScjkCCQtxv376twnTXrl2rCwjDbS0Zw9jEhIAzEYjrRZPeIIaZnzx5MiZ8nN71r776Snm2KaJz586tUkI0b8Dff/+Njz/+GIsWLcIHH3ygMNHbwTD0ihUr4vPPP9eFjh6RGjVq4Icffog5OpEedHMCnR3SY0Vvxf79+xM9JF/XBKSR3RKQNcFuH41DDSyu701uap49ezbWO8cff/yhNhZZhDZVqlSoXLkyhg4dqkKzaREREZg2bZryvt+/fx/p0qVT33v8TtOE6MWLFzF+/HgcPHgQnp6eqFu3LigQ2R/txx9/BDdV+X3Me50/fx4ZMmRQ3819+/ZV3500CvTIyEiwtsL333+Pe/fuqTDzQYMGqbQmzThGftczkmnevHkqsoneX/ZDT/akSZPATTAKZ3qteX2xYsViPcPAwEAVicV5MxqRHm9GHNy6deuVEHduGPD7nnPIkSPHK58F1gbq0aOHirZimLgeCwgIwMqVK3Hjxg3Fwt/fX7EwLgIc35qm3Ycb1RMmTFDRZXw+rVq1Ar9L7t69G2eIe8mSJVXkV6dOncwOd8yYMWrtMjZGhDF687ffflNRYWfOnFGM6XUfNWqUijKjcZOjevXqOH78OL788ksVvcHrWD8prj71MJM2QkAICAFrCSRIoPMm9MBxoRATAkLgVQKmL5oU1IwU4QskF3xNVNPTzdw5vtANGTJE5alTEPPFcvTo0WjevLnq/JtvvsFPP/2ELVu2IHXq1Oolj/mCfIHQXibjeg6MfDl16pTKiWc6CV8MNe+6JYHOFz6+XPKoRQp7MSFgiYCsCfL5eF0CcQl0hl5TDPJ7kcb0ui5duiiRxrxjRugxpejx48fYuHGj+o6cP3++CnGm0OL3KgUlhRedCzSm81CQUwD37NlTpSHxO5cinkKZRoE+cuRIvPPOO6ofiu4TJ06ga9euSjxTUNIo0Cl2KR4p5nl/5khT1P3yyy8xOeEU6AUKFFD3ZjtuFJQrV059/9evX1+Jcs6JNUvWrVuHTZs2qTEwlJvGTQmGo7ds2VLNmyKTedhMZTL1oNOBQvFLMc3xmzOuQ9wA5iaGHiN/eto5X3LjBgcjrN5//318/fXXqgu9axrnTDHMKC3OiesUo7u4YVG6dOk4BTrvvW/fPhWtQN6mxk0PrpfHjh1TYpzGNZKbINzIIDOm6nCcFPO8rzZ/jSG/y9KkSaM2H1gvhs89rj71cJM2QkAICAFrCSRIoHPnli/23I3UYwz94kLFHXB+GZqaaXitnj6ljRCwZwJasSNXV1c1TOZT8v/5Isj0EE0g84WLL2SmHgy+bPLFii8ifLGgwGcNB764MPSc/9ErUKJEiTgxaB4d3pv20UcfqRdQ49B6SwKdLzB8MeRLjPYias/MZWzJR0DWhORj70x3NhXoFLIUmvw+5DuElgvN77/s2bPHCHYyCAoKUhuK/fv3V7nU9LozIimuwm1876CA37VrV8wmJ7+PKfzpfMiaNasSx9xU5Z8ssqkZvezcDJgzZ476EUUj34e4uUpPvGYMzacgp1CmUaDz+5i53ca1eLjhSjHOsTDcXDMW6qRnWZsDN2wzZswYc1/jZ28s0JmiRK82w7It5e1z7eFmgikjRh9oxnWL/3EDg0KcXLlBoBk9/txk5kYE56p3TeOcuenMOWuRCFznyIjiP64icRwHnwkjzijQuTYx3dKY29SpU5XQjy/Efc+ePWpzgBs3jOTUGLIgIVPUjE1vn87071HmIgSEQPIRsCjQGVZratydvHDhgtpVNvd7c1PhQsEFg1XcKSr45c7K0vxy5K60VN5Mvg+A3DlxCGjFjrSwOO3fDb3RfInh7j9FOnMq6QU33eyix5u799pLD0fJn/HFlF5wen74UhifcVOMG2R88aDg5598aaFHiWZJoFPgs+I7Q0A1T35895PfOzcBWROc+/km9+zMbWyyWCUFLj3bNIo4VhWfMmWK+o40tu7duyuhRsHJ8Ol27dqhVq1aaN++/Suh4hS/FOEUiprRE8+aOVqdDgpzinF+92oikm3pTf3zzz9jQu75XczQbIa3Gxv7prefXn0axSe/uxktZWz0gLN4qCbktd8xnJybACzcyXlzk4DefS39ybgPTVxyM4PjmTx5srqXJSMfeoqNc+f5fmf8TkYPP+fFzQdypADX1g+tb24Uaxsjetc0bg6wH9M5cxObmxhxCXTtnv/884/y5nONZFoYI8Ny5cqlfq1XTDNloU6dOjFz0hga12nR7qe3z+T+NyT3FwJCwDkIWBToXJxMjbuMzLPSvgj1YOAuJwt2MESNebNaOBF3jCnStdAoPX1JGyHgCATiCtVkSCBfGBl+ySNxxo4dC75omNZz4Mse88tNKxfTM8TCc7t371Z5cdYYQ/v4MsKQQr500iwJdC1nnbnvxnmU1txT2joXAVkTnOt52ttsTDc26eGmt5neUq1WDat20yvMcGV+Rxobv9foDKAjgEYBRqHHCCWGefP3Wlg0xSsdBca507yGG5oUjdwM5eedgpgC2dgo0ClYGYZOoyCmZ1fzqGttOUaKbIpaGgU6PbYUxsbGsfB7WTtNQ/sd35H4M6ZHMZqA6VHm5s32mrhkSDY3hBkJoIXzx/WcGaZPRqyKrhmjHLmxSyM7RiZQoDOliv0xf54h+MbGUHVuGvD3etc0vguSh+mc6R1ndEJ8Al27P+f9ySefqNoDWki7OTFN0c98fG6IM9+ff+d/vJe26aAxZBstrUC7jwh0e/u2kPEIAecmkKAQd2uRcEHkLjJDqRhmy91khkxxEeGCwxwoMSHgTATiEugMG+cGFwvF8QWKngv+e4jLg278osBNLh55w6JAfAmjN95aoyBn+KL28mNJoNMjQW8MNwTsobqvtXOV9vZLQNYE+302yTky0+9Nil7Wv2B6jxYxRFHF71B6iM150OnpNg1PZpE4hrRTcNPjSq88o0FYGd6ciKUzgcdLWiPQ4/KgM01JE8AUpPze50arsTFEnE4Pcx50zoXh2vSgs6gZvfJ8jzI1TVwyJ5ybGTyGjILUXJ62di03hpmHzjBzcxu+jJTkRi0FOgvpMeogLg861yZuPOhd0zp06KD4s2ifsTEKQtsc0PtZ5EY22XHzgGZOTHPzhCH/5Mdiq0xF4OZ4o0aNXhHoxpFrItD1PgVpJwSEgC0JxCvQubvKipfmKrHrDXvllzaLqnC3m/m3XHC5wFCYc+fT9OgeW05Q+hICyUEgLoHOarX0HNADwz/54sWUD9McdIZoamGFDNmk94Teb7688E/+x3xyc6GOcc2XL3gMXeS/v/g86AzpZG4fX4xZ5VZMCGgEZE2Qz0JiETD3vUkRye8giiaGgdP4TpE2bVq1gagZxTwjffiOQfFnzhiuTQ8thT2FGjdGGdFnnL9sfJ01Ap1F4uhVNy7ayfswHJ+pfLS4BDpFOKMFfv/991gefQp5bhRom7H8vs+TJ0+s3HttvKZF4jhPbq5yfnFtsIaEhCjPPTc8uGlr6hk3Fuj0rDNygRslFOqaMbqAawXzyRmloHdN40YC+XPjWavJwigvjoeb0Ho96BwHNwUo0rVjTfl3Pg9GIGjG8HxubBsf1cfPFtdCUw+6OYFurs/E+ncg/QoBISAELAp07jayaidDfcxVijY9diIunNylZGEq7hCzAiq/KPl3VvHkYqrtmMrjEALOQsA0VJPimMKGizw9QKzGrhUJYjVfein4okAvBnMb6R0aNmxYzIsQvTw8eoYeEUafMI+cbdiPaT4gGfLFii9yzFmkN4gV2Rmqzsq2fGnRUlToQedLGsMMmXPOezDahS8uLMjE74D4qsQ7yzOTecRPQNaE+BlJi4QTMCfQ+X1JLyeLpWkhzCzqRZHIcHEWCGMYNt9V+D3H7zeKWr6fML+adTQoPFn4jeHqjEqi0KdXnZukFJUU/Cy+xp9RYGrHhlkj0Cmu+X3L71R6sLXjzbj5yhxpSwKdue+cB4Up34e0Ku78nucRafw5jaKTOdo8A5ypUhS0ZME1xFSg06lCRwg3CLTq9+aeDB0kdJRw7SFT1kjhhsWDBw9ULj6//7Xceq4h3DxmoTjmnTNFgB5wFnUz3izRs6bxWWnOGvLnXBi+T8FOZ445gc51kpEQrMLOIoGMSDt69KhKLeDZ6Dwyjsa0CK6Z/DmfPz8PHDfXS17PcHg+Z86H4fx6BLq5Pvn5EhMCQkAIJAYBiwKdX5JcMPmib0tjKBhFO79g4zr+w5b3k76EQFIT0IodafelqGZBIr5Y8OWPhd40o2dCO6+XnnK+zDEMskmTJqoJPSAU6/yToZmacaNLOzrGdH4U2Hy54wsUU0ko4un94Msdwwo148sk8ztp9GJw44wvNPT88KU4Ls9SUvOU+9kHAVkT7OM5OOso4oo80sKrucGpFTCj55aRSHyXoKCl91w7qpJ8mDrENB0er8bvX57zze8/emg1u3btmgqHZhg6c8+5mcnPOEUnv1utEegU5xTF3Big0OfZ2vQ2M5xas7g86Pw9BSu9ytwg5YYuRS83Tk1P6mAuOD3qzEuneOb3OsWsqUBnnxTvLEDH8G9GQ8VlFL5kxXvTccK1gCzoWefGgXFIPTcMmFfPa9iGv+OaZux9j29N08ZBjzc3TSiSufZox5pxI9mcQOf6yFNF+Hv+P+fPzRZGGhiPkcKdufBcM7WCc1zXuHFNMc7NaEZTMAqN+f9kyjVSY2jOg26uT6ZoigkBISAEEoOARYHOIlbMTUqoMayd4UTcvaRRMPDLXvt7QvuV64SAEBACQiDpCciakPTM5Y5CQAgIASEgBIRAyiJgUaAzTIkhZJbO0bSEizvIDJ9i3g+NO8Hc0cyRI0fKoiyzFQJCQAg4AQFZE5zgIcoUhIAQEAJCQAgIAbsmYFGgM4SJIUcM3WJ4rvE5oJyVacVR05mKQLfrZy+DEwJCQAhYRUDWBKtwSWMhIASEgBAQAkJACFhNwKJAZ5EN5gYxb9ZcoSieoWnJRKBb/TzkAiEgBISA3RKQNcFuH40MTAgIASEgBISAEHASAhYFOgtg8BiMhOaMU6CzYqZ2PQtSscAHq6UaG4u7iAkBISAEhIB9E5A1wb6fj4xOCAgBISAEhIAQcHwCFgV69erVlUBPqLFiqR7bvXu3nmbSRggIASEgBJKRgKwJyQhfbi0EhIAQEAJCQAikCAIWBTqP3aDxzE3jIzRSBBmZpBAQAkJACMQiIGuCfCCEgBAQAkJACAgBIZC4BCwKdFZw37NnjxLnPLfZVKRv3749cUdnp70zdJ9nkIoJASEgBFISAVkT9D/tzz77DDVq1ED9+vX1XyQthYAQEAJCQAgIgRRPwKJA//333y0CqlatWooEKAI9RT52mbQQSPEEZE3Q/xEQga6flbQUAkJACAgBISAE/kfAokAXUOYJiECXT4YQEAJCQAhYIiACXT4fQkAICAEhIASEQEIImBXoO3fuRIECBXDixAmLfabU0D0R6An5qMk1QkAIOCoBWROsf3Ii0K1nJlcIASEgBISAEBACgFmB3q5dO3z00UdYvny5RUYbN260muHdu3cRHR2NN954w+pr7eUCEej28iRkHEJACCQFAVkTrKcsAt16ZnKFEBACQkAICAEhEIdAtzWYqKgoLFiwAPPnz8fTp09V9zwbvUuXLujevTsMBoOtb5mo/YlAT1S80rkQEAJOTsDZ1gRzj0sEupN/iGV6QkAICAEhIAQSiYDFHPSJEydi2LBhr9w6NDQUU6dOxahRo3QN69tvv1XnqX/++ecoXLiwuuaff/7Bl19+iapVq2LAgAG6+rGXRiLQ7eVJyDiEgBBISgKyJuinLQJdPytpKQSEgBAQAkJACPyPgEWBXrp0aRw6dOgVXi9evEDJkiXx77//6mJZrlw5LFmyBAULFozV/syZM+qM9f379+vqJzEaMdx+9uzZCAgIwJEjR3TdQgS6LkzSSAgIAScjkBLWhLge2a5du9C/f3+sWLEChQoVivfJikCPF5E0EAJCQAgIASEgBMwQMCvQly1bpprSSz5o0KBYl0VGRmLfvn149OgR1q1bpwsqX2YOHjyowtqNLSgoCBTv9KYnh4WHh6Nfv37InDkzNm/ebHYzwty4RKAnx9OSewoBIZBcBFLKmhAX30WLFoFHzIWEhGD8+PEi0JPrgyj3FQJCQAgIASGQAgiYFegbNmxAYGAgtm/frgS0sbm6uiJHjhzo2rUrsmfPrgtRkyZN0Lx5c3z88cex2tMTQWG8atUqXf0kRqM9e/agQoUKKFWqFI4dO6brFiLQdWGSRkJACDgJgZS0Jph7ZH/99ZeKGmvfvj1GjhwpAt1JPtcyDSEgBISAoxJYuXIlzp49izFjxqgp0BHK9YnOx++++06dxhWXvfvuu7qjoB2Vj6OP22KIO3PGmSf+usYw+U8++US94NCbzrDyU6dO4fjx41i6dCmKFCnyurd4resjIiLA0E1rBHr1LwagyBNXVPHKjXfb1Xqt+8vFQkAICAFHIJBS1oS4ngU3mUePHq1boL9dvCBu5HRT3VUMdUWlUBcYcueHe5lKjvC4ZYxCQAgIASFgpwRMBXqzZs1U1DP1DM3FxUUEup0+Oz3DsijQtQ54NNrVq1fVX3Pnzo1MmTLp6TtWm/v37+OHH37AhQsXQEHMfHR61e3huDVLAr1BgwavzPX06dM4v6o/PjlyBp8disA7C2ZZzUMuEAJCQAg4KgFnXxOsFehMB2M0lrFxnUxXIA++qflyvex++DQm/nYErpmywG+2vvQwR/18yLiFgBAQAkIgcQmYCvQyZcqoVCzTdGJzoxAPeuI+G1v0blGg8yWMHhMWx0mXLp0Km3j27Blq1qypPOvp06e3xRiSvQ9LAp0V602taNGiSqB3OXoWg/Y/QYGAxck+BxmAEBACQiCxCaSUNcFagc61keuIsQ0dOhSpMxbEv8VcsTl7NCqGuuDnlTsQdf8OvAdOEC96Yn9YpX8hIASEQBIQ6NSpE6pVqxZTpyR16tT45ptvkDZtWnX3cePGYffu3UpDFS9eHF9//TXc3d3x4MEDDBkyROkqOv74e+qradOmmR211p6OzqxZs6qoZF7LtYYnbm3ZsgVvv/02PvjgAwwePFhpt6+++kq1oXOVui1Xrlyqb02gc91iVNiBAwcQFhamosMYHi+W/AQsCnSeU04vAEMmNDF++fJldbwaP4DxPcS1a9ciS5YsqFixYsxMGdbOD+StW7fUB5oFd7y9vZOVREJC3CnQOx89gxF7biPvsuTLoU9WcHJzISAEUhSBlLImWCvQzbVnFfes2avjcZqKmFTqB6Q1eOD2DV+ELp0B9/cqwHvwpBT12ZHJCgEhIARsQeDw8WjcuBVli66s6qN0cVdky/pq2DgFOgX3nDlzYDAYMGHCBPj6+uLTTz9V/R89ehR07NFat26NDh06oE6dOkq458yZU51mde7cOXDN+OWXX+IcE39Pgc3TRB4+fAiGtFNfaTnoJUqUwN69e5WmunbtGlq1aqVOHeE127Ztw8yZM1XdL9YS0wQ6j8DeuHGj+h2N13FMYslPwKJAL1u2rDoCjR84Y7t9+zZq1KgRb/X1+vXro0+fPvjwww/V5dydqV69Otq0aQP2zV0knotOwZ6cllCB3vH4OYz77RxyrNycnMOXewsBISAEkoRASlkTbCnQrz+ojVnNFqouHxZoDpfO/ur//WathWvmrEny3OQmQkAICAFnITBvSSQOHUt6gd6tvQGlS7q+gpECnWKZoptGka15r00bU/cwIpnXsOgoT5KiV51GgW2pFhZFPgW4n5+fav/tt9/iyZMnZgX64sWLcfPmTRUFrVm9evXU6Vz0kmsCnUXmunfvrrzr5cuXd5aPiFPMw6JAr1u3rgqZMDWGOfr7++PPP/+0CKFYsWLYtGkT8uTJo9r99NNP6u88soZ28uRJJeD5QU5OS6hA73DsHKbs+BuZVv+WnMOXewsBISAEkoRASlkT4oJpbZG4XHmq49Sl2viv6xbsf3ETuwr4o8z3AQjbvRWpmnZEquadk+S5yU2EgBAQAs5CwB496CyE/f777yvEW7duVR7r6dOng2mys2fPVg5Neq6vXLmCli1bgtFoX3zxhYpO7tWrlyqaTc/7mjVrzD6m4OBg5dg0Ppaax58y3N2cB519ZcyYURXo1oybAm3btkXVqlVjBDp/d+TIETXGO3fuqHB546hnZ/nMOOI8LAp07vR4eHigW7du6k/a48eP1YeK5fv5c0vG/Aielf7mm2+qZi1atFDHs9GLTmM+BT8IrOjuSMZj1hji3u7vc5i+7SDSrtnrSMOXsQoBISAEEkRA1gT92BiOWODt6jj6X23c6bAHP0edxbc5P0DvexF4NraPFIvTj1JaCgEhIATslgCFL/UQBbSpQJ80aRJCQkJUarCbmxsmTpyoUocp0KmnWIiaGilNmjQYOHBgTI64ucnyxCs6RrUicAxLp44yJ9AXLFigBHd8HnTj+1D8d+7cGb/++mtM/rzdQk8BA7Mo0LnzQu82xTmrrb948QKsxs6QdxYi4I4Oj0zTjOemGxsfdLZs2VReBXeTGHKxY8cOtYtEO3/+vBLthw8fdijUmkBvdeIKZm/dizQBW+Hi7etQc5DBCgEhIASsJSBrgn5iXPeKFq+O/cdq41njo1jtcxR9MxfBtJwV8LRnEykWpx+ltBQCQkAI2C0BSwKdNbyoGbh2UjAzL1zzoFMzUXCzSJseY8QxnaO9e/fGo0ePlH4qV66cWYHOk7eY704vO6OYKbpZfI7h98Y56KwHlipVKhV2T03HMPj169c7TRFwPVzttY1Fgc5y/dYYi74ZGwU4RTrzIFgsjiEUWqEEttuwYQNYSI5HBTiSaQK92YkbmL81EH5zfoRrxjccaQoyViEgBISA1QRkTdCPjAK9XPka2LGvFtxK3sa8wj+jsk82BBb0x4tf1kixOP0opaUQEAJCwG4JWBLoZ86cUXnmTKXNkSOHEtQ8n5we9EOHDqmQcy8vL+Vdz5cvn8oFz58/v9m53rt3T9XsorbKnDmzKrTNlGNzHnR2wAJwU6ZMUWH2LBTHvrWUYy0HnQXsGNbO8bHQHd5EraEAACAASURBVOfCVC6x5Ceg6xz01xkmPez0umfIkCHGc671d/HiReWB54fSkUwT6I3+uYPFv+yE39fL4JozryNNQcYqBISAEEgWAs64JpgDSYFeqXINbAmshYiMz7C07ipVyf1R8c6IDg7Ck44vCwpJsbhk+RjKTYWAEBACyUaAYpvV3BmKzkhjHrFGZyVrc/FoNDEhYFGgM7chMDBQld2nsfR+lSpVlNhOyaYJ9AanHuL7zVuRasx3SFWocEpGInMXAkIgBRCQNUH/Q6ZA52knv/5RC6HPgUXtXlZyf1S8E9IaPBEye7wUi9OPU1oKASEgBJyGAGtvjRgxQtXpYtpwVFSUOtmKf7JSu6n17Nkzpkq800CQiVgkEKdAX7p0qQqNYF4CQyO06oM8e2/w4MHqeICUappAr3f6CZZv+hlu/b+Gz/svi0OICQEhIASckYCsCdY9VU2gn7pYG2cvRON4uy04gpeV3Kv4ZkPEv0djisWl7jVCdW7InV/qmViHWVoLASEgBBySAI9JYxg6Q8spzN977z2lrzw9PR1yPjJo2xIwK9BZTICFDRhmoZ1hrt12586dqtIgxbvp72w7NPvtTRPotc6GYNWGDcDHfZG2STP7HbCMTAgIASHwGgRkTbAenibQIw11sHlbFPZ8sBvn8p1Dg8vl8FOTl+feasXitN7l6DXrOcsVQkAICAEhIAScjYBZgd6sWTPwvNuOHTuane/y5cvVmeZxndfnbJBM56MJ9GrnI/Hjj6sQ2bAHMrRq7ezTlvkJASGQQgnImmD9g9cEevZc9TB7UQSOFjuCY8WO4d3/CuGfNpVVh2GBW9R/tIhTx+GS2gdplmyz/mZyhRAQAkJACAgBIeA0BMwKdJ61x+rqPErNnF24cAGNGjXCiRMndIFgMbjs2bPHhG2wrP+mTZvUz+rXr68qGjqSaQK90mV3bFq9BOEVmyDTp/0caQoyViEgBISAbgKyJuhGFdNQE+hc42iBQTdR9ewmeIR5oHjqjMjm44mAPFVVPjotaFAHRF45j9Q9h8OjSl3rbyhXCAEhIASEgBAQAk5BwKxAL1y4sDoHj+ftmbMrV66os/J4qL0ea968uToDkAVznj9/rgodsO/r16+jVq1a4Nl+jmSaQC9/zQe/rJyHsCKVkHnkBEeagoxVCAgBIaCbgKwJulHFKdAvhwUh78nlsToq7pUBuwr6K5FOT3rInAlwK1QCPmNmWn9DuUIICAEhIASEgBBwCgJmBbq/vz8oqnnIvTmjd51h7vSC67HixYtj9+7dSJMmjTpGYOvWrVi2bJkS6K1atcKePXv0dGM3bTSBXuZWBvz6/QyE5XwXmb+eZzfjk4EIASEgBGxJQNYE62maetDZw6yDN7D1tyjkzwvsLvon/g59AE2kp3kehie9mgIhwXL0mvW45QohIASEgBAQAk5DwKxAX716NSZPnoyFCxeiZMmSsSb7999/o2vXrujXrx9atmypC0SJEiWwb98+eHl5qdz24cOHo2LFiurcP4r3f//9V1c/9tJIE+il7mXDzsVTEeGbCRkXbbCX4ck4hIAQEAI2JSBrgvU4zQn0+w+BoWPD4eUFfDE+ClXObFIinaHuHTK8HXP0mmfdZvDq0Nf6m8oVQkAICAEhIASEgMMTiPOYtQkTJiAgIADMPcybN6/KE798+TIo0Nu1a4eRI0fqnny3bt2QI0cOREdH4+DBg9i8ebPqj7nsHTp0wB9//KG7L3toqAn04o/yYNf88WpIade8em6hPYxVxiAEhIAQsAUBWROso2hOoLOHIWPC8eARMGqwG9a7n0S/a/vQPkNBLMlTDZGXzyFocEdVLM5v9lo5cs065NJaCAgBISAEhIBTEIhToHN2586dA49Vu3btmposRTbzyOPKTY+LyJ07dzBx4kR1zh+Pb8uZM6dqumXLFiX6e/bs6VAwNYFe4kke/DRvFnyinyDNvI1wSZfRoeYhgxUCQkAIWENA1gT9tOIS6LMWRuD4yWh0bGVAeKHbqnAcw9yPFWquOn82preq6C7F4vSzlpZCQAgIASEgBJyJgEWBbquJ/vfff8ifPz/c3d1t1WWy9hMj0IPy4Pv5a5Aj4hx8Jy6EIZ/5qvfJOli5uRAQAkLAzgg425pgDm9cAn1HYBRWb4hE+TKu6NTaAJcjc9Xl0aV6qD+1YnGGPPnhO2WJnT05GY4QEAJCQAgIASGQ2ASSRKAXKlRIeeKzZcuW2PNJkv5jBPqz3Ji1cBcKvfgT3gMnwL1MpSS5v9xECAgBIeDIBJxtTbBGoF+9EY1xUyKQIT0webS7ykPf/ewmdhXwRxXfl2vk4w61VLE43ykBMOR5y5EftYxdCAgBISAEhIAQsJJAkgj0pk2bgnnoNWvWtHJ49tk8Jgf9WS6MD/gX5UN+glenfvCs3cQ+ByyjEgJCQAjYEQFnWxOsEehs26VvuLpkxiR3DL+/F9PvnsTorO9hTLbS6uehS6bjxZa1cC9dEZ71Xoa+25MxR142DuzpichYhIAQEAJCwJkIJIlAZ575sGHD0LhxY5QtW1ZVcze2TJkyORTTGIEenAsDv3+Eek+/g0eNj5D6k8EONQ8ZrBAQAkIgOQg425pgrUCfMiMCZy9EY1BvN/yZ/gw6Xt4F/7R5sDFfHdVV1N1beNq7WXI8Gt33lBx53aikoRAQAkJACAgBqwjoFuh3795VVdjfeOMNq27AxqVKlcLTp0/jvI6FhxzJYgR6aE40WpEbfR70gEuGzEgzd70jTUPGKgSEgBBIMAFZEyyjiysHnVctXhGJ/Qej8HEjA94qH4y8J5cjrcEDj4p3juk0ZPZ4RN27leDnk5gXsogdzaNKHaTuOSIxbyV9CwEhIASEgBBIcQQsCnRWXV+wYAHmz58fI7B9fHzQpUsXdO/eHQaDQRew4OBgi+28vb119WMvjYwFeqm1tTD5fl0YwkORZuHPcPFLay/DlHEIASEgBGxKQNYE/TgtCfRNWyOxeVsUalR2RYvGBqQ9vghPIsNwqUgb5PHw1X+TZGqpFbLj7VM17YhUzf+3sZBMQ5LbCgEhIASEgBBwGgIWBfq3336L3377DZ9//jkKFy6sJv3PP//gyy+/RNWqVTFgwACrQISHh+P+/fvImjWrVdfZW2NNoBd7ngPvramNL0PaINWTG/CbsRquWbLb23BlPEJACAgBmxCQNUE/RksC/cy5aEydFYEC+VwwuI8bGl7Yik2PL6NDhoLI4+mn/yZxtGS4fHGvxD32M+Lfo3g2to86s53F7FwzO/a6/trQpQMhIASEgBAQAjYiYFGglytXDkuWLEHBggVj3e7MmTPo2LEj9u/fr2sYT548wejRo7Ft2zYVJs/raZs2bcKVK1fQp08fXf3YSyNNoBd9kR2lV9fB2LCu8H5wXiru2ssDknEIASGQKARkTdCP1ZJAv/8QGDo2HCzHMnOSO8bcPISxtw7r7zyelsYF52zWqZmOgqcMRfjhvXArVAI+Y2Ym5q2kbyEgBISAEBACKYaARYHOo3AOHjwIhrUbW1BQEPiiRm+6Hhs4cCBevHihhHjDhg3x77//qsso1D/55BPs3r1bTzd208ZUoI+K6gO/OyfhM3Y23N4pZjfjlIEIASEgBGxJQNYE/TQtCXT2YlzJ/a4hCEvun9bfeRwtL4cFYemDM7EKzr12pxY6iA4OwpNeTdWRcF4d+sCzrv1VnE/M+UvfQkAICAFHJnD8+HFMnToVK1asMDuN999/H1u2bEH69OntfporV67E2bNnMWbMGLsfq54BWhToTZo0QfPmzfHxxx/H6osPcvPmzVi1apWee+C9997D9u3b1QN+9913YwQ6PesU+qdOndLVj700ihHoYdlQelVdDDMMRYbrB+Az7Cu4lXjfXoYp4xACQkAI2JSArAn6ccYn0I0ruRd8y0V/xxZaBgbdRNWzm1DcKwOOFUoasfzilzUIXTpDjcqQJ78qGidHsNnkcUonQkAIOBkBOiinTZum6nvZg4lAt4enYH4MFgX6oUOHlIe7ZMmSoOeE4ekU03ygS5cuRZEiRXTNjFXcuQPDCvDGAp3e+f79+2Pv3r26+rGXRppALxKeFWV+qIdBqcbhjUu74P3ZOLiXr2Yvw5RxCAEhIARsSkDWBP044xPoxpXca1Zx1d9xPC1djsxVLaJL9bBZn/F1FH5wjzq7Per+HZWT7jd7LVy87b/YXXzzkt8LASEgBGxJIDQ0VEUPFy9e3JbdJrgvEegJRpfoF8Z7zBqLuv3www+4cOECIiIiVD46verWHLc2duxY3Lx5U4Ud1KhRA3zJO3LkiPp73bp1rS42l+hU4rmBqUDv7z0V2c5vQeruQ+FRrX5yD0/uLwSEgBBINAKyJuhDG59AN63krq/X+FsVP7UGf4c+wLFCzRK9UJzxaBjuHjx1GHgEm1R2j/85SQshIAScg8Dy5cuxbNkyhIWFwdfXV518lSVLFly8eBGjRo1S+snT01PV9Hr8+HFMSDnF8XfffafSiO/cuYNnz54pp2XFihUxYcIE+Pn5oXfv3gpSZGSk+vn69etV36Y2b948ddoW63rxHiEhIaD20hyply9fxvDhw9V9smfPjsmTJ6uC3aYCfe3atWpMHh4eqFOnDn788Uds2LBBRUBb6oM6kf2Rw5AhQ1CgQAHMnTsXmTJlUmPie8OwYcNULTJy4eleLEBetmxZNZXAwEDF5fnz5+pn1Iccw6NHjzBo0CB1DQuNt2nTBt26dVPXPHjwQN2LfHlvOpPJMEWEuHPyGTJkeOWDQKF++/Zt5MiRQ9e/Ln5oGdLBB0f4NIJnoTm+xLi5uenqx14axQj0iCwos7I+PvWbjdxn1kkOnr08IBmHEBACiUJA1gT9WOMT6KaV3PX3bLmlVhF+Q77aaJg2r6261dWPcWV38aLrQiaNhIAQsJJA+F+7EHn1opVXvX5zj3LV4Joz9ncqa3LR0bhz504lwq9fv660EQV1vXr10LdvXyV0KTTTpEmDEydOxBLodHhu3LhRRSlfu3ZNOUB//fVX3Lp1C59++qlKD6b9+eefmDlzJphnbc4o0LlRwPTjtGnTqhO4AgIC1M94PGr9+vWVmK1cuTIowrdu3YrFixfHEugUum3bto3ZBOD13Cg4cOCA6tNSH127dkW7du3Qo0cPpeko/DkXjoeOXd6PdciYIl2mTBkcPnwYEydOVBsAnCvbrl69WgntwYMHI3/+/EqIc+xHjx5VqdIU+R9++KFizQ0DrrG5cuVSmxoPHz5Es2bN1CZGihDopUuXVt5uU6PgZu44veDWGHc/bty4oT64OXPmVCLdEU0T6IUj30DZFQ3QI91i5Du1DKk+7oJUTTo44pRkzEJACAiBeAnImhAvopgG8Ql000ru+nu23FKrCJ9UldxNR/NsTG/xotvqYUo/QkAIvEIgeNoohO//PcnJeH82Fu7lq8e6L/VMzZo1VTpw48aNY3QN04EpNH/++edY7Y091vx/erWZAqwZBW6jRo2UEPX391fHWtMLTm8zU4RbtmwZp0Cn0NXEKcUs+/njjz9UavLQoUPx008/qWvpZC1atCj+/vtvVRNMKxLHvHh62HkvGrUe783NATplLfXBzYQ9e/bAxeVlPRXTuV29elXVM2NfNIb6V6pUSWlMbgQwynrEiBHqd9wQoFOXXnlTo5DnqWBkwTkwRZqRBjQeA8vaZilaoBMoP0TcAdFj3CVhaIOp8QHxg8EQEEeyGIEe8QbKrmyArplXo+Df38HTvzW8Widd3p8jMZOxCgEh4PgE4hLoKX1NMPdk4xPovMa4kntqL9t8PjY+voRGF7ahsk82BBb0t02nVvQi56NbAUuaCgEhYDUBe/Kgc/B0PM6ePVuJRUYG879du3Yp7/WiRYtizc9UoFMf0XOsGUUqxWerVq1UrS965CmMKWYp9tOlS2eWFz3ojFCmx55GjzI9+3/99ZcaC39uHBpPIcv+OHZNoHMsjJrmZoNmXPPp0aeYt9THlClTYnn3OU/jn3EenTp1iokI4MlerBB/7NgxTJo0SYXRM8KAxk0PeuzpXaewZ6g8Nwgo/jkOpgq8+eabKhTe+DQxRmkzCsCpBTp3gRhqwTwGQjI2gmPuwIABA2I9REv/wuJ6qeMDYs6Aduya1f9Kk+kCTaC/G5UZ7y//CO2zbkaRo9/A88NG8OoyIJlGJbcVAkJACCQOAVkTrOeqR6AnRiX346H3UeLUWuTx8MWlIm2sH7gNrgiZPR5hu7fCo3IdpO710isiJgSEgBBwZgL37t0DQ70pZDNmzKi84wzxNjZTgc7w7N9//180AMU9veT0oFNk8+QUetEpSi1VfqdA146zNhXo9KCPHDlSCV5TMx4P+9dyxTWhXLhwYezbt08JZD19aP2b5rZbEuj0oJMdIw5MjVEAHTp0UNEENB7V/cUXXyjPvubd144CZwoA0/CcWqATAnchmE/AXSFjc3V1VQUGzOWmm4LlbgaNuzNM8jc2Cn0+dOZlrFu3zqH+zWoCvVBUZpRb/hFaZd+BkocnwKNSLaTuPdKh5iKDFQJCQAjoISBrgh5K/2ujR6CvWh+Jnbuj0KC2K/zrGKy7gYXWyVHJ3Xg4UXdv4WnvZupHfrPWwjVzVpvNTToSAkJACNgLAUYCU7zmzZtX5Uszz7pBgwaoXr06atWqpbzfDIFn8TJ6gM+dOxcrB5150/QQs4A2RW2XLl2UYNfCthmtzDx3ttNEqrm5WxLo1Fu8tlevXiofnidyXbp0SXmhjYU0x0YvNzUZC4EzAoCF5hhyTu+2nj60sVkj0Bnezk2JhQsXgvqKGw13795VqdCMHKDwLlasmAqHp1jnEd8U52TNYnQspEct2aJFC5V+7fQCnZBPnz6Nt99+O8H/DhiywMp8LHJAaKZCn4UUuNtEwe9Ipgn0d6IyofxyfzTLuQ9lD34O9zKV4D1wgiNNRcYqBISAENBNQNYE3ahUARu+dLGwTlx27EQ0Zi+KQM7sLhg92HbFUrVK7rsK+KOKbzb9g7ZhS/Gi2xCmdCUEhIBdEmDldHq96XlmcTQWKaOn2WAwKA3FfGlWMU+dOrUKd2douRZSThH71VdfqcJoLITG65n/zT40Y0G0fv36qVB1b2/vOBlYEui8iKHiFK4cEzcSuHlA8W0qpNesWaOquHP81apVU/elh5tF2fT2wftZI9DZng5bVpanMGd9Mua0c1OCEQhkxLkz4pp58SxkR4FOrzsL350/fx6ZM2dW4+X1KUKg2+pfAz9wDNFISmMoB4sM8GFy94ofRH7gTI0fRFY0pHE3ibkQ8UUHxAj06Iwov6whGuY5igp/DoBbkffgM3JaUk5T7iUEhIAQcDgCybEmmIPEirr0cHCh52b0119/rRZ6U2MOH18SmONHzwZfuuI7x1aPQA8JBfoMDVe3mzHJHbbKQ9cquQfkqYoOGRK+yf46HyzlRR/cAQgJfqUbt0Il4D1ogpyV/jqA5VohIAQcmoAm0Ompjst++eUX7NixQ+kZsZRFIN5z0G2FgyEL/DAyFEQL06B4ptm6mjtDNxiezzAIvmwxX54vUwzdMDYWJ+CLFttxd4v/AJh3H9/uiybQ30ZGfPB9Q9R98zSq7esBw1vvwnf8PFshk36EgBAQAk5LICnXBHMQteq7/L5nGB0L8uzfvx/0RBgbTx+pUKEC6FnInTu3qkI7btw4dWyMJdMj0Hm9lofesZUBH5R1tcnz1iq503texVdfhFpuDx+bi/nnaxbh+boAs3NySe2jRLrbuyVtMmfpRAgIASHgSARMvcymY+eGMMO2uaHNY8ZoAwcOxJkzZ2I15fplmkbsSBxkrOYJJIlAZ/gB8ypCQkLAcBCGWNAojHkEgGme++s+rPnz56v78INM+++//1QVeZ41aGwMv+dL15w5c9SP+cLFswPpKbFk/xPoGfDB941Q/a2rqLOnPVxz5IXfNy/z7sWEgBAQAkLAPIGkXhPMjYLVYBnZpUVQMeyPqVgMKfT19Y25hLmDjMJihV5GYbFwDzeZuXZZMr0CfUdgFFZviET5Mq7o1No2eeiBQTdR9ewmqz5+aQ0eeFS8s1XXJKRxdHAQgqcOU0ex0VL3HA6PKnUT0pVcIwSEgBBwWAKWBDorqvP4NQp05o6LpTwCugQ6PQjMr2CeREKsTZs2qFy5sso35/EBWtV25jMwx4AFCGxprJzI3SZWHqbRU8O/nzx5MtZttFyG8uXLq/P0Zs2apXIg8ufPb3E4mkAvgAyo+H0jVCxwD/67m8Ml4xtIM+fVKom2nJv0JQSEgBBIbgKOtiaY47Vp0yblMed3vmZNmzZVx35yPTC2CRMmqHNamfvGtChW1rWUW85r9Qr0qzeiMW5KBLy8gJmT3G3yaC+HBWHJ/Zcb4XpsyYPTuBL2DBvy1UbDtHn1XPLabbQcdXYkIv21cUoHQkAICAEh4EQELAp0FjNgCPi2bdtU1T8trIIvNix6wAp6eowvOyw0wDByY4FOTwRDB3kEgC2NxxawOA/PANSMovrs2bOqiqKxMbeDL2T0ntArwjL/LNSgGQvcmRp3s86v6o8CLhlQcWkjlC74DB8HNoCLjy/SLLYc9mjLeUpfQkAICIGkJOCoa4I5Rjx7lmsP65Noxs1kVoTl+azGdvHiRXTu3Bk8xSRbtmyYPn26KpqjGXPZmb5lbIzY4hoUn5DnNUPGhOPBI2DUYDfkyh57jUqK5zvt7gn0u7YP7TMUxJI81ZLiluoexiJdu6lX+z7wrNc8ycYgNxICQkAICAEhYG8ELAp0hohr5+rx7DnN802hzoPsd+/erWs+zI+g16FQoUKxBDpfYPhzbgDY0kaMGKFK8jdv/nKRZ4giX7iMD7TnzxmiOGPGDFVZMVWqVBg/fjzoGaK3RLMpU6a8MjSeFUiB/pZLelRa2hhFCrmg/W9VVLu0a/bacirSlxAQAkLAbgg46ppgDuBPP/2k1jAWhtOMm7TML+f6oRnPVeVawqNweKTL+vXr1Xm03KjW6qew0ixTqYyNYfwfffSRLoG+eEUk9h+0/XFrej849LjnPbkcDHPn2elpDZ56L33tduZEunjUXxurdCAEhIAQEAIOTMCiQGdYOD3I9BQYe77pRWGunl7P98qVK7F48WJVNp+54Mz5Pnz4sCrKwxxAS2f7JYQt73Xnzh11Lxq9GxTtfIkyNhZeKFGihApXpDHknUKexx1YMi3EXRPohQq6oFOgCPSEPCu5RggIAcch4KhrgjnC3HDmuqDVJomIiECZMmXUGbRp06aNuYTrBjdzjTdrmZpFzzs3neMyvSHuvH7fgSgErIxE8SIu6N3FdsetWfPJ0o5mS87K7y9+WYPQpTMgBeSseXLSVggIASEgBJyNgEWBXqpUKVWkgAfWGwv0gwcPgmHkLJqj1+ipoHCmV4HVc5nn3a1bt1jn/entK752169fR6tWrfDDDz/EVHHXDrPnOJhL2LJlS+U550saX7wY1k5PPs/7Y+ijHoGezzUdqixpgrffckHXY/6IDnqCNIt+gYtvmviGKL8XAkJACDgcAUddE8yBZlpT7dq11Zm1PHeWG8YsELds2TKV8kQBzk1lhq5zvWNBUQp31k7h+sKiosbF5EzvYY1A1/LQM6QHJo+2TR66tR8uLczdP20ebMxXx9rLbdbe2KPumikLUjXrJEXkbEZXOhICQkAICAFHIGBRoPMFhWKWx9Awp/vQoUM4cuSI+jtz63h8mb3azz//rIr/8JgCFqhj2DrDERmayBB9Vmqnx5wefBYKYnVebkQwvDFPnjw6BXpaVFnSFAXyuaD7mRaIuncbfrPWwjVzworp2StLGZcQEAJCgAQceU0w9wR5ogjrjnCdy5cvn1oXcubMqVK7uOZxU5kRUxTtK1asULVYmA5Fwc51xZJZI9DZT5e+L89DXzg9eQT648gXSHd8sa4POkPhdxX0R3GvjLraW9uIx7OFBW5B1P076lKf0TPkODZrIUp7ISAEhIAQcFgCFgU6BSzPBufLCYUujSK3Y8eOqkKtcTG1+AjwxYa5fMHBwa805dmyjmRaiHte17SotqQp8ud1Qc/rnRB19SL8vvoerrnedKTpyFiFgBAQAroIyJqgC5NqZK1A185DH9TbDQXfSvpCcRxzwwtbsenxZV2TTIp89dAl0/Fiy1q4FSoBnzEzdY1LGgkBISAEhIAQcHQCuo9Zu3HjhgpNp3dBK4yjd/LM3xsyZAju3btn9pJz587p7cou2v1PoKdBtSXNkDe3C/o87I3Is//A98vvYChQ2C7GKYMQAkJACCQGARbTlDXBMllrBbpWKO7jRgbUrOKaGI/NJn3S017lzCb8HfoAeTx8kcfz5ZnxfTMXtfkRbTwz/UmvpkBIsHjRbfL0pBMhIASEgBBwBAIWBTrzsRnG9+absT3CPE+chddat26ta461atVCjx49VL4fwwMd3TSBnsfgh+oBzZE7pwv6PR+EiBOH4DPiG7gVK+PoU5TxCwEhIAReISBrgv4PhbUCfUdgFFZviET5Mq7o1Nqg/0bJ0NJYpGu3r+KbDbsK+Nt8NFrhOOaj+81eZ/P+pUMhIASEgBAQAvZGwKJAL126NFatWqVy84yNRXJYxfbAgQO65lOlShUEBgbqausIjTSBntvghxoBzZEjmwsGuY1G+IHd8B4wHu5lLecmOsIcZYxCQAgIAVMCsibo/0xYK9DPnIvG1FkRqqbJ4D7JU8ld/+wAivTjIQ/UJQyNfxIZpgQ6hbqt7WnPJiofXY5fszVZ6U8ICAEhIATskYBFgc4jZHbt2qWKpxnbw4cPUaFCBd3HrDVu3FgdrZYlSxZ7ZGD1mDSBnsvgi5oBHyNbFhcM9ZuMsN1bkbrnCHhUSb4KuFZPRi4QAkJACOgkIGuCTlAJyEEPCQX6DE3eQnH6Zxe75ZibhzD21mEkVgV4FowLmTMB9KL7TgmAi/fLsHoxCNLMMgAAIABJREFUISAEhIAQEALOSMCiQKewrl+/Pjp16hRr7iwat27dOmzatEkXk+PHj6szydlX1qxZVcV0Y7P1Oei6BvUajTSBnsPgg1oBLfBGZuDzrLPwYtuP8OrUD561X56rLiYEhIAQcCYCsibof5rWetDZ85Ax4XjwCBg12A25sidPoTj9M/xfS+MK8JeKtFG56ba2Z2N6I+LUcaRq2hGpmne2dffSnxAQAkJACAgBuyFgUaDzvPMuXbqAZ9/yHHQXFxd1bjiPW/vuu+/wwQcf6JoIK8HPmzdPhcqby0Gn2Hck0wR6djcf1F7cApkyAKPzL8bzjcuQqlU3pGrY1pGmI2MVAkJACOgiIGuCLkyqUUIE+qyFETh+Mhq9OruhRFHHEeicb4fLv2PpgzNon6EgluSpph+UzpYR/x7Fs7F94JLaB36z14oXXSc3aSYEhIAQEAKORyDeKu6svM489IsXLyIqKgp58+ZFixYtrApXL1euHL7//nt1nqwzmCbQsxm8USegJTKkA8YW/QHPV81HqkZtkaplN2eYpsxBCAgBIfAKAVkT9H0oEiLQN22NxOZtUWhQ2xX+dey7UJwphcthQch7cjl4/Nqj4onj4da86BTpXh36SjqZvo+itBICQkAICAEHIxCvQLfFfKpWrapy2Z3FNIGe1eCNugEtkTYNML7cJoQGTFPh7QxzFxMCQkAICAHzBJxtTTA3y4QI9GMnojF7UYSuj409Vnt3OTJXjT26VA9dc7C2UdTdWwiZM16Fuus11oRhbRgxISAEhIAQEAKOQiBegf7ixQtcu3YNz549e2VOxYsX1zXPgQMHKq/7e++9p6u9vTfSBHoWt9Sot7gV/HyBSTV2qCI2HlXqqkqzYkJACAgBZyQga4K+p5oQgX7/ITB07MtCcXpsxiR3pPbS0zJp2hQ/tUadj55Y1dy1WaiicUumq/PR9Zj3wAlwL1NJT1NpIwSEgBAQAkIg2QlYFOg8Gm3AgAEICwszmzvOXHQ9NmPGDMydO1cJ9GzZssHDwyPWZV988YWebuymjSbQ3zB4oX5Aa/h4A1M/2ovgb0bC/f0q8O7/pd2MVQYiBISAELAVAVkT9JNMiEDX27uWq25vofA8bm3T48sIyFMVHTK8rXc6idZOO0OdIfGs/u6aOWui3Us6FgJCQAgIAdsQeP/997FlyxakT5/eNh06YC8WBXqdOnXQr18/fPjhh681tYkTJ1q8nhXeHck0gZ7J4IWPAlrDywv4tsVRPJswAG7Fy8Jn+NeONB0ZqxAQAkJAFwFZE3RhUo0SU6BrZ6ZnSA9MHu2uf1CJ3FI7bm101vcwJlvpRL6bvu6DpwxF+OG9MOTJD++BE0Wk68MmrYSAEEgEAiy0zcLZCxYssGnvdKT++eefqFy5sk37fZ3Otm/fnmD9mNwC/Y8//lBOZS8KvGQyiwK9SpUqoMdELDYBTaBnNKSCf0AbeHoAMzr/h6BRPWEoWAS+X7zMwxMTAkJACDgTAVkT9D/NxBToHIV2JFvHVgZ8UNZV/8ASseWSB6fR8fKuRDsPPSFDjw4OwpNeTVU4PD3pTENz8fZRXXnWbSbV4BMCVa4RAkIgQQRCQ0Nx5swZ6E0R1nsTajX+N2bMGL2XJGq7p0+fom3btrqP4zYdTHIK9OjoaDRr1gzz589PVg++RYFer149rF69Gj4+Lxez17GIiAjcvn0bzF80NR6/5kimCfQMBk80DGgLNzdgdp8rCBrUAYZc+eD71VJHmo6MVQgIASGgi4CsCbowqUaJLdD3HYhCwMpIFMzvgkGfuukfWCK2DAy6iapnN6G4VwYcK9Q8Ee9kXdcU6SGzxytPurFRoLMavJgQEAJCIKEEli9fjmXLlql0YF9fXyXssmTJok6/GjVqFC5cuABPT08sWbIEjx8/xtSpU7FixQocP35cHVlNjXXnzh1V66t///6oWLEiJkyYAD8/P/Tu3VsNKzIyUv18/fr1r5yiRcH/6aef4smTJ8iaNSs6d+6MnDlz4ocfflB/59iGDBmiruP/G3vvK1SogJ9++kkJ0UqVKqFjx47Yu3cv7t+/j5IlS2L06NHq/hStPC57zZo1CA4ORoMGDfD555+rOTBN+dGjR3B1dVXzLVu2rBrDsWPH1Old/DsjpS9fvozhw4eruWbPnh2TJ09W46OtXbtWsWAKNCP1fvzxR2zYsCFOgcyxcBPgypUrimlISAjGjh2LIkWKqP7M3StDhgxqLPv371eecR4b27p1a+zbtw+ZM2fGuXPn0LdvX8WZJ4/lz58fadKkAZ8vn824cePUMeOcJ+uqde3aVd0rvrEk9HNlUaAzPIED69GjB3LlyvVK7nimTJl03fe3334DC8VRnIeHh6vz1Pmw+SDeeecdOOo56OkNnmgU8PLM8/kj7uFp7+ZwzZwNfrPW6OIijYSAEBACjkRA1gT9TyuxBXpIKNBn6MuCcgun20+Ye2JXctf/BF5tGX5wDyIvn1O/eL4uQP3J3HRDHuc4AvZ12Mi1QsBRCKx7dAH/hD5M8uE2S58P76aKnRMdFBSEunXrYufOnUqEX79+HTly5FCCmhvaFHwUnBSwFHsnTpyIJdCbN2+OjRs3olChQqogN//+66+/4tatW0p0c82lMXx95syZWLlypdl5UzifOnUqxoNO4UwB2a5dO6Xh3NzcsGfPHosC/d1331Xj/eSTT9T46UUeOnQoypQpo0Q89eDChQvVJgTnQ1FPsf38+XPkzp0bu3fvxqRJk7B161YlnLt3767+n8ZjuuvXr682ChiGT0HO3y1evFhtYNDbrm0+BAQEqA2KAwcOWBToHM/mzZuRNm1aUGfyOv7M0r14n549e4LHf3OjhKHs/BnnSrbnz59XmwzGGxccPzcW+PwGDx6sNig6deqkNjP4bCnQ4xrL63xILQr0okWLguEYcRl3G/QYc9j5AWnYsCE++ugj9aD58Ljr0qZNG/DIHUcyzYPO816bBLRTQ1/wRTCedKkPF7+0SLPwZ0eajoxVCAgBIaCLgKwJujCpRokt0HmPMZMjcP1mNAb1dkPBt1z0Dy4RW+Y5uQxXwp7hUpE2yOPhm4h3er2uQ5dMx4sta1Vuuu+UJa/XmVwtBIRAkhFocXEHVj86n2T302606s2a+Dhd/lj3pZCtWbOmErWNGzeOcWRSLFPM/fxzbD1A4WzsQafwYzE0zaiVGjVqpHK3/f398eWXXyqvML3VFNAtW7Y0O29zAp0Cn6KcTlGaHoFOwaoVZqNQ5b0pXim2OT9LNcnogC1durTyqpsKdPKg2Kf+ozGqmu8Tf//9t4osoNDnHGmMROB9uSkRV5E4imJuYmgh/fT4kxvHb+levI4OYrLhhgF5c6Ng1qxZquZa7dq1UatWrVcEeokSJdQGBKMaaNxEoYefXn9LY3mdD6lFgc5dAkvm7e2t6978UPGBubu7KyDaB5a7RdyB4M6TI5km0NMYPND0/wX6wqnReNymGuDugbQrfnek6chYhYAQEAK6CMiaoAuTapQUAl2r5m5PeehVzmzC7mc3E/2oNf1PwnxLhr0zLS3q/h14te8Dz3r2E5L/unOT64WAMxOwJw86Od+4cQOzZ89WoeHUNPxv165dyqu6aNGiWI/CVKCziDZTiTUbMWKEEuKtWrXC0qVLlUeewpbh59RO6dKlM/tozQn0KVOmxPK4mxPoH3zwgfJCUwjzvv/880+MoKf4LVCggBoLxS//XqxYsVj3/+uvv1Q4OL3otMOHD6soAVOBTh70zjPMXjOG5HNO9Moz/JybHJpR6FMEWxLovCf7pD18+FBFMnA8lu7F0Pc5c+YoD32vXr2watUq5SSm+K5WrZrKmSdjYw86w9uZE082mvE5MqSeIp0CPa6xvM6/w3jPQX+dzrVrOWnukDBMnjsx3Kl444031IRKlSoFVjV0JNMEuq+rO5ovaa+GzhDDx80rqP9PuyZ2npsjzU3GKgSEgBBIbALOtiaY45UUAn3T1khs3hYFezpu7bNrezH97knYUyX3uD7PDHkP/mq4Kh7nN3utFIxL7H/40r8QcGIC9+7dU2HlFI0ZM2ZUYdEUv8ZmKtCZc/777/9z6lHc00tOTzVFZ5MmTZQXnRrKUuV3hoxTS2keZeP7aPdnrjVDyrVNA3qSCxcurLzOmkA31mPGAp3zYvg9owU0Y+53jRo1VF76m2++qUK/GTpOgX716lV069YtJsSdXu2RI0eq3HJT47zoAddO9GJUAsfF8VoS6Eyb7tOnzysC3dK96J1niD1z+8mXnnRGB9BrTi6aA5l56BTrvD85sagfNzgY5k4z9aDHNZbX+bhbFOgMb2chg7Nnz5ot7jZ9+nRd9/7qq69UuAIBcKeBOxX80HG3iTtPfLiOZJpA93F1Q9uVHRAWBsye6o7nn9RGdMgzpAnYKgu9Iz1QGasQEAK6CMiaoAuTapQUAv3YiWjMXhSBAvlcMLiPfRSKm3b3BPpd24e+mYtgWs6Xm9b2bNoxbO6lK8J7kOUjYe15HjI2ISAEkp4A10QWwM6bN6/KfaZgZAG16tWrK81D7zdFLb2wDDVnarBxiDudlnPnzlVCl6K6S5cuSrBrodQMwWaeO9sx5D0u27Fjh/LY0+tOMyfQGbXMomhsy3x5ilGGdWu53vSgxyXQWSuM4ppimkXtOGeGtDdt2lR5rFOnTq2K4zGSgGHr9I5zI56iltHWFN0cP73WzNum6L106ZIS9mTCnG7eg85bzoPe6fhy0OMSxZbuRTbMOef4xo8fr7Qpi+nxntxc0MLs+QxZII9HrdG42cJ5cxNBy0Fv3769qjNAXZvkAp27QNwF4YeLg+euDoESOHd0GKtvrXH3goKdYQgspMCCASwu4EimCfTUrm7otKoDQp8DMye7I6xfY0Q/uIs0c9fDJUNmR5qSjFUICAEhEC8BWRPiRRTTICkE+tUb0Rg3JQI5s7tg9GD7EOhaJffKPtkQWDDuF0r9JBO3ZdTdW3g6uIM6hi11zxFwzZxFedSlcFzicpfehYAzEGAlcXq96QFmITZ6XukpNhgMOH36tBJ5DPemgKWHlsLQWKBTD7GS+dGjR9X1FIjsQzOmAFNEUzNZSiumtqKXmyHcFMEMTdfuY8yZAnrbtm3Kw88i3XSU0jsfnwedmw90yrKgHaOfKbYpWhmi/8svv6gQdXrYGTKuRQ0wxJ455/RYUwxTT9IrTy7sjxsYFOI0OmqZz01uFPacL4u+JcSDzv4s3YsMWM2eOe7cNGEuO1MIGPquRQiQEcdMjzk3MrjBwrHzmlSpUqm5MiSf1yeLQGeJfe60EDx3EzTodPtTpH/99de6/n39999/qlw9c9CdwTSB7uViQNe1HREcAkyf6I7IEa0RdeMK/L5ZDtcceZxhqjIHISAEhEAMAVkT9H8YkkKgczRd+tpXJffLYUHIe3I5WER1Y/46+oGZtCzmlQFpDZ4Jvt6aC5+vWRRT1V27zm/WWrhmfnkEkJgQEAJCwNYE6OWmQKcDNC6j+KUOmzZtmq1vL/3ZOQGLIe58GePuCnd+WH2dOyc8/427JzxLjmEMeozHB3AXKFu2bHqa230bTaBzoJ+t74KgZ8A3X7rDZWJXRJ7/D74T5sOQv5Ddz0MGKASEgBCwhoCsCfppJZVA1yq5jxrshlzZ7aOSu3bUmn5ar7bkWeq7CvonmUhnqDtT1OhRl8Jxr/Pk5FohIAT0EDAXhm58HbUWz9umV10LteaR1Tz33Njo/R00aJCeWzpcm5Q2X+MHZFGg8/w8hkww3IJ5FcyRoFCnMKdrn/kBeow5CiwWYFxcQM919trGWKD339gFT54CX41zh9v0Poj45yh8Rk2HW+FS9jp8GZcQEAJCIEEEZE3Qjy2pBPqUGRE4eyEavTq7oURR+xDoLBR3POSBflgmLS+HPVVHtSW1SOcwtMJxcvxagh+fXCgEhIAOApYEOkPHefwaBTpD1sVSHgGLAp0l5VmogNXXWZWPCfH8OysVUrCz8p0eY04EE+t5hh49715eXrEuy5Qpk55u7KaNsUAftLkLHj4CJo9xR6oFQxF+eK8qNMOCM2JCQAgIAWciIGuC/qeZVALdHiu566dkvuXjyBfgcW1/hz5QIv1YoaQ9Au1xh1oqJ13C3F/3Scr1QkAICAEhkBACVh2zxqp9fEHLnj27Ki6g13iUGgspxGWs4OdIZizQh/zSBfcfABNHucN75TiE/bEdqXuPhEelWo40JRmrEBACQsBqArImxI0sqQT6vgNRCFgZieJFXNC7i30UirP6g2TmguOh91Hi1Fr1m+hSPWzRpe4+QmaPR9jurfCs2wxeHV6esysmBISAEBACQiCpCFgU6Ayx0M6lMx4QjxVgdcBRo0bpGidL0lsyS5UJdd0giRsZC/ThW7vgzj1g/Ah3+G76CmE7NiJ1l4Hw+LBhEo9KbicEhIAQSFwCsibo55tUAv3MuWhMnWVfldz1U7LcsvipNcqLvquAP6r4Jl0Nm4h/j+LZ2D5wzZQFfrPX2Wo60o8QEAJCQAgIAV0ELAr00qVL49ChQ690xPPeWCzI+Lw8XXdzkkbGAv3zX7vg1h1g3DA3pNs+Gy9+XgWv9n3gWS9pQ/KcBK1MQwgIATsmIGuC/oeTVAKdI7K3Su76KVluyTD33c9uJrlA56ie9myiisWl7jkcHlXq2mpK0o8QEAJCQAgIgXgJmBXoPB+ORi+5aWVAHgC/b98+PHr0SB0qr8focV+xYgXOnj2rDnM3NZ6t50hmLNBH7eiKG7eiMWaIGzIEzsOLjcvh1aYnPD9q5UhTkrEKASEgBOIkIGuC9R+OpBToQ8aE48Gj/42xYysDPijrav2g7ewKFpubfvckRmd9D2OylU7S0RkfvSYiPUnRy82EgBAQAimegFmBvmHDBgQGBmL79u0oV65cLEg8Zi1Hjhyqujtz0fVY37591aHxrOLO8/5atmyJS5cuqbPUv/zyS9SuXVtPN3bTxligj/2tK67eiMbIgW5440+epboEqVp0RarG7e1mvDIQISAEhMDrEJA1wXp6SSnQtUru2ijLl3FFp9YG6wdtZ1eMuXkIY28dThaBThTGIt174AS4l6lkZ4RkOEJACAgBIeCMBCyGuPPsPQro1zWGw+/YsQMZMmRAgwYNsHnzZtXlpk2blEj/+uuvX/cWSXq9sUD/IrArLl+NxogBbsh6aCmer16IVE07IlXzzkk6JrmZEBACQiCxCciaoJ9wUgp0bVTcLB43JQIZ0gOTR7vrH6ydttz4+BIaXdiGyj7ZEFjQP1lGGRa4BSFzJkg+erLQl5sKASEgBFImAYsC/eLFi8pL7unpqejcunVLiWr+rH79+nBx0XfmKgX63r17kTp1anWO+saNG0FP/PPnz9WxazxX3ZGMAv3G6kEIjY7E+D1dcfFyNIZ95oYcJ1YidMVcpGrYFqladXOkKclYhYAQEALxEpA1IV5EMQ2SQ6Dz5p8OCUfoc2DSaHdkTK9/vPbYMjDoJqqe3ZSsAp1cJB/dHj8dMiYhIASEgPMSsCjQmzdvjk8++QQ1atRQYrpOnTooUKAArl+/jlq1aqmz0PVYu3btVEh8xYoV1TXsj0Kdwpz9HzhwQE83dtOGAv3mmsEIiYrApL1dce5iNAb3cUPu02sRunQGPOu3gFe73nYzXhmIEBACQsAWBGRN0E8xuQT64hWR2H8wCh83MqBmFcfOQ+d56OmOL1bQk/qoNeMnLV50/Z97aSkEhIAQEAKvT8CiQC9evDh2796NNGnSYOXKldi6dStYLIgCvVWrVio8XY/x7HQ/Pz/kypULJ06cQPv27dXf7927pwR79+7d9XRjN20o0G+vGYxnUREYf6AjLp4xYGBvN+S9sB6hi7+FZ52m8Or4md2MVwYiBISAELAFAVkT9FNMLoHubOeiuxyZm+wCnQPQvOiSi67/34C0FAJCQAgIgYQRsCjQS5QooSq2e3l5oW7duhg+fLjygoeHh4Mvagk9Zu327dugaGeo/DvvvJOwkcdz1Y8//ohp06YhLCxMFacbO3YsDIZXi+aEhISoavU7d+5UYffMsWR7S0aBfmfNEARFhWPioY44/58B/Xu6If+1zQiZPwUeNRsiddeBiTIv6VQICAEhkFwEHHlNMMeMG8ZDhw5Vm8Vvv/22qoeSOXNms3iXLl2qTiPhSSRcD4cMGWLxMSSXQL//EBg6NhxeXsDMSY6fh55cZ6GbPlzNi27poUv9meT6ZpL7CgEhIASci4BFgd6tWzdVsT06OhoHDx5Uxd2Yd37hwgV06NABf/zxR7w0eO21a9fA49ny5s0bb3tbNGCFeIbVr1q1Sr1sDRgwQG0odOrU6ZXu6b3nJkHPnj3h7q7vZYYC/d7aoXgSGYZJRzvg3D9u6NvNDQXvblXFZDyq1Ufq7kNtMRXpQwgIASFgNwQcdU0wB5BrEjdjx4wZg0qVKoECfP/+/Zg3b94rzRcvXoy//voLkyZNQvr0+hK7k0ugc/BjJkfg+s1oDOrthoJv6asVYzcfMpOBJOdZ6MZDiQ4OwpNeTYGQ4DhRuWbKAr/Z+o6ftVfeMi4hIASEgBBIfgIWBfqdO3cwceJEREVFqfPQc+bMqUa8ZcsWXL58WYlaS3bjxg106dIF58+fV80KFSqEhQsXIlOmTIk68/nz5+Pp06cYOPClF/u///7DsGHDVHE6Yzt9+jRGjBgBetutMQr0+2uH4nFkGKYc74AzJ9zwaVc3vPN4B0JmjINHpVpI3XukNV1KWyEgBISA3RNw1DXBHFjWQOEpJWvXrlW/5jrHY0UZTeXr6xtzCYV8tWrV1PqRLl063c8oOQX6qvWR2Lk7CgXzu6DgW67Imc0FJYo6plBPzrPQdT9sCYG3BpW0FQJCQAgIgXgIWBTor0uPAvnhw4cqhJyed3oqfHx8MGHChNft2uL1DMV/77330LhxY9WOIYn8+8mTJ2Nd9/333+PUqVN49uyZigrIkycPRo8ejSxZsljsnwL94dpheBj5AlNPtMfp4+7o2dkNRUICEfzNSLiXrwbvz8Yl6hylcyEgBISAoxFIrjXBHCeeSEKP+eTJk2N+3bRpU4waNQpFixaN+dmZM2dUODvFO2uyULxzw5priiVLToF+7EQ0Zi+KiDW8Fo0NqFHZ8YrGJfdZ6Hr/jb34ZY0qEutWqAR8xszUe5m0EwJCQAgIASHwCgGzAp35eCwM9+TJE4vI4vOEV6hQAd999x0KFy6s+mHuOau/J/axav3791eV4pknqBlF9dmzZ2MdDceNA0YDzJ07V+UfLl++HL///jsYzqiZuUr1LJb3aO0wPIh8ga//aYdTRz3QvYMBxSL2IXjqMLiXqQzvgePl4yYEhIAQcAoCjr4mmHsIq1evVhu0rE+iWZs2bdC7d2+8//77MT9jMVRGi3G94PrFa5gatX37dnV0KI1rxpEjR2LdhhvDDRs2VEeSJrWFhAI7AiPVbUNDobzptPJlXNGp9au1WJJ6fNbczx7OQtczXuMQeL9Za+GaOauey6SNEBACQkAICIFXCJgV6OXLlwdfVL799luLyM6dO2fx9wULFlS56xT7mlGs80z0tGnTJtrjYNh6sWLFwCOBaPSQ84WLhemM7ZtvvlGF4ejpoDGUkV6Ro0ePxgh5hsebGo+Ie7JuOO5FPMfXp9vj1EF3fNLegJIuB/Fs4kC4lywP76FTEm1+0rEQEAJCICkJOPqaYI7VTz/9pDziLAynmb+/P8aNG6fWD81YKHXWrFn44YcfYn7Wtm3bmNom/OGtW7cQFBQU6zYzZ85Ugj45BLrpfLXK7vy5o+Wl28tZ6Hr+vYXMHo+w3VvBXHTXTOYFuleHPjDkeUtPd9JGCAgBISAEUigBswKdgpaegVBuvVswb29vi7+n15oCXfMysDG96sz5fuONN2Ku9fT0tCl+ejOYK8m8cxor9VK0s8idsTH3UMtD5M9Z8Z1hjKaeENPBcV5P143A3YhQfHumHf454IHObQwo7XkEz77sB7diZeAz4hubzkk6EwJCQAgkFwFHXxPMceMpJFwXtNokERERKFOmjIqiMt5Avnr1Kjp37owdO3bEdPPxxx+rdCjWVYnLkjPE3dyYHPV8dHs5C13Pv73Iy+cQNLijxaaGPPnhO2WJnu6kjRAQAkJACKRQAvHmoLNwDkPdeUQZzy63xihk9Vh8nng9fRi30c5pp8dDq+JeoEABFbpIj8nNmzfRsmVLNa/atWtj0aJF6kWL1Xv50jZjxgyLt+S8nq0bgdsRoZh2vi1O7vdEx1YGlPU9gWdjesPt3ZLwGW25D2vnJO2FgBAQAvZAwBHXBHPcOA9+/48cOVIdH8oq7iwQt2zZMlUwjqHvn376KTJmzIgWLVqgUaNGoDBnhBXTqBji7uHh4TACfUdgFFZviFR56MxHdySzl7PQ9TCL+PdonM3oYY+6fwdyHJsektJGCAgBIZByCcQp0O/fv4+vvvoKv/76qwoRp/F4mXr16qFfv36xqtzGhY9CWY/xKDdb288//6yK/zx//hyVK1dWhen4MrVgwQKw6A/nRmN+ISv5BgcHq1z58ePHqxcyS0aBHvzj57gVHoLpF9vixF5PtG9hQPkMpxD0eXcY3i4K33FzbD0l6U8ICAEhkGwEHH1NMAeOJ3kMHjxYbdrmy5dPrQs8rYT546xjwmgsft/Ti852/JObvhTvxmHw5vq2Nw/6mXPRmDorAgXyuWBwH7dk+xwl5MbaWegJubayTzYEFvRPyKU2v8bYw+47JUBC3W1OWDoUAkJACDgHAbMCnZXXWQGd1Wq7du2K/PnzK3HL4jg8Ji08PBzr1q1DfCHuzoHo1VnwhS30x5G4ER6MmZfa4PgfqdCmuQEVs55F0NAuMOR/B74TFjjr9GVeQkAIpDACsiZY/8DtTaBzBl36hquJLJzubv2EkvEK7Sz0hAzBngQ6x/98zSI8XxfzoAXMAAAgAElEQVSg8tTlzPSEPFG5RggIASHg/ATMCnR6m5mHvWbNGhXabmz0LLD4Gr0LDP9LiUaB/vzHkbgeHoxZV9vgWGAqtGpiQOU8lxA0sD0kxywlfipkzkLAeQnImmD9s7VHgT5mcgSu34zGqMFuyJXdMc9F1/sk7Lm4XNCgDoi8cl5C3fU+TGknBISAEEhhBMwK9OrVq+Pzzz9H1apVzeJg2Dsr1DKMPCUaBXrY+lG4GvYMs2+0xtHfvPBxIwOqv3UNT/u1hmuOvPD7ZllKRCNzFgJCwAkJyJpg/UO1R4GuFYpjzZQPyjremejWPAV7FujMU382to+ajoS6W/NUpa0QEAJCIGUQMCvQ33nnHVUsJ3v27GYp8DzzmjVr4uTJkymDksksKdDD14/ClbBnmHurFQ7vSI1m/gbUfPc2nn7aHK5ZcsBvxqoUyUYmLQSEgPMRkDXB+mdqjwLdkQvFWfsEjofeR4lTa5HHwxeXirSx9vJEbx+6ZDpebFlr9j6pew6HR5W6iT4GuYEQEAJCQAjYJwGzAp0C9Pjx43HmmLOgWvHixaG3+vrEiRNjjjwzxsBj3KZOnYpRo0bZJ504RkU+EetH43JYEObeboXD21OjcX0D6pS4hyc9m0humUM9TRmsEBAC8RGQNSE+Qq/+3h4FuiMXirP+CQD2XP09OjgIDHVnVXdTcytUAj5jZiZkynKNEBACQkAIOAGBOAX6nDlzENf55MxD79mzp26BXrp0aRw6dOgVXOynZMmS6mgzRzK+rEatH4OLYU8x715LHNzqjQrvu6JCwcfIOMkfkb4ZcX/oBvNTcgEK5nfu3D9HepYyViEgBOInwO88WRPi52Tcwh4Fekgo0GeoYxaKs47+y9b2LNDNzYei/UmvpkBIsIS+J+SByzVCQAgIASchYFag81gyPcYzxS0Zz5Ol0Us+aNCgWE0jIyOxb98+PHr0SFWEdyTjy2r0hjG48OIp5j1oiYO/eKvhp456inF3/PHMNS3GvBGHQHfACrqO9GxkrEJACNiewP+xdx7QURZfG39SIYUiTbo06VWKgPQOgqAUEVCqIgj4F+kIhCJSBWkqKlU6SBUQ6SCC9N6liAGkhwQSks1+506+DVmy2bxJNrvv7j5zjkcg887c+c1k7/vszNxLn5B0pnoU6DKKgUGRuPcAbhEoztkEusyP6ei7b83G8P9kaNIXHp8gARIgARJwegIJ5kG3xchWr16NnTt3YsuWLahSpYpZk56enpD855LGLaG77rawITXaEIHusXokLkY8wgrDe/h7f6DqxtfwBJ3+bIIIrwDMr/JrvK4vXDaqf5s+zgd+fqlhGdskARIgAf0ScFWfYIm4XgX6jB+jcOykEe4QKM4ZBXr0fzcR0qu1WlIZ5m6CR0A6/f5C0zISIAESIIFUIZCqAt1ksUSEHzNmTKoMwBGNikD3XD0SFyIe4WLJdiiUJkOsGQ/bVAN8fZHx5+3xTOs/IhIPHgITR/ngpeePOGII7JMESIAEHEbA1XyCMwn0tZsMWL85Gs0aeaJ5Y/M0qg5bEKnUcb6TC1UwVwkSJ8HinKWETRiEyEN7mYbNWSaMdpIACZCAjQnYRaBHRkbCx8cn1nQ53n7ixAlkz54dOXLksPGQUr85Eejea0bhXPhDXCjZDq++KNABZFy+N54hw8ZG4uZtYMxQH2TPlvp2sgcSIAES0CMBV/MJFOh6XGVArfNrsSs0GDsKN0etdDn1aaQFqyL/2o2wSUMYcNZpZoyGkgAJkIBtCdhFoPfo0QOtW7dGnTp1YDQa0bVrV5w5cwYSJG7s2LFo3LixbUeVyq2JQPdZMwpnwx/ik6wl0TNbSRRP+5LqVe2gJyDQx0yOwtXrRgzr541X8jBQXCpPE5snARLQKQFX8wnOJNDdKdWaswp09S7RqaEKFpd+xgp4ZnO+jQydfvTQLBIgARJwCgJ2EeiVKlXCunXr1I759u3bIWnX1q9fr6K3Dxs2DBs3bnQKWCYjRaCnWTMap8MfqH9aVqA+2rxUKEagf1AfCH+KjAu3AmnSmo1r4owoSJqb/r29GcndqWacxpIACdiSgKv5BGcS6O6Uas2ZBbrpmDtzotvyk4dtkQAJkIBzELAq0Hv37o0RI0YgS5YsKRpNyZIlceTIEfj6+qJTp05488031Y66HHUvU6YMTp06laL27f2wCPTP9q3Gt/+dxqnw+1haoD7e/X+B/qhLExhDQ5BhziZ4BJrfeZs+OwrHTxvR5yNvlC7BHXR7zxv7IwESSBkB+gTt/PQaJI4CXfscOrLms50b8WTWWPhUqIaAAeMcaQr7JgESIAESsDMBqwJdcpSvWrUK+fPnT5FZLVu2ROfOneHt7a0Ev6RnS5s2LW7duoVmzZpZzJGeog5T+WER6BcvXkSHK1ux6P5FLMlfH20zxeygP/q4BYz37yLD92vg8ZL5Fxuz5xvw15FodO/ohYqveaaylWyeBEiABGxLgD5BO08KdO2sUqtmp6vbMf/eeUzJ8wb+l610anWTKu2aorl7+Aciw7zNqdIHGyUBEiABEtAnAasCfdasWfj777/VkfS4Qd6SOpRDhw6hT58+asdccqLXqFFDNbFkyRIl1r/77rukNunQ+iaB/v6Vbfj5/gUsyl8P7TK9qmwK6dUG0f8FW7w3Nn+pAXv+jEbHtl6oXoUC3aGTyM5JgASSTIA+QTsyvQr0u/eBQSMjkTkTMH7E8+Ct2kfmPDWDgg9i5M1DGJGjAoJyVnQew//f0pCeLRF99zbSTZgLr3wx7xgsJEACJEACrk/AqkCfP38+li5divDwcJQvXx5+LyTvHj16tOsTsjBCk0DveHUbFty7gIX566JDpsIxAr1vB0TfuIr0UxfDM2des6eXrTZAAvS0fccL9WpSoLvl4uGgScCJCdAnaJ88vQp0GUG3TyPVQH78hgJd+4zav+bTed8gYuMKpluzP3r2SAIkQAIOJWBVoMvOubUyePBgzcZLxPZjx46pY+3NmzdXzz179kz9X+6mO1MxCfTOV7dj3r3zWJCvLt7PHCPQHw/oDMPVi0g3YR688sUcezeVNRsN2PBbNFq86YWmDSjQnWnOaSsJkADUaSr6BG0rgQJdG6fUrOXsO+hx06351mpiFZVn1uxIrE5qsmbbJEACJEACtiNglyjuly5dQrdu3fDkyROEhITg3LlzagSyO79nzx7MnDnTdiOyQ0smgd7l6g7MvXcO8/LVQcfMRWIE+hfdYbhwGunGzoZXoeJm1mzeFo2V6wxoXM8TLZt52cFSdkECJEAC+iPgaj7BEmEKdMevO2cX6Mawx3jUWXsa2gxzN8EjwDw4reNngRaQAAmQAAkklUCiAv3ChQvYvHmz2vmWnOVS5OVKSqFC5jvECXXeoUMH1KxZEx9++CFKlCih0qtJuX79uormfuDAgaTa7dD6JoHe7doO/HT3HObkq43OmYsqm0KDeiPqzFEEBs2Ad/GyZnbu2BONRSsNqFPdE+1aUaA7dBLZOQmQQLII0Cdow6ZngR40Pgo3go0YPsAbeXO5bkaRNQ+v4O3Lm9E8Yz6sKahd6GqbYfvUkmjuEjDOWok8uAeGa5fg17EP0rzZxj6GsRcSIAESIIFUI2BVoG/duhX9+vVD9erVIX8+e/asMkT+PGfOHCxevFiTYaVLl8b+/fvh7+9vJtDv37+PatWq4cyZM5ra0Uslk0D/6NpO/HD3LH56pTa6ZPl/gf5lX0Qd/wuBX0yBd2nzoDR/HIjG3MUGVHvdE53aUaDrZT5pBwmQgDYC9AnaOEktPQv0CdOicOGyEf17eaPIq64r0Hc+DkbtC2tRMzAndhaJuVrniiXuUfj0M1e64hA5JhIgARJwKwJWBXrjxo0xbNgwVK1a1UxY3759G/IzyW2upUjUdonUXrx4cbN21qxZo/5dduidqZgEevdruzD77hn88EotdMtSTA0hbMIgRB7ai4CB4+FT/g2zYf15MBo//WxAlYqe6NqBAt2Z5py2kgAJQH3u0ydoWwkU6No4pWYtdxHowtAU8T1wxDR4l3gtNbGybRIgARIggVQmYFWgy3F0SZEm0dvjHk2X4+5169aNPaqemI2y0y477r1794YElpNUPdKuRAQeM2ZMbNC4xNrRy89NAr3H9d347s5pzH6lJj7MEnPfPGzKcET+uR0BfUfDp3JtM5MlB7rkQn+9vCc+/IACXS/zSTtIgAS0EaBP0MZJalGga2eVWjXdSaCHL/8J4SvnwrdmY/h/MjS1kLJdEiABEiABOxCwKtAl2rrkLxcxHlegT5o0CUePHsWiRYs0myj5zkWky/11yYcu99e7d++ujs87WzEJ9J7Xd+PbO6fxXd4a6J61hBrGkxlj8Gz3Zvj3Hg7f6g3MhnbomBHfzY1ChbIe+Lizt7MNm/aSAAm4OQH6BO0LQM8Cfe0mA9ZvjkazRp5o3th1vyx2J4Eu99RDerU2W6AB/cbCp1IN7YuWNUmABEiABHRBwKpA/+uvv9CrVy/Uq1cPv/zyCzp37qx2vkVky+633C13x2IS6L2u78HMO6cwK28N9DAJ9O/H49m29fD/eBB86zQ1w3P0pBEzf4xCudIe+KQrBbo7rh2OmQScmQB9gvbZo0DXziq1aj40ROClY3NU88byPVKrG920a7piZzLIwz8QgUHT4ZXvVd3YSENIgARIgAQSJ5BoFHcJ5Cbp0OLufLdv3x6ZMmVKvHU58h0Whn///Rf58uVT+c7v3buH1atXIzo6GrVr14aIXWcrJoHe55+9mP7fSczMWx09s5ZUw3g6ZwoiNq+CX9e+SNPwHbOhnThtxLTZUShTwgO9P6JAd7Z5p70kQAIAfYK2VUCBro1TatfyOPyt2wj0uCyfzPwSz3Ztgle+QggcMZ3p11J7obF9EiABErAhAasCXcR05syZ43UXFRWl0q7lzp3bqikSuf2jjz7C06dPUaBAAcybNw/vvfdebJuSD3327Nl44w3zYGo2HF+qNGUS6J/+sxfT/juJ6XmqoVe2UjECfeFMRKxfAr8PeiNN03fN+j911oip30WhZDEP/O9jCvRUmRw2SgIkkGoE6BO0o9WzQP99ZzSWrTagaiVPdGnvukfcZbbcVaBLDnVJ+yrp13gvXfvvLWuSAAmQgB4IWBXoFStWxMGDB+PZ+ezZM1SpUgWHDx+2Ooa2bduiTJky+Oyzz7By5UpI1PbKlSur1G1SJFjczp07sXz5cj2w0GyDSaB/9s8fmPrfCXyTpxr6/L9AD1/6A8J/mY+073VH2rffN2vz7AUjJs+MQrHCHvj8Ewp0zcBZkQRIQBcE6BO0T4OeBfr5i0ZMnBGFwgU9MKCPa/sidxXoslINVy/i8YDO8MyaHUy/pv13lzVJgARIwNEEkiXQRbT36NFD3Ue3VsqVK4e1a9cib968KjCcBJqT4+3FisWkJAsODkaTJk1w7NgxR3NIUv8mgf75jX34+vZxTM3zBj7NFnMfP3zVPIQv+xFpW3VG2jZdzdqVvLOSf7ZIIQ/07+3aL0VJAsrKJEACTkEgIYHu7j7B0uRRoOtjSbuzQJcZMKVfSzdhLu+i62NJ0goSIAESSJSARYH+zjvv4J9//sHDhw+RMWNGs0ZEaMu98s8//1wdX7dWRMhKtPfAwEBVrUKFCtiwYQOyZ8+u/i7tlC1bFhcvXkzUUD1VMAn0fjf2YfLt4/g6d1V89nIZZWLEusV4+vMspGneHn7tzYPSXLpixLipUShUwAODPqVA19Oc0hYSIIGECdAnJH11UKAnnVlqPFHr/FrsCg3GjsLNUStdztToQtdtmu6i+3XsgzRvttG1rTSOBEiABEgghkCCO+iXL1/GBx98gJkzZ5qx8vT0RK5cuSzeTX8RqghZ2R0PCAhQP5Ldl/Xr17uMQB9w409MvH0Mk3NXRV+TQN+0Ek/nTkWaJm3g16mPGZIr14z48uso5H/FA0P7UqDzl5AESMB5CNAnJG2u9CzQ794HBo2MhJ8fMH2cT9IG5mS13V2gR/61G2GThsC7eFkEBs1wstmjuSRAAiTgngSsHnGXIG5FixZNNhkR6KVKlYKIeimnTp1CkSJF4OMT80IgkdxPnjzptDvoA2/8iQm3j2Fi7iro93JZNaZnW9fiyeyJ8G3QAv7dYu7am8r1G0aMmhiFV/J4YFg/CvRkLyw+SAIk4BAC9AnasetZoMsoun0aqQbz4zcU6Npn1flqSrC4R50bK8MzLt/rfAOgxSRAAiTghgSsCnQR0MuWLVPH0m/fvo2tW7cqRHv37lXH0xs2bGgV2apVqzQhbdmypaZ6eqlkOuI++N/9GHfrKMbnqowB2csp8yStiRwp863VBP49h5iZfCPYiKDxUcid0wNBAynQ9TKftIMESEAbAfoEbZykFgW6dlapWdPdd9CF7eP+nVQ094B+Y+FTqUZq4mbbJEACJEACNiBgVaDPmDFDifMOHTpg7NixOHPmjOpSgsMNHz4cGzdutIEJzteESaAP/fcAxt46gnG5KmPg/wv0yH3bEDZ1BHyq1UdAnxFmg7t5Gxg2NhI5s3tg1GAKdOebeVpMAu5NwNV8wokTJzBo0CDcuXNHnRabPHkysmXLluAkS73GjRsjKCgITZs2tboYKND18btiEuirCzZCi4z59WGUna0IX/4TwlfOhW+txmrzIG7xLh6zucBCAiRAAiSgHwJWBXr16tUxf/58lcNcIrCfPn1aWf7gwQPIz+TIul6L7N5PnToVkhKufv36GDlyJLy8Es73umfPHnTp0gX79u1D1qxZrQ7LJNC/+PcAvrx1BGNzvY7B2V9Tz0Qe3IOwiYPhU6kmAvp9adbO7TvA0DGReDkr8OUXrn2sUK/rgnaRAAkkn4Az+4QXRy0BT8U3iNiuUaOG8nXy+f/9998nCOjjjz9Wp8feffddpxfocppLTnX17+WNIq96JH9R6PzJoOCDGHnzEEbkqICgnBV1bm3qmGdKt2apdTnp96JoTx0r2CoJkAAJkIBWAlYFesmSJbF//34VhT2uQL906RLatGmDI0eOaO3HrvWuXLmiAtwtXbpU7YZIxHmJFi8C3FIJDQ1V9cPDw9VLmlaBPjz4L4y+eRhjclbC0BzlVdNRx/YjdGw/eL9WBYGDJpp1ZwrMkyUzMG44BbpdFwU7IwESSDEBZ/UJlgZ+/PhxjBkzBitWrFA/luP7VapUUVe50qVLF++RNWvWqNNjadOmVf7E2XfQJeWnpP6kQE/xr4VTNBAa1CuenVFnYlLcMgWbU0whjSQBEnAjAlYF+ocffojSpUujd+/esQJdUq/17dsXGTJkwJQpU3SJavbs2QgJCUG/fjFB2s6ePYvBgwdDXrAsFflZ1apVIc/NmTNHs0A3fTM/OmclfGES6KePIHRkH3iXqoDAYVPNunvwEOg/IhKZXgImBFGg63Lx0CgSIIEECTirT7A0oLVr16od8/Hjx8f+uFWrVur6lvi9uOW///6DjH3RokWYNGmSShlKge4cvyjcQU94nkwp2DyzZlci3SMg/hdTzjHLtJIESIAEXIuAVYF+8+ZNJc7lSLvkRZfdE9k9l7t6s2bNQpYsWXRJY8iQIeoFSnL3SomIiFB/l4jxL5Zdu3apHRS5Wyl3CxcsWGAm0C9cuBDvmTfffFNFnpdjc8r556yI4TkqqHqGC6fw+IuP4VW0NNKNmmX27KMQ4PNhkciQHpg8mgJdl4uHRpEACSRIwFl9gqUBSQBUiasi159MReKt9OrVC5UrVzZ7pHv37ujcubP6dzkS/6JA//fff9WXwnGL+EgJpJqYkHfUcpvxYxSOnTTik67eKFeaR9wdNQ+O7tcUQM4rXyEEjphOke7oCWH/JEACJGAtD3pcOocPH1bCXO7sFSpUCJUqVUoSvJRG/k1SZ4Da4a9Xrx6aNHkeDEXujYvY9vB4/iLy+PFjtG/fHvPmzUOmTJksCvSePXvG6/73339XAn30zUMYHnxQ3WuT+21KoF+5gMcDu8CrYFGk++pHs2dDw4D/DYlEYAAwdSwFelLnlfVJgAT0QcDZfIIlauvWrYN8QSuB4UylefPmGDVqFMqUKRP7bxLPROKtjBgRE/TTkkAXHyJM4ha5MiXt6VWgr91kwPrN0WjWyBPNGyccn0UfKy75Vkz97wQ+++cPfJqtFKbmqZb8hlz0SUnDFhrUW0V5p0h30UnmsEiABJyOgNUddFuNxt6Rf4cOHapesOSevBS5Yy47Hy8GtRs4cCBq1aqlhLkUSzvolhiYgsSNuXkYw4L/UrvnsosuJfrGFYT0fR+eeQsg/aQFZo8/fQr0HhQJfz9g2jgKdFutL7ZDAiTgXATs7RMs0ZGgp+IrTFefoqKi1JfP27dvR8aMGWMfkZ3zY8di7upKkRNZEnBUTmjF3X1/sQ+9R3F3F4G+83Ewal9Yi5qBObGzSHPn+kWxk7UqiJzcUX8SBp+K1RHQ/ys79cxuSIAESIAELBGwKtAlArrsHsgdbolc+2KJu/NgDa+9I//KPXLJ2y53y6VIKh15EVu/fr2ZmRL4ztfXN/bfZIwBAQHqpeutt95KcEgmgS4p1iTVmtw/l3voUqJvByOkdxt45siD9N8sMWsj4hnwSf9IpEkDzJxAgc5fSRIgAeci4Kw+wRJlOdnVqFEjDBs2TGUlkQChEiBu4cKFKmCc+AG54vXiVS5LO+iW2qdA18fapkDXNg9xI72nn7ECntlyaHuQtUiABEiABGxOwKpAlyBr586dUyloJHLti6VPnz6aDLJ35N8bN26gXbt2WLJkSWwU98KFC6u7hXKkMTg4GO+9914825O6gz7u1hEM/vcAhmZ/DWNyva7aM96/g0cfvw3PLC8j/axV8fro9mkkvL2B7yZToGtaPKxEAiSgGwLO6hMSAij+bcCAAconFCxYUAWAy5Mnj9oll2tS8mWvfCEbt7iKQP/jQDTmLjYgcyYgSyYPZM7kgS7tXe+oOwW69o+PsAmDEHloL/w69kGaN2NOILKQAAmQAAnYn4BVgV6tWjVs2bIF/v7+KbLMEZF/N2zYoKLzyj3AmjVrYuzYsWq3/IcffsD58+fVi9iLJakCffytoxj0736VA11yoSuBHvIQj7o1hUeGl5DhB/Mde/m5CHQpP35DgZ6iRcWHSYAE7E7AmX2CvWHpfQf9/EUjJs6IMsPiin6JAl37yn+2cyOezBqr7qKnmzBP+4OsSQIkQAIkYFMCVgV63bp1sW3bthR36EqRfwWG6Yj7xNvHMODGnxiYvRzG5fr/qL/hT/Dwgwbw8A9Ehnmb47GjQE/xcmIDJEACDiJAn6AdvN4F+pOnwD83jGpAJqHuigL92NO7KHdmBcr6ZcbR4twVtraCJWDco84xMXl4zF377zprkgAJkICtCVgV6GPGjFHRzWUH3Mcn5Tu+KY38a+vBJ7c9k0CffPsY+t34EwNeLovxuavENvewTTXA1xcZf95OgZ5cyHyOBEhAdwToE7RPid4FetyRuPoXxx6Hv9U+cYnUdPVgczzmbrOlwoZIgARIINkErAp0SUsmkWqNRqPKDS6Ra+MWW+yuJ9tyBz5oEuhf3z6Oz2/sQ7+Xy2LiiwIdQMble+NZ2aNfJCIjgW8n+cAG33k4kAK7JgEScDcC9AnaZ5wCXTur1K5pS4Ge0csXD8p2TW2THdZ+5F+7ETZpiDrm7tfpUzM7PLNkZ/A4h80MOyYBEnAnAlYFuojzAgUKoEGDBhaDxEnwOC3l6dOnWLBggUpzZikavATicaZiEuim/Kp9Xy6Dybmrxg7hYYc6wLNnFgV6rwGRCI+IieIu0dxZSIAESMBZCNAnaJ8pZxLoE6ZF4cJlI/r38kaRVz20D9LNapqEvrF8D5ce+cNODVXKtRdLmiat44l2lwbBwZEACZCAgwhYFehVq1bFH3/8AQ+PlDlsifwrOWebN2+u0pi9WN5//30HDT953ZoE+rT/TuLTf/bis2yl8XWeN2Ibkztccpcr4/wtgJ95gL1PB0ci7ElMHnTJh85CAiRAAs5CgD5B+0xRoGtn5Sw13UWghy//CVFnjppNS9SZY/DMmh3pZ650luminSRAAiTgtASsCnSJar527VqzXOHJGWmFChVUDvIcOVwjr6ZJoE//7yT6/LMXn2Yrhal5qj0X6B+9BePD+8jw4wZ4pM9ohuyzoZF4HApM+dIH6QKTQ5PPkAAJkIBjCNAnaOdOga6dlbPUzHjsJzwyPMODsl2Q0cu9jsCZdtUZPM5ZVivtJAEScGYCVgX6zp07sXTpUnTt2hU5c+aMJ9TlXrqWUq5cObUTn9J0bVr6skcdk0CfeecUel3fgz7ZSuGbOAI95JNWiL5zCxm+Ww2PTOaMPh8WiUchwOTRPsiQ3h7Wsg8SIAESsA0B+gTtHCnQtbNylpq1zq/FrtBg7CjcHLXS5XQWs21ipyl4nH/PIfCt1cQmbbIREiABEiABywSsCvTSpUtD7o8nVC5evKiJ66BBgyBttWvXTlN9vVcyCfRZd07hk+t70CtrSUzPWz3W7JD/tUN08HWkn7YMntlzmQ1nYFAk7j0AJgT5INNLeh8p7SMBEiCB5wToE7SvBmcS6Et/MWDrrmi8+7YX6tfy1D5IN6vpzgI94tfleDp/GnxrNob/J0PdbOY5XBIgARKwLwGrAt1SQLe45lm6T276+bBhw2KrGgwGdVS+WLFiyJ8/f7yAc6NHj7bvqFPYm0mgf3fnNHpc342eWUtgZt7nAfMe9+8Ew7VLSDdxHrxeKWTW2+BRkbhzD/hquA+yZk6hIXycBEiABOxIgD5BO2xnEuhrNxmwfnM0mjXyRPPG5tlatI/Y9Wu6s0A3XL2IxwM68x666y9zjpAESEAHBKwK9JTY99VXX2l+fPDgwZrr6qGiSaDPvnsG3a/tQo+sJTArrkD/ojsMF04j3Zjv4VW4hJnJQ7+MxO3/gC+H+uDlbHoYDW0gAU3G6soAACAASURBVBIggdQn4Mo+wRI9CvTUX1P27qHT1e2Yf+88puR5A//LVtre3Tu8P95Dd/gU0AASIAE3IZCoQD958iQk921EREQ8JK5yZD2pc20S6D/cPYOPru1C9yzF8d0rNWObCR31KaJOHUbg8G/gXbK8WfPDx0Uh+KYRowZ7I2f2lEXHT6rdrE8CJEACKSVAn6CNIAW6Nk7OVCso+CBG3jyEETkqIChnRWcy3Sa2Ppn5JZ7t2gS/jn2Q5s02NmmTjZAACZAACcQnYFWgz5w5Ez/88APKlCmD48ePo2TJkrh27RpCQ0PVffL+/ftrYtq6dWusWLEiXl253/7uu+9i3bp1mtrRSyWTQP/p7ll0u7YTH2Yphtmv1Io1zxRMJWDAOPhUeB7dXSqMnBCFf/41ImigN3LnpEDXy5zSDhIggcQJ0CckzshUw5kE+h8HojF3sQFVK3miS3secU9olt1doD/buRFPZo1V7zXyfsNCAiRAAiSQOgQSzYM+Z84cFC1aFM2aNVOp0qKjozFu3Di89NJL6NGjhyarKlasiIMHD8are+fOHdStWxcnTpzQ1I5eKpkE+tx759Dl6g50y1IMP8QV6FNHIHLfNgT8byR8qtY1M3v0pChc+8eIYf288UoeCnS9zCntIAESSJyA5EGnT0ick9RwJoF+/qIRE2dEoXBBDwzo461tgG5Yy90FevR/NxHSqzU8/AORYd5mN1wBHDIJkAAJ2IeAVYFeqlQpHD58WKVXa9q0KTZs2KCsevToERo2bIj9+/dbtbJ3794wGo3Yvn076tSpY1ZXAsfJUcnXXnsN06ZNs89obdSLSaDPu3cOna/uQJfMRfFTvtqxrT/5bhyebd8A/x6D4Vv7TbNex34dhb+vGTGkrzcKvEKBbqMpYTMkQAJ2IECfoB0yBbp2Vs5Sc+fjYNS+sBY1A3NiZ5HmzmK2Te0M6dkS0XdvI92EufDK96pN22ZjJEACJEACMQSsCvS33noLEtinRIkS6NixIwYMGKD+LDvf9evXx7Fjx6xyDA4OhuTNHT9+PHr27GlW19PTE7lz51bteHs71zf2JoG+4N55dLy6HZ0zF8WcOAL96ZwpiNi8Cn5dPkOaRi3Nxj3+myhc/NuIQZ96o1ABCnT+IpIACTgPAfoE7XNFga6dlbPUpEAHeA/dWVYr7SQBEnBmAlYFutwNz5EjB+SI+saNGzFy5EjUrFlT3UeXlGlTp07VNPZVq1ahZUtzoarpQZ1WMgn0hfcu4IOr29AxcxHMy/f8hMDTxd8hYs3P8OvQE2neMs/9LscI5Thh/17eKPIqBbpOp5hmkQAJWCBAn6B9WTiTQL/+rxGjJkQhTy4PjBjgXF+Ya5+RlNekQAd4Dz3l64gtkAAJkEBiBBKN4h63gW3btqlj7bLz3bZtW6RJkyax9l3y5yaBvuj+BXS4sg3vZyqMBfmf3zUPXzkP4ct/RNpWnZG2TVczBl/PisKZ80b07emN4kUo0F1ygXBQJOAmBOgTEp5oZxLoMopun0aqwfz4jY+brN6kD/Pqs8fIf/Jn5PNNhyulOiS9ARd4gvfQXWASOQQSIAHdE7Aq0OUO+YgRI5AlSxbdD8SeBpoE+pL7F9HuylZ0yFQYC+MI9IgNS/F0wQy1ey676HHL1O+icOqsEf/72Bsli1Gg23Pe2BcJkEDKCNAnaOdHga6dlTPV9Dj8rTLXWF5bkFxnGptWW3kPXSsp1iMBEiCB5BGwKtAlgJscT8+fP3/yWnfRp0wCfen9S3jvyu9ol+lVLMpfL3a0z7aswZMfJyFNw3fg17WvGYXpP0Th+Ckjen/kjTIlKNBddIlwWCTgkgToE7RPKwW6dlbOVJMCnffQnWm90lYSIAHnJGBVoM+aNQt///23ChTn48Njb6YpNgn05Q8u4d2/f0fblwphSYH6zwX67s14MmMMfGs1gX/PIWYrY9ZPUThywoieXb3xWmkKdOf8taHVJOCeBOgTtM87Bbp2Vs5UkwKd99Cdab3SVhIgAeckYFWgz58/H0uXLkV4eDjKly8PPz8/s1GOHj1a86gvXbqE8+fPIywsLN4zbdq00dyOHiqaBPrKB5fR+u8tePelQlgaR6BH7t+JsK+/gE/VOgj43ygzk7+bZ8Cho9H4uJMXKpTz1MNwaAMJkAAJaCJAn6AJk6rkbAJ9wrQoXLjMAKaJzXDZM8tx/Ok97CjcHLXS5Uysukv+nPfQXXJaOSgSIAEdEbAq0GXn3FoZPHiwpqH8+OOPKuJ7kSJFkDZt2njPLFq0SFM7eqlkEuirHvyNVn//htYvFcTyAg1izYs6th+hY/vBq3AJ+L3X3czsX7dE48wFI5o28ESxwtxB18uc0g4SIIHECYyfu8CskmdAeiDt8y9u3dUnWCJHgZ74enLGGrXOr8Wu0GC3Fugyb7yH7oyrlzaTAAk4C4EkRXFP7qCqV6+OhQsXIl++fMltQlfPmQT66odX8M7lzWj1UgGsKNDwuUA/exyhIz7Rlc00hgRIgARsTcCvy2dI0yjpKTRdzSdQoNt6Zem3PQr0mLkJDeqFqDPHENBvLHwq1dDvhNEyEiABEnBCAnYR6LVr18aOHTucEI9lk00Cfc3DK3j78ma8kzE/VhVsFFs5+t9rePLDRIsP3/rPiEchQPZsQIb03EF3mUXBgZCAGxJI06RNsl7OXc0nUKC7z+JvcXkT1j68itUFG6FFRvcNoBu+/CeEr5xrMZ2s+6wGjpQESIAEUoeAVYFuChB34cIFREREmFng5eWFP/74Q5NV3bt3R9euXVGpUiVN9fVeySTQ1z28iuaXNyknLc5aS1m4zIBd+6Lx/rteqFmVd9C1MGMdEiABfRCgT9A+D852xH3pLwZs3RWNd9/2Qv1a9E0JzXRQ8EGMvHkII3JUQFDOitoXhIvVjPxrN8ImDYFPhWoIGDDOxUbH4ZAACZCAYwlYFeht27aFiNEWLVpg4MCBGDt2LK5cuYJ58+Zh8uTJKF68uCbrr127hubNm6N06dLIkSMHRNzHLdKuMxWTQN/w6BqaXdqI5hnzYU3BxpqGsHilAdv3RKNdKy/Uqc6XIE3QWIkESEAXBOgTtE+Dswn0tZsMWL85Gs0aeaJ5Y3MfrX3Url+TAj1mjg1XL+LxgM7wzJod6WeudP2J5whJgARIwI4ErAr0UqVK4eDBgyqwW9OmTbFhwwZl2pEjRzBhwgQV4V1L6d27N2QXvlq1ahaDxPXv319LM7qpYxLovz66hqaXNqJZhlewrlATTfaZdinavuOFejUp0DVBYyUSIAFdEKBP0D4NFOjaWTlTTQr057P1sE019ZeMy/c60xTSVhIgARLQPQGrAr1KlSr49ddfkSlTJrUDvmTJEvj7++PZs2coV64cTp8+rWmAr7/+OrZt24bAwEBN9fVeySTQNz26jiaXfsWbGV7BBo0CfcVaA37bHo3Wzb3QsA4Fut7nmvaRAAk8J0CfoH01UKBrZ+VMNefdO4fOV3ck6eScM40vKbY+7t8JhmuXEDhiGrxLvJaUR1mXBEiABEjACgGrAr1v376oWbOmEucjR45UR9M7deqE7du3Q/LhiujWUurWrau5rpb2HF3HJNB/C/kHjS5uQJMMefFroTc1mbVqvQGbtkajZTMvNK5Hga4JGiuRAAnoggB9gvZpcDaB/seBaMxdbEDVSp7o0p5H3BOa6Z2Pg1H7wlrUDMyJnUWaa18QLlgzbMIgRB7aC/+eQ+BbS9spQhfEwCGRAAmQgM0JWBXo9+/fR7p06eDj44Pbt2/jo48+wpkzZ5AxY0ZMmjRJiXct5fvvv1fVOnfuDF9fXy2P6LqOSaBvCfkHDS9uQKP0ebDp1aaabF6z0YANv0WjRRMvNG1Iga4JGiuRAAnoggB9gvZpcDaBfv6iERNnRKFwQQ8M6OOtfaBuVpMC/fmEM5K7my1+DpcESMBuBJKcZu3x48fqqLqHh/YUYRLBfffu3UqcZ82aNZ5I37Jli90GbIuOTAJ9a8gN1L+4Hg3T58FmjQJdgvBIMB4G4rHFTLANEiABRxOgT7A8AxTojl6ZqdO/SaCX9cuMo8XbpE4nTtKqKZK7d/GyCAya4SRW00wSIAES0D+BBAX6xo0b1VF2g8GgAsTJMfXkFmnHWqlTp05ym3bIcyaBvu3xDdS7sB710+fGllebabLl1y3RWP2rAW828MTbb/IYoSZorEQCJOBwAvQJSZsCCvSk8XKm2h6Hv1XmGsv3cCazbW5r9H83EdKrNSO525wsGyQBEnB3AhYF+ooVKxAUFIRWrVqpnfI1a9aoFGtNmjjPHaNVq1Zh6tSpKqBd/fr1Y+/Qx53wu3fvYvz48dizZ486xl+jRg01bvmztWIS6Dse/4s6F9ahbrpc2Fr4LU1rafO2aKxcZ0Cjup5o9RYFuiZorEQCJOBQAq7gEywBPHHiBAYNGoQ7d+6gaNGiKn1otmzZzKpGRkbi22+/xcqVK9UX1oULF1b+UFKGWivOJtCv/2vEqAlRyJPLAyMG8Ii7tbmlQH9OxxTJPcPcTfAISOfQzyl2TgIkQAKuQsCiQJegcB06dEDr1q3VOCUYnNw537RpU7LHfezYMcyePRsXL16E0WhEoUKFIEffK1asmOw2E3pQcrV/8MEHKg2cvGx9/vnnKFu2LLp06WL2yNGjR1Ve97feegvR0dH4+OOP1UmB9u3baxLou0KDUev8WtRJlwvbNAr033dEY9kaA+rX9sS7LSjQbT75bJAESMDmBJzdJ1gCImJbvryVL2Xly1kJfLpv3z6YYqaYnnn48CEWL16sfIpc75o+fbryY9OmTXMpgS6D6fZppBrTj99Y/5La5gvMyRo0CXS9mn2lVAfk87WPWA4N6oWoM8f0iiLWrrStOiNtm666t5MGkgAJkIAQsCjQRcyKGDftEERFRaFkyZI4efJkorvLlrDK0chhw4apF5wSJUqoXflTp05hwYIFGDFihBLItizyRUBISAj69eunmj179iwGDx6sTgJYK3PnzsWNGzeUrdaKaQd9d2gwap5fi1rpcmJHYW3RXLftjsaSVQbUreGJ91pSoNty3tkWCZBA6hBwdp9gicrx48cxZswYyOkAKfIlraSR27p1qwqOmlCRQKkDBgzAhg0brMJ2th10GQwFurbfn3wnF+Las1BtlR1QS95H5L3EHuXJzC/xbFfyN2/sYaN62fUPRPqZK7jLby/g7IcESCBFBCwKdBGgsuMdEBAQ23j58uUhQvvll19OcocNGjTA0KFD40V937lzpzoqaOsgcUOGDEGFChXwzjvvKFsjIiLU3+ULBmulT58+agdddou0CPS9oTdR/fwa1AjMgV1FWmjismNvNBatMKB2NU+0b02BrgkaK5EACTiUgLP7BEvw1q5dq3bM5ZqTqci1ruHDh6N06dIJ8l60aBFOnz6tfJe1QoHu0CXrlp3LiT452WdPge4MoE3p4HxrNob/J0OdwWTaSAIk4OYEEhTokhIt7l1sOf4nLy9xRXv//v014StWrBgOHTpk9qw8GBoaikqVKqnUbbYskqu3Xr16Znfm5QXzwoULCUaf37t3L6ZMmYJly5bB2/v5/buJEyfGM810VH9f2C28cW41qgfmwG6NAn3Pn9GYv9SA6lU80bEtBbot551tkQAJpA4B+fx0Zp9giYp81ovvGTlyZOyP5WpXr169ULlyZYsgb926hffffx/z5s1Drly5YuusW7cunh+T61PNmjVTQVadpZh20N9qbO6bihT0QJFXtWducZbxupqdQcEHMfLmIYzIUQFBOW1/fdBZeZmC2Yn96SbMhVe+V511KLSbBEjATQhYFOhyfE9LmTBhgpZqalf6yy+/jPfSI6J49OjR+O233zS1o7WS7NaXKVMGbdrEpECRLwLkhUuO1VsqEihIxixH3F8M/GPJNnmBkzuIf4bdQtVzq/FGQHbsLfq2JvP+OBCNuYsNeON1T3RuR4GuCRorkQAJOJSAs/sES/BEVO/atUsFhjMVOT01atQo5T9eLA8ePEDHjh0hX0xXr17d7MfiW0S8xy2rV69G48aNnUqgT5gWhQuXjfHGXrWSJ7q0p79y6C+hhs4p0BOGZMrZ7l28HAKDpmugySokQAIk4DgCSc6DnhxTJVib7E5LULjixYurIHGyc/HTTz+po++JHSlPap9z5szB7du31b1zKSLApZ/169fHa+rcuXP47LPPMGPGDBQsWFBTV6Y76AfCbqPyuV9QJeBl7Csac5w+sfLnwWj89LMBVSp6omsHvvAkxos/JwEScD0C9vYJlgjKMXXxC6bYJBJrRU50SVrQjBkzmj0iud7lBIH4MBHdWoozHnGXL5Dv3n8u0O/dB/b9FY3CBT0woA8ju2uZd0fWmXfvHDpf3YHmGfNhTUFt69SR9tqzb2PYYzz6pBXwJAzpZ6yAZzbrWRjsaRv7IgESIIEXCdhFoEunO3bsUIL88uXLkBehIkWKqJed2rVr23xWJNBbu3btsGTJktgo7pIaR3a+ZcckODgY7733nrJF7p1/8803Kqq81mIS6Aef/IdKZ1ehcsDL+FOjQP/rSDRmzzeg4mue6N6RAl0rc9YjARJwLQL29AmWyElQuEaNGqmgoLIjLte4JEDcwoULVcA4Ofreu3dv+Pn5oVu3bupoe1JSjTqjQH+R0/mLRkycEUWB7iS/ejsfB6P2hbWoGZgTO4toC1zrJEOziZmmgHZpmrSGX6dPbdImGyEBEiCB1CBgN4GeGsZba1Mi7Erwn/DwcBWcTgL6+Pr64ocffsD58+dV2jjZOZd6np6esU2lSZNG7bhbKyaBfujJHVQ8uxKV/LPhQLGWmoZ4+LgR386JQvkyHujRhTsSmqCxEgmQAAmkAgE5QSXH9+VLWzlBJX4hT548KrCoxDGR01iHDx9WIj6unxBT5A67RLdPqLiCQJexMbJ7Kiy8VGrSJNDL+mXG0eIxV/xYnhOIOn0EoSP7wDNrdqSfuZJoSIAESEC3BOwi0OXYoETMffF+t26pJGKYSaAfeXIH5c+uREX/rPirWCtNwzl60oiZP0ahXCkPfNKNAl0TNFYiARJwKQKu5hMsTQ4FukstWacZjClHu7F8D6ex2Z6GhvRsiei7txHQbyx8KtWwZ9fsiwRIgAQ0E7CLQK9VqxamTZtmNXWNZot1UNEk0I8+uYvXzq5Aef+sOKRRoJ84bcS02VEoXcIDfT6iQNfBdNIEEiABOxNwNZ/gygJ9YFAk7j0Axo3wQZZMdl4o7C7JBCjQrSMzBYtjyrUkLy0+QAIkYEcCiQp0SU22efNmFaHWlPf10qVLykSt97Yl6M7333+vjpzny5fPjsNLna5MAv3403soe2Y5yvllwZHirTV1duqsEVO/i0KJoh74rAcFuiZorEQCJKAbAvQJ2qbCVXbQTZHd+/fyZqo1bVPv0FryTiLvJkeLt0ZZvywOtUWPnTPlmh5nhTaRAAm8SMCqQJeAOf369VMBdOTPZ8+eVc/Ln+Vu3uLFizUR7dmzp3pWgrdlz55dBd2JW7Zs2aKpHb1UMgn0k0/vofSZ5UjKfa+zF4yYPDMKxQp74PNPKND1Mqe0gwRIIHEC9AmJMzLVoEDXzoo1bUeg1vm12BUajB2Fm6NWupy2a9iFWgqbMAiRh/bCwz9QpVxjXnQXmlwOhQRchIBVgS7pZCQ4TtWqVVGiRAlIWhopksJMfnbkyBFNGGQH3VqpU6eOpnb0Uskk0E89vY9SZ5ahtF9mHNcYkOX8JSMmTo+CX1qg14feKFLIQy/Doh0kQAIkYJUAfYL2BeIqAn3tJgPWb45Gs0aeaN6YmUe0rwDH1GxxeRPWPryK1QUboUXG/I4xwgl6NUV0p0h3gsmiiSTghgSsCnQR5YcOHVI73nEFuhx3r1u3bqxgT4jbyZMnUaxYMXh7u9ZOsUmgnwl/gBKnl6Jk2kw4WeJdTcvn0hUjxk2NUnU7tfNCtdefR5DX1AArkQAJkICDCNAnaAdPga6dFWvajkBQ8EGMvHkII3JUQFDOirZr2AVbMu2kM+2aC04uh0QCTk7AqkBv3ry5yhMuYjyuQJdUNEePHsWiRYusDl+E7IEDB5ApU0xkGdkpl2ecPZq7SaCfC3+IYqeXoETal3CqRFtNS+FpODB/SRQOHTOi7TteqFeTAl0TOFYiARJwOAH6BO1T4CoC/Y8D0Zi72ICqlTzRpT130LWvAMfUpEDXzp1p17SzYk0SIAH7ErAq0P/66y/06tVL5YP95Zdf0LlzZ7WjLkHi5s+fn2hU9hcFerly5bB+/Xrkzp3bvqO0cW8mgX4+/CGKnl6CYmkz4kyJ9zT3snajAet/i0aLN73QtAEFumZwrEgCJOBQAvQJ2vG7ikA/f9GIiTOiULigBwb0ca3TcNpn03lqrnl4BW9f3ozmGfNhTcHGzmO4gyx92Kkh8CQM6WesgGe2HA6ygt2SAAmQgDmBRKO4379/H0uXLlWi3GAwqMjt7du3j90VtwbU1QX6xYhHKHxqMYqmzYizSRDov22Pxoq1BjSq64lWb3FHgr+UJEACzkOAPkHbXFGga+PEWrYlsPNxMGpfWIuagTmxs0hz2zbugq2Z7qL7deyDNG+2ccERckgkQALOSCBRgZ6SQbm6QL8U8QivnlqMwmky4HzJdppR7doXjYXLDKj1hic6tKFA1wyOFUmABJyagKv6BEuT4ioCXcbW7dNINcQfv/Fx6vXnDsYfe3oX5c6sQD7fdLhSqoM7DDlFY3y2cyOezBoL7+JlERg0I0Vt8WESIAESsBWBRAV6REQErl+/jrCwsHh9li1b1qod8jImd9dNQeIkaFyRIkXg6+tr9tzKlSttNR67tGM64v53RAgKnlqEQmnS42LJ9pr7PnA4Gj8sMKByBU90e58CXTM4ViQBEnA4AfoEbVNAga6NE2vZnoDH4W9Vo8byPWzfuIu1aAx7jEedY64CZJi7CR4B6VxshBwOCZCAMxKwKtB37dqFvn37Ijw8HP7+/vHGd/DgQatjXrVqlSYmLVu21FRPL5VMAv3qs8fIf/JnFEyTHpeSINCPnzZi+uwolCnpgd4f8k6fXuaVdpAACVgnQJ+gfYW4kkAfGBSJew+AcSN8kCUm5iuLjglQoCdtckKDeiHqzDH49xwC31pNkvYwa5MACZBAKhBINA96u3bt0KFDB3h4MF+3ib9JoF979hj5Tv6M/L7p8HcSjpJduGzEhGlRKPKqB/r3okBPhXXNJkmABFKBgORBp0/QBtaVBLr4K/Fb4q/Eb7Hom0DZM8tx/Ok97CjcHLXS5dS3sTqwLuLX5Xg6fxp8azaG/ydDdWARTSABEnB3AonmQZd0ai8eSXd3aCaB/s+zUOQ9uRCv+Abiaqn3NWO5fsOIUROj8EoeDwzrR4GuGRwrkgAJOJSAXFmiT9A2BRTo2jixlu0J1Dq/FrtCgynQNaI1pVvzylcI6SbM0/gUq5EACZBA6hGwKtAbNWqEWbNmoUCBAqlngRO2bBLo/0aGIfeJBcjrG4hrSRDo/90FhoyOxMtZgS+/YNAdJ1wCNJkE3JIAfYL2aXclgb70FwO27opGs0aeaN6YcVO0rwLH1Ox0dTvm3zufpM5H5KiAoJwVk/SMK1V+2KaaGk7G5XtdaVgcCwmQgJMSiCfQ79y5EzuU/fv3Y9GiRejZsyfy58+PtGnTmg0za9asTjrslJltEujBkWHIdWIBcvsE4J/SH2huNOQx0PeLSGRID0weTYGuGRwrkgAJ2J0AfULykLuSQF+7yYD1mynQk7cS7P9UUPBBjLx5KEkdu3tatsf9O8Fw7RICR0yDd4nXksSOlUmABEjA1gTiCXQRn1rLxYsXNVXdvn076tSpk2Ddmzdv4smTJ+pLAE9PT01tOrKSSaDfinyCHCfmI5dPAG4kQaA/iwR69ouEBLOfNZEC3ZFzyb5JgASsE6BPSN4KcSWB/vvOaCxbbUDVSp7o0p476MlbEfp8innTY+bl6bxvELFxBZgPXZ/rlFaRgLsRiCfQLaVTSwhKQECAJl6FCxfGxo0bIWnWvLy8UKVKFZh237/99lvMmDEDfn5+yJYtG+bOnYuXX35ZU7uOqmQS6LejniL78Zj7SisKNECrlwpqNol5ZTWjYkUSIAEHEqBPSB58VxLo5y8aMXFGFAoX9MCAPoybkrwVod+nGPUdMOVD96lQDQEDxul3smgZCZCAWxCwegf9q6++wuDBg+OBePr0KSZOnIjhw4drgiSCVgLNlStXTtW/cOECZs6ciQoVKqB06dJYsmQJSpYsqdoMCQnB6NGjNbXrqEomgX4n6imy/b9A7/9yWUzIXUWzSX0GReLJU2D6OB/4+Wl+jBVJgARIwGEE6BO0o3dFgW5p9Izsrn1N6LUmBTpguHoRjwd0hmfW7Eg/c6Vep4p2kQAJuAkBqwK9YsWKsJTrPCIiAq+99hpOnz6tCVPRokXx66+/omDBmB3mM2fOKBEuu+fSx7lz59TOemhoKJo1a4YdO3ZoatdRlUwCXfofdfMQRgQfxLsvFcLSAvU1m2TKKztxpA9eyqj5MVYkARIgAYcRoE/Qjt6VBLp8mSxfKlsqDBynfU3otSajvsfMjClQXIa5m+ARkE6v00W7SIAE3ICARYG+cOFCNXTZ0e7fv78ZBoPBgD/++AMPHjzAypXavmWsXbu2meg2Go2oV68eVqxYgddffx1x77LL8fc///xT1+jjCvR9YbfwxrnVqBLwMvYVfUez3cPHRSH4phGjBnsjZ3bmldUMjhVJgATsToA+IenIXUmgWxr90RNGzPyJx96TvjL09wQFesychAb1QtSZYwwUp78lSotIwO0IWBToq1evxs6dO7FlyxZ1XzxukSBuuXPnxocffohcuXJpAtahQwc0aNAAbdq0gYeHBxYsWIBp06apNqZPn459+/apO+myg964cWPs2bNHU7uOqhRXoF9/lN5wWQAAIABJREFUFopXTi5McqC4r6ZG4fIVI4b09UaBVyjQHTWX7JcESCBxAvQJiTN6sYarC/S4u+o/fsNgp0lfIfp5whT13d1TrZkCxaVt1Rlp23TVzwTREhIgAbcjYPWI+xdffIExY8akGMqVK1fw+eefqyBxUgoVKoTx48dj6dKlyJkzpxLocrR927ZtSvwHBQWluM/UbCCuQJd+TPe3lhWojzYvFdLU9ZRvo3D6nBF9e3qjeBEKdE3QWIkESMChBOgTtON3dYEuJExXtYYP8EbeXPRj2leHvmpSoMfMhylQnFe+QvCpWAMeAYFI06SNviaL1pAACbgFAasC3dYEHj9+jPDw8NgI7qb2ZXfmt99+gwjfTz75JF6+dVvbkdL2XhTouU8swL+RYarZV3wDkc83vcUuivu9hFl5a6iffTsnCoePG9GzizdeK8MXm5TOCZ8nARJwPgKu4hMskXcHgT5nkQH7/orGu297oX4t/adIdb7fEPtYzFRrMZxNgeLiUvcuXg4B/cfyTrp9liJ7IQES+H8CdhXorkL9RYF+IzIUvzy4goX3zuPQkzsJDjNuvvR5iw3YeyBa5ZSV3LIsJEACJEACrkPAHQT6HweiMXexAWVLeaBXN6Zfc9bVS4H+fObCl/8U+5fwjcuBJ2EqsnvgiOnwzJbDWaeYdpMACTgZAbsIdEnLJvfOJeq73DN/scyZM8epsL0o0OMaL47uxWKEEXUurFP/bCzfQ/1/6S8GbN0VjfdaeqFuDQp0p1oANJYESCBFBFzNJ1iC4Q4C/e59YNDISJUqVFKGsjgvAaZaiz930f/dRNjEwTBcuwS/jn2Q5k0ed3feFU7LScC5CMQT6EOGDMGAAQOQMWNGPHz4UP0/paVfv364du0a6tevDz8LSb/ff//9lHZh1+etCfSEDJFAchJQ7mLJdiiUJgPW/GrAhi3RKFbYA3Wqe6FcaR5zt+sksjMSIAFNBOgTNGGKV8kdBLoMmvfQk7c+9PYUBbrlGYn4dTmezp8G35qN4f/JUL1NG+0hARJwUQLxBHrp0qVx6NAh+Pr6qhzllvKgJ5VF9erVVUR4S+I8qW3poX5yBHrN82uwO/Qmfn+1Geqlz43N26Kxcp1BDadMCQ/0/ojHA/Uwt7SBBEjAnAB9QvJWhLsI9Bk/RuHYSSM6t/PCG6/zNFjyVovjn2KqNctzEHX6CEJH9oEEjks3YZ7jJ4oWkAAJuAWBeAK9adOmkP9q1qyJ9u3bq0jrCZXChQtrgvRiHnRND+m4UnIEeser27Dg3gWLoyp761UcfbOejkdM00iABNyVAH1C8mbeXQT67zujsWy1QR1zb97YC/VqUqQnb8U49ikK9IT5P2xTTf0w4/K9jp0k9k4CJOA2BOIJ9BMnTmDUqFG4dOkSwsLC1E56QkXulGspcsRd8pvXrVtXS3Xd10mOQB8RfBCjbh6yOLaXH2TBrXqtdT9uGkgCJOB+BOgTkjfn7iLQJR/6uk0xMVWkSNBTCX7K4lwEmGot4fl63L+TuoceOGIavEu85lwTS2tJgASckoDVIHEtW7bEqlWrUjywr7/+Gt9//z1ee+015M2bN57oHz16dIr7sGcDyRHoluy7b4hA5mMxAfJMwePsOQ72RQIkQAJJIUCfoJ2Wuwh0E5GjJ4yY+VOU+uu0cT7w99POijUdT4ACPeE5eDLzSzzbtYmB4hy/TGkBCbgNAasC/cKFC9B6jN0asa+++soq0MGDBzsVcFsJdBl04B9zEZY2HHNz1Ee+dP6Jcsjh448iaVMeuC/RjliBBEiABF4gQJ+gfUm4m0AXMryPrn196K0mU60lPCMMFKe31Up7SMD1CSSaZk3Sosku+sWLF2E0GlGoUCG0atUK6dKlc306CYzQlgK94O/r8HemfzWzfCMgO/YWfVtzfVYkARIgAVsSoE/QRtMdBbopL3qeXB4YMYCBT7WtFH3UMgl0fVgDTM3zBj7NVloX5jBQnC6mgUaQgFsRsCrQz5w5g86dO6NgwYIoUaIEPDw8cOrUKSXW586di5IlS1qFdefOHWTIkAGPHj2yWi9r1qwOgy5fPkydOhXPnj1TaeBGjhwJLy/r9+dsKdC7L/sb+8NvItojGtFe0Xj9dQ94eBvwzBiNSGM0nhlNfzZgS8gNxelxuW4I9GTOWYctGnZMAm5KwB18gqWplXv4gwYNgvi0okWLYvLkyciWLZvVVeCOAl3uo/cZFKm4jBvhgyyZ3PQXxUmHbUq1phfzO2Uugrn56ujCHAaK08U00AgScBsCVgV627Zt0bBhQyXS4xYR55I2bcmSJVZBVa1aFR06dMCUKVOs1hPB74hy5coVfPDBBypSvbxsff755yhbtiy6dOli1RxbCvSbt4GQECNWrDPg6nWjSrcmadcslTfOrca+sFtYkK8u3s+sLYK+I7iyTxIgAdck4Oo+wdKsGQwG9eVtUFAQatSogfnz52Pfvn0qroq14o4CXXiYjrm/+7YX6tdiRHfX/CRI3VHNu3cOna/uMOskn286BOWsiI6Zi6Ru5wm0HhrUC1FnjjFQnEPos1MScD8CVgW67Jrv378/3nH2kJAQVKlSBYlFcZejkP7+/nj69KlVsgEBAQ4hP3v2bMhYJMq8lLNnz0Luw69Zs8ZuAt3U0Yq1Bvy2PRp5c3lgeAJHA6f/dxJ9/olJ89EwfR7IffRcPgHI7uOPHD4BeCMwu/ozCwmQAAmkBgFX9wmWmB0/fhxjxozBihUr1I+jo6OV/9u6davVq17uKtBNweIyZwLeeN1LBYuTyO4MGpcav5Gu2+axp3chqd8eGZ7FE+r50qRDRq80KOufRf2sVrqc6v9l/DKrf0+N8nTeN4jYuELlQ/fwT94VT4+AQPjWagKfitVTw0S2SQIk4EIErAr0119/Xe0u58+f32zIkoJNdp5lFyG5Re6zy5F5R5YhQ4agQoUKeOedd5QZERER6u8nT56MNSsyMua4XtxSvHhxdczfluXg0Wh8P8+gmmzRxAtNG1reeehxfTe+u2M5vV12bz90z1rCqlnycxH2LCRAAiSQVAKu7hMs8Vi7dq3ydePHj4/9scRhGT58OEqXjrkjK74jKiomgrmpiH+RnXfJI+9upffASDwNNx91uVIeyJPb3K+91Yg77O62NpI7XtlVl0jz156FWm1CdtpFwCdWaqXLZVblFd9AdMpcNMHHnu3ciCezxibWrKafe2bNDs+sOTTVdXQl+VLBK9+rKTYjbWvrJ1NT3AEbIAEXI2BVoH/55Zc4duwYvvjiCxQrVkwNXe4gyj3t6tWro2/fvppwTJs2DdWqVVNp1qTMnDkTs2bNQs6cOSE/M7WtqTEbVhL769WrhyZNmsS2KsfXJVKx6cuDuD8zVRJxbmuBLi8zp89G47t5BvTs4o3XyiT85cWu0GBEGaPxICoCIYZIhEQ/w9aQG/j10bVE6Zwu0RbF076UaD1WIAESIIEXCbi6T7A048uWLYv1e6afy9WtXr16oXLlyuqfJk2ahL17Y043mUqmTJnUl7/uKNAlWNzd+0aF4p9/jTh2MubPL5Yfv2EsFX7KJI2A7Kw/jHqGq89CcDXiMR4aInDsyT3ViLwbJbeMyFFBHaFPqBjDHsNwNWUbM4arlxDx6zJE372dXDOd9rmMy80/H512IDScBOxEwKpAl8BpksN84cKFKoialLRp06J9+/bo379/osHUTGMQMS/31iUCvAj8999/HwsWLMCRI0fw22+/4eeff7bTcM27GTp0KMqUKYM2bdqoH8iRfHnhkkB41oot76C/2M/9B0CmZOpnicIaFh2JCKMBEdGGOP+Pjv1zz2wlkSmVjoA5ZBLZKQmQgN0IuLpPsARy3bp12LVrlwoMZyrNmzfHqFGjlP9IqLjrEXdLPCR4nIj2J0/NhXrzxtYDstptYbMjlyFw9dljJdytlRhRf9esiuyom47KpzYMiQrvLMUYFpriLyaUdmjT1VmGTDtJQBcEEk2zJlbKS9mNGzfUEb68efMqkZ6UIvcWjx49Cl9fXwwcOBC5c+dG7969VbtyZFJ+5ogyZ84c3L59W907lyKRekW0r1+/3qo5qSnQHcGBfZIACZBAUgi4qk+wxEBirYhfMMUmET9YqVIlbN++HRkzZqRAT8rCYV0SIAESIAESIIFECWgS6Im2kkiFunXr4rvvvkOaNGkgOw+///47smTJgocPH6JWrVrqGL0jinzp0K5dOxWN3hTFvXDhwuroorVCge6I2WKfJEACrkJArz7BEl8JCteoUSMMGzZMXe2SKO4SIE5Ollkr3EF3ldXKcZAACZAACZCAfQnYRaDLHb4JEyao6Lfdu3fHxx9/rEYpLzmSqsYUHde+Q4/pbcOGDSr4T3h4OGrWrImxY8eqnX4KdEfMBvskARJwBwJ69gmW+J87dw4DBgxAcHAwChYsqO6c58mThwLdHRYrx0gCJEACJEACdiZgF4EuY7p8+TIkcrvcQzeV69evqz/KsXlnKtxBd6bZoq0kQAJ6JOBKPsESX+6g63HV0SYSIAESIAES0D8Buwj0v//+G7ly5VJH3KXcvHkTkrpG/k0i3Do63VpSp4kCPanEWJ8ESIAEnhNwNZ9Agc7VTQIkQAIkQAIkYCsCiQp0STm2efNm3Lp1Sx3/liJ50KXE3Q23ZpBESf/oo49USjM5St64cWPIXW+5A96wYUP06dPHVuOxSzsU6HbBzE5IgAR0SIA+QdukcAddGyfWIgESIAESIAESMCdgVaDLHfF+/fqpwDjy57Nnz6qn5c8SAX3x4sWaeJYtW1alqcmQIYN6ZtOmTSrAjilI2+7duzW1o5dKFOh6mQnaQQIkYE8C9AnaaVOga2fFmiRAAiRAAiRAAs8JWBXostMtkWurVq0KSZUm6WakSGoy+ZnkMddSypUrhz/++AN+fn5o0qQJhgwZokR/ZGQkRLyb2tXSlh7qUKDrYRZoAwmQgL0J0CdoJ06Brp0Va5IACZAACZAACWgU6CLKDx06pIR1XIEux90lTY5WYS2R2yX3uQSJ++uvv1Secbl3LkGCOnXqhD179jjVnFCgO9V00VgSIAEbEaBP0A6SAl07K9YkARIgARIgARLQKNAlZ7ncDxcxHlegS4qZo0ePYtGiRZpYyo77V199pdKs9e/fPzY9zcaNG3H16lX07NlTUzt6qUSBrpeZoB0kQAL2JECfoJ02Bbp2VqxJAiRAAiRAAiSgUaDLbnevXr1UcLdffvkFnTt3VjvqEiRu/vz5KF26tFuyFIHOQgIkQALuRkBOQUmRE1DyZ/ksDAwMdHufYGkdiED/9ddf3W2JcLwkQAIkEI/AxYsXSYUESCAJBBKN4n7//n0sXbpUvYAZDAYVub19+/bIlClTot3cuXNHBYZ79OiR1bpZs2ZNtC09VZAAd/Jy+sEHH+jJLNqSAgJff/01ihYtqmIksLgGgS+++EKlcaxcubJrDEgno6BP0DYR//zzD4YPH465c+dqe4C1dEVATv717dtX80lBXRlPY/DgwQOVPWjFihWkQQIkQAJOR8CqQJeo7SLIfXx8kjUwCS7XoUMHTJkyxerzzvbNGgV6spaDrh+iQNf19CTLOAr0ZGGz+hB9gnamFOjaWemxJgW6HmdFu00U6NpZsSYJkID+CFgV6MWLF1cp1XLmzJksy0NDQ+Hv74+nT59afT4gICBZ7TvqIQp0R5FPvX4p0FOPraNapkC3PXn6BO1MKdC1s9JjTQp0Pc6Kdpso0LWzYk0SIAH9EbAq0Fu1agWJwF6/fn39We5AiyjQHQg/lbqmQE8lsA5slgLd9vDpE7QzpUDXzkqPNSnQ9Tgr2m2iQNfOijVJgAT0R8CqQJcI64MHD8Y777yD119/XaVbi1sSuzsuokdLkXtezlQo0J1ptrTZSoGujZMz1aJAt/1s0SdoZ0qBrp2VHmtSoOtxVrTbRIGunRVrkgAJ6I+AVYFevnx5hISEJGh1YnfHJcJvwYIF8dprr+HZs2cqsJqlMnnyZP2RoUUkQAIkQAJmBOgTuCBIgARIgARIgARIIHUJWBXoYWFhVntP7O645EmXCJryTaYcjWzZsmWy77OnLga2TgIkQAIkkBgB+oTECPHnJEACJEACJEACJJAyAommWUtZ8zFPS+RfEeobNmxAiRIl0Lp1a5Vb3dfX1xbNsw0SIAESIAEnIkCf4ESTRVNJgARIgARIgATsSsCqQJfo67ILfuHCBURERMQz7JtvvkmSsXLMfcuWLUqsnzt3Ds2aNVNivUiRIklqh5VJgARIgATsT4A+wf7M2SMJkAAJkAAJkIB7EbAq0D/99FNcv35dRXH/+eef8d577+HKlSvYvXs3xowZg0aNGiWLltxFX7VqFYKCgpTwT+wue7I64UMkQAIkQAI2JUCfYFOcbIwESIAESIAESIAE4hGwKtAluNvvv/+OzJkzq93u9evXqwbWrl2rRHpSg7vdvHlTCXP5T3bT3377bXU3PV++fE4xNdHR0fjyyy/VUX0fHx/06NED7du3dwrb3dnIU6dOYcKECTh//jz8/f3RtWtXdOjQQSGxNqf3799H//79ceLECWTKlAljx46FBMli0ReBSZMmqZM58p8Ua/PGOU3Z3NEnaOMnnxmDBg3CnTt3ULRoUeUrs2XLpu1h1rI7gUOHDimfEPfa3R9//IF06dJZ9RF2N5QdmhHYsWMHJAuQnPQsXrx47M+s/f7J++fUqVPVO6hsPo0cORJeXl4kSwIkQAK6IpCoQN+7d68SNW+99RbWrFkDT09PhIeHq7Rrx48fT3Qw8iG4bds2daz9wIEDqFWrlhLlNWrUcLoPRRmDfEkxe/ZsPHnyBG3btoWk5ypZsmSiHFjBcQTEIefPn19lE/jvv/9U2sC5c+dCsgxYm9N+/fohV65ckF1Dcfjy/99++w1p06Z13GDYsxkBmRd52bpx40asQLc2b5zTlC0g+R2iT7DO0GAwqBd/OSEmfm7+/PnYt28fvv/++5TB59OpRkA+1//88081Zy8W+v1Uw56ihn/66Sds375dvYvJxolJoFv7/ZMToB988AGWLl2qvjD7/PPPUbZsWXTp0iVFtvBhEiABErA1AasCXT7IPvzwQ1SvXh19+vRRgd1EqIsw/+ijj5TgtlZGjx6NdevWqQ9CEeXNmzdXO5HOWmTntVOnToqHlHnz5kFOBUiueBbnIfDxxx8rkd6gQQO1m25pTgcOHIgKFSpAdlH8/PzU4OTEhMRMqFOnjvMM1oUtlS//5Esy2QGRFy3ZQZcTEQnNm3w5yDlN2YKgT0icn/hHuQImwk6KrMkqVapg69atakeWRX8EFi9erE7e9OrVK55x9Pv6my+xaP/+/epL944dO2LYsGGxAt3a79+SJUtU6mD5olaKBKuU9zfZfGIhARIgAT0RsCrQ5Whw+vTpkTdvXrWDKB+E8nc5tieCXYSOtSI7lAUKFFC50KOiohLMg/7DDz/oiUmCttStWxcLFixQu6pS5Ji//P3HH390CvtpJGKPtYmjzpkzJxKaU3nBFvG3c+fOWGwTJ05ExowZ1ZdWLI4nINcWcuTIgTfffFPNlQj0W7duJThvck2Hc5qyeaNPSJyfXAGTHfPx48fHVpYvqIcPH47SpUsn3gBr2J2A+HA5VZUmTRr1hazE2zFdg6Lft/t0JKnDd999FyNGjIgV6NZ+/2TnXL6klS/opUgMJPn7yZMnk9QnK5MACZBAahNIUpo1efmVFzQRqMWKFUvUNjlarKVIfnRnKG+88YY6ESB38qX89ddf6nitfPvO4hwEpkyZAsnl/MUXXyiDE5pTuW8uX0Bt3rw5dmDTp09Xu2Fy1J3FsQSOHTsGmUs5xfLgwYNYgX716tUE501O8HBObTtv7u4TLNFctmwZzpw5o052mIqIPdmdrVy5sm0ngK3ZhIAcixaxJtf5rl27pk5Lyed8w4YNE/QR9Ps2QZ/iRl4U6NZ+/5YvX65OgjZp0iS2X9lIkkxFHh4eKbaFDZAACZCArQgkSaDbqlNnbUc+2OXe0yuvvKKGIHfrxUnLv7Hon4DMleyySgwBUzCghOZUBLp8cST3bU1F/i1LlizqegeL4wjIi7TscE2bNg25c+dWR1NNO+i3b99OcN5EoHNOHTdv7tKzfIm7a9cusyCqsvZGjRqFMmXKuAsGpx6n7LTKqUH5zKff1/dUvijQrf3+iUCX38E2bdqoQYWGhqovzWTjiYUESIAE9ETAqkCX3Sh5qZAPL9l1fLGcPn1aT2NJdVu6d+8OcQamO8hyNF8EgWk3NtUNYAfJJrB69WqIc5ajjAEBAbHtJDSnQ4cORcWKFVUQGrnWIaVbt25q/iUAFIvjCBw8eFAF9fH29o41Qj6fZF4lw4KIIUvzJi/anNOUzRt9QuL8xC/K54fpXqtc76pUqZJak3JFhkX/BCQq+N9//63uNtPv63u+XhTo1n7/fvnlF/XOZoobJF/CyO+qKUORvkdK60iABNyJgFWBLsfyXn75ZXUXK66oMQEqXLiwO7FS6eXk2L4pirt8C/vVV1+pl34W/RLYtGmTihUgX6gEBgaaGWptTocMGaJ2zP/3v/+p3RQ5Hi2Bnl5sQ78jdw/L4u6gy4itzRvnNGVrgj4hcX5yDaZRo0ZK3ElAUYniLp8bCxcuTPxh1nAIAYkZIPEB5LP933//VV8ASpBb+WKFft8hU6K50xcFurXfP8n20a5dO0gMGlMUd3mPtRQcULMBrEgCJEACqUDAqkAXhyWOi4LkOXkJTCUiXe4rSXRXBgxLhVVp4yarVq2Ku3fvmt0xkxdnU3C/hOZUor0OGDAAhw8fVrvokoLHFMHfxiayuRQQeFGgW5s3zmkKQANKxNAnJM7w3Llz6rMjODhYBUmdNGkS8uTJk/iDrOEQApICT77ElSKf9bJr3qJFi1hb6PcdMi2aOn1RoMtD1n7/5JSVBHCUdME1a9ZU1xhMV940dchKJEACJGAHAlYFuggb+TBz5tRodmDILkiABEjALQjQJ7jFNHOQJEACJEACJEACDiRgVaBL8LOLFy+qO9bcRXfgLLFrEiABEtABAfoEHUwCTSABEiABEiABEnBpAvEEeoMGDWIHLEGYJOWI3OnJmjUr0qZNawZDImKzkAAJkAAJuC4B+gTXnVuOjARIgARIgARIQH8E4gl0iTSrtZiimWutz3okQAIkQALORYA+wbnmi9aSAAmQAAmQAAk4NwHmQXfu+aP1JEACJEACJEACJEACJEACJEACLkLAokA/cuQIXnrpJeTPnz92mPfu3cM333yDmzdvqjzg7733nosg4DBIgARIgASsEaBP4PogARIgARIgARIgAfsQsCjQ27dvj+bNm0PyfJtK27ZtkS5dOlSoUAE///wzevToofJJspAACZAACbg2AfoE155fjo4ESIAESIAESEA/BCwKdBHhixcvRuHChZWlBw4cwMiRI1XKNU9PT+zevVvlkfz111/1MxJaQgIkQAIkkCoE6BNSBSsbJQESIAESIAESIIF4BCwK9FKlSmHTpk3InTu3euDTTz9F5cqVY4+137lzRx1zP3nyJJGSAAmQAAm4OAH6BBefYA6PBEiABEiABEhANwQsCvQWLVqgdevWkGONZ86cQceOHbFz504EBAQow69fv66OwB89elQ3A6EhJEACJEACqUOAPiF1uLJVEiABEiABEiABEniRgEWBvm3bNvTp0wd58uTBjRs3MGrUKLzzzjuxz0rancmTJ/OIO9cTCZAACbgBAfoEN5hkDpEESIAESIAESEAXBBJMs3blyhWcPn0axYoVQ8GCBc2M3bNnD54+fYoGDRroYhA0ggRIgARIIHUJ0CekLl+2TgIkQAIkQAIkQAJCgHnQuQ5IgARIgARIgARIgARIgARIgARIQAcEKNB1MAk0gQRIgARIgARIgARIgARIgARIgAQo0LkGSIAESIAESIAESIAESIAESIAESEAHBCjQdTAJNIEESIAESIAESIAESIAESIAESIAEKNC5BkiABEiABEiABEiABEiABEiABEhABwQo0HUwCTSBBEiABEiABEiABEiABEiABEiABCjQuQZ0S2D79u0YN24ctmzZ4nAb79+/j/79++PQoUPInTs31q1bBy8vL4fb5YoGtGjRAt26dUPTpk1dcXgcEwmQgI0J6Okz45dffsGUKVMQFhaGwYMHo3Xr1jYeLZsTAnp6P+CMkAAJkICtCVCg25qoC7V348YN1K5dG3369EHv3r3NRrZ48WLs3r0b3333XaqNWE8OeOLEibh48SKmTZumXrwyZ85sNu5Vq1Zh0KBB8VjIy1qpUqVSjZE0HBwcjK+++grTp0+P7Uf+LHZasskWxpjWxottDRw4UInrlBRbv2yvXr0aoaGheP/992PN+uCDD9CxY0fUrVs3JabyWRIgAQA1a9ZEnjx58PPPP5vxuHz5Mlq1aoWjR4+mKidbf2Yk19iQkBBUqVIF8+fPR/HixWE0GhEQEBDbXGp+bmqxWfxBly5dULhwYVV93759+Prrr7Fy5UotjyerjqwN8VFxS61atfDDDz8kqz3TQ7Z+P3CEH00RAD5MAiTg0gQo0F16elM2uP9r775CJSm6OICXYsaMWTAv66KYE6YHMYvKuqBreFDELBjxwZxBUVAwoJhQxPSyskZUVFRMKOaEGBEzKoJZ+fjVRw192763e2Z2rt71FMisd7qrq/5VXef8TxrKxF577ZWVjHvvvTetvfbavQ4ni6Bfeuml6aGHHhpuIvPg7qOOOiorXoceemhjbwj6bbfdlm666aYx3y+99NJpoYUWmgcjGL8La0HRuuqqq3oXvfDCC+nXX39NO+yww0ieXRTNp556Ki2yyCK9ZyyxxBJpscUWG+qZ81rZPuGEE9IWW2wxhqBTSLfaaqu0xhprDDXWuDkQCAT+T9B//PHHdNZZZ6WZM2f2IJlMgn7Vnk2ZAAAQRElEQVTkkUemPffc8x9djjfffDOfMy+//HLjOEZ5brZN/LfffssGyRtvvLFH0L/44ovsiT7ooIPabh/4e3uD4Xabbbbp9UFmLLnkkgP36cZ5TdD/CTk6FABxcyAQCMzXCARBn6+Xd7jJUSYI7n322Se9+uqrmYCWVifohPDFF1+ctttuu941Bx98cNp3333T/vvvn4Wpe7bccst0zz33ZGUOQTr11FNzGPs777yT/vzzz3TYYYfl/4oAvvLKK7PSdcstt+R7tt1223TRRRelFVdcsfecO++8M3vyhaFvtNFG6bzzzkvrrrtu/h7ZO/fcc/PYH3744awoVD2ppRMKFS/0W2+9lZZZZpk8ZpEDf/zxRzruuOPSM888k4n2oosumsdb97wi6HfccUejJ8J3d999d7rrrrt6Y37++efTKaeckp5++uneOHl1edzhvsACCyT4Vb3Rn3/+eTr//PMzGV9wwQUTLwQCbr6///579tSstdZaGV9z+emnn9IFF1yQ+6eI+bfnlXvPOeectOyyy+bvXY9Yf/bZZ1m5NG8Klec1Ee6iaL7xxhsZk2ozHmt12WWX9f7sepgh9HC0V5577rnE48TT5P/XWWedHhYlxL0LdtZ9vP7OPPPMpI+FF144j3O//fbLYad1I8B46w+rso8mWp8vv/wywdO6MmhNnz49Y1rmNNybGHcHAv9uBJz/CLIII+dsOVfqBP20005Lq6yySjr55JN7E3LPxx9/nC6//PLeu3bEEUfkM5tX03nB8+usQC5FBvHWM96uvvrqvXv23nvv9Nhjj2VZJcJJ1Fc1vPyll17K59n777+f1lxzzXz+lnOcfHJOuN41nuFdrreJztEHHnggn3mffvppnj8ZRDZV20TnZvnu7bffHmPUnTZtWnr00UfzmI3z9ttvT5tttlkSGYR0MzI6/4qx0d9gM3fu3Bw5ZBw333xzlqv6XmqppXJ6FjkK23oaGflBnpI3cGbgLIaPLs+vY2ZvkD077rjjmK8Y3o37ySefzPKuNHKNnN5jjz3Sfffdl9f8gw8+yPKNTCSPtTpBb9NB3CNa4MEHH8xzW2211fJz7AFydzLkKLkK7/vvvz/vZ2vmXdhll13+3S94jC4QCAQmHYEg6JMO+dR5IIUBoUGqKD/HHntsJjbaIASdFxoh90lxmDVrVkJsrr/++kzWP/roo5x3zFtPqSCACWPXUaYQH2T7l19+yfdoxkawUvIoMMaFKBPCCJnxIq8MBZQM5JuCUm3ffvtt2nnnnRPl0TyRVM/zb2PVhAUK928i976fFwT9m2++yUqpSAXYez7DxMYbb5zHYC0QcAoTwvnVV1+lTTbZJF133XXp9ddfH+NBrxN0YabCGikDDCGUhB9++KHn8Xc9Je7aa6/NCsvPP/+cEFKKA8W73iZSNF955ZUcaUDBLeTdGJ999tk8H+tBmWVc4HG/8MIL8z4oIY9V8tyFoLf117R21Wd0WX/XT7Q+J554YlpuueXy/qaEiWCgkNaNF1Pn7Y+RBgLdEUCObrjhhnwuI33OE21Qgs7Ah4gi8wybSLPzgsHWO3X66afnM0qut+b9/Prrr9MVV1yRjbTePwTdeSrFiBEP4UMIGXkZ5MgWZBQBJmuQyBVWWCGdccYZaeWVV06rrrrq3wBoO0edfYwLL774YiN484Kgk0kMmGqiMCA6Pz/88MNMZDVnOyOuvyOh7733Xp6ztsEGG2RiX0Lc6yQXWSYH4UrumAdZqG+yxvVtz69PfDyCzpCw9dZb574ZHLQiOxhvGYY9f/HFF8/jtZcOPPDA3poOQtAZj2bMmJHXFvm3rzzDnp0MOUo3YQy4+uqrcwQBhwBnA90lWiAQCAQCVQSCoMd+GBeBEuLOI6E42vHHH5/DzXkHBiHoFCa5iCUkmkIkr/vWW2/tjQEZR6iE1heCToCWcDhKGGWDJ5gSJY8YcUXAS0P25WAT/hQ3ZL94Z5omKzTcuIqC4xoKAgWO10XrQtApjQhnaQhb8cx08aDzHCB6pR1++OFpp512yl4DCufRRx+dPfkUlmprUyzg515KWyGMDCSiHSi/66+/flaoX3vttWzcKI2yzUPO+FFvRdGshylSeNdbb71M8nkndt1113yr9SlrVe8LxgwHlEOtX4Le1l8bQe+y/sY00fqItqBoCfGNFgj81xBAwpAOBTQRYWeGaKlBCTqDKXmjMSRKUXE2+dScFcg2wlXODOcZ0lra2Wefnf76669MVK+55pps9HRPaeQRcu7dLcTzkUceyUbQptblHO1K0JvOTYSUEbjNgw4XBoYS2UQ+M6IyiCK9m266aa4F4LPe2gg6AzRDSNUoyyjy7rvvZgzhNNHzm3CzN7777rsxRVVFRBxwwAE5monMLOem9bHel1xySeMakCEi+ugJgxD0aqcM/vBQhNa+nQw5yug0Z86crPPU5fh/7cyI+QYCgcDECARBjx0yLgIUGl5nxE3jqZbXTIgOQtBZq5944one8xRe45WsCuN6WLywYV7yaqP48fRS1ihlhH81RI6HWJ9IIWKlz4kq6Z500klZQPMUlIbAUnAQ4pVWWqkTQVcYiBJTmjBClvouXmDj5LFmbCiNIsT7w2MhVFI/CHC9tSkW7mW1ZySoNvjwxPDUI+jff//9mLXgfXr88cf/llevj0LQKcjVHHRGE959nixeHcqd8FUGF0YPiilvuTEzivB+i4iAt++1fgl6W39tBL3L+retj7DWY445JhOCQw45JK/jsLn4cTQFAlMFASSMoct5xYjrvfdLF5988smYInFdQ9yrZyGZs+GGG2bZUULam1KE6ue88wvhRoYYAEXtVH95w7sqX548Q/aaZE0V/y7naFeC3nRuOse6EPS6HOUhNw/5785cRlH/rp7LZR5tBJ3xW3j89ttv35u6tAFeeVjCaaLnN+1Xe0PUF8N5aYz8ZIGoqpLqRYaLOvKskipnzcgtUU6ac9YeknrXL0Ena9SIkS4g+sLzpNbZr4z4kyFH7WVGJAZ3BgqyopquN1Xe9xhnIBAIjB6BIOijx3jKPqFO0OXlCUEvFc15MUoV96b8L+GAcrlLDno9100/yHXVq1En6LwgJU+7ALn55pvnUEqf8qT1y7vZ1LoUHOMplys8LEHvJwddBXwe92oOev2nxaoEnUGE5b1Oss25TbGgoArnq9/LEyEcsxD0as66frsQ9KYcdPfKGYQ9RVpYO69Q8cQzDAhpFA4ur5CywovVlaDXsWvrr42gd1n/pn1UXR9z5pFhTLI35TiWEN0pewDEwAOBjghUCbpbvBvI4G677Za9naWKexNBJwfkdldz0KtnYSHo3i0h71oTQUfayJrSGEyROJ8IYsk5bppSl4JjXc7RrgS96dxsykEvc6/moNflaJWgi1jYfffdBybojN6Mq1WC7tkM3oWgT/T88Qh6Uw66axlJkHK54cLMncVkIkMKwwAZKfVJ2oKG0HIadCXoVR2EnsHZYH72UakVIh2uC0Hvsv711LLx5KiIBCllDDUMW9XaPR1fubgsEAgE5nMEgqDP5ws8zPTqBF1flCRCSKgZ72oh6IRmtegOwcsaz3MxDEGX947AqYauIT4EunBtlmcCW24csjcoQRcOT4GsVmBHFnlEhRKytHcJcR+PoLPQ8/jLrS9NCCLsuhJ0ngZKbzVMvfRFgTFOzyitqijAz1yaQtyNWZG2ropF6X+iXMpyDVJr/YS+IuDC3uWWIuf2jqgFTZi9nMcmgt6GXZf+KPsUzmoF/irh7rL+XQh6df8JETVPqQXRAoH5HYE6QRcZ5Z3hjUW6CkEXhSXCBvEqTag5b++wBJ2xtvqzkp6B9PH4escZ9poikIyjC0Hvco4OQ9AZq3mZYVVC4KWAka1dCTpCTx46133WmwgHhlp52E3zJk+FuJfaK64RDcHASl414VQ1EDTt8/Fy0KuySt2OEt1Q9oYidsLd7SGNTqEvsqyJoLfpIAzS9BYGI03NGzVWigf9n5Cj0uroAMh6tEAgEAgEqggEQY/9MC4CTQTdxZQgoWGs0IWgC9siQHlDFK4heFjaCdlhCDrljdceAWfx5lHXynMZDCiAxUIvVBoRFfJH6eviQee9Idw9gxAvReLkUpaKscMQdCHe+hdmrrq351EURCR0Jeiw5emmYPEGUTx5SyilPABwVvyHYie3rUq43cuTINe8FInjEaFEl/z/QQm6sNNqKGV5vjWidIiy4C2yJq6zhlIUEPbZs2dnTw+FjHLaRNDbsOvSn8KC1pSnAhbwqe6LLuvfRtCtAaWX0UHxPgTdf/ZTtEBgfkegTtDN13nEe+0dLgTdzxsiQj4V61R/Qjg7r++wBN17p4q64mbOEvU8GP8YIBWJYyCUY43ckVG8qQpyloKkdc9wfc26nKPDEHTPY3xGQBVDQ7bJJASyK0HXh/NOXrr5kNFkNQ+0c49McyY5m5BiKVzVeRevdSkSp/YMmUHeOrcHJejmUf2ZNbVQitFdoTTGZ4ZwxgDpDJrIK4YGxmyyg6GXgYWu0UTQ23QQuEo7IuvUsoGTfSIVwx6YDDnKyGPuZLF6AfQWBivyO1ogEAgEAkHQYw90QmA8gu7nQShUhH4hykgOosXijzxShuQ08wgMQ9BL0R7C2nOFgglVU223NKHfxkERRBCFvgun7krQ9aMKOiHpk+LAyi43uVj1hyHo+heirsoxJW/55ZfPHnmKUVeCrg/5nLxBwjuNi/WfQYSiRYlCllWD9fM6dcJNQeW94kUqiqCcS2PRBiXo9Y2kMFz5aTgKM2+M/H+Fmkqj5JXK7ZRn4xJqT1nU6mS4Dbu2/pBzBgGKqrw/Rp76M9rWv42gqz1gnHD2E08MRPZPtTZCp5cuLgoEpiACTQTdNJxzyHkh6M4qZ5gIGmcYg6VIE17YYQm6s6cUfCQfvPMMk6UhrQyTPskozyZLFLXs4kHXT9s5OixBV4gOaeM5RuSci4gpQ0f5mbW2EHP51a6Rvy1tSSE8JJdsZND205NyumGBtNf7E+nlPJPvzeCIPBdD46AE3c/lVZuUtPKrHf7OcGBvkPelqU0iJYKRF7FmXPE3qQpNBL1NB5Gfrz8GAYYL+gq9wfwR9MmQo/CDO91KcTz6DENB+VnCKfjqx5ADgUBgRAiEB31EwEa3gUAgEAgEAoFAIBAIBAKBQCAQCAQCgUA/CARB7wetuDYQCAQCgUAgEAgEAoFAIBAIBAKBQCAQGBECQdBHBGx0GwgEAoFAIBAIBAKBQCAQCAQCgUAgEAj0g0AQ9H7QimsDgUAgEAgEAoFAIBAIBAKBQCAQCAQCgREhEAR9RMBGt4FAIBAIBAKBQCAQCAQCgUAgEAgEAoFAPwgEQe8Hrbg2EAgEAoFAIBAIBAKBQCAQCAQCgUAgEBgRAkHQRwRsdBsIBAKBQCAQCAQCgUAgEAgEAoFAIBAI9INAEPR+0IprA4FAIBAIBAKBQCAQCAQCgUAgEAgEAoERIRAEfUTARreBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQD8IBEHvB624NhAIBAKBQCAQCAQCgUAgEAgEAoFAIBAYEQL/A+U7FP70UJkNAAAAAElFTkSuQmCC" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAFACAYAAAAvc1ZOAAAgAElEQVR4XuydB3hUxdfG31RIg1ClC4KACBg6CEiXLlKld6SDKB2B0KvSQelIL1JEAQGlCCjVCIr0XqSGlgCp3/MO381/s2xu7qbubs55Hh8kmZ0787uXnfvOOXOOU2RkZCRisJo1a6J79+6oVasWUqdOHVMz+bkQEAJCQAikEAKyLqSQGy3TFAJCQAgIASEgBJKFgJOeQK9cuTL27t2bLAOTiwoBISAEhIDtEZB1wfbuiYxICAgBISAEhIAQcBwCugK9UaNGmDt3LrJkyeI4M5aZCAEhIASEQJwJyLoQZ3TyQSEgBISAEBACQkAIxEpAV6AHBARgyJAhqFevHrJmzQoXF5doHTZo0CDWC0gDISAEhIAQcBwCsi44zr2UmQgBISAEhIAQEAK2R0BXoE+fPh3ffvst8ubNa/EM+oYNG2xvRjIiISAEhIAQSDQCsi4kGlrpWAgIASEgBISAEBAC0BXo5cqVw3fffYe3335bUAkBISAEhIAQgKwL8hAIASEgBISAEBACQiDxCOgK9CpVqmDPnj2Jd3XpWQgIASEgBOyKgKwLdnW7ZLBCQAgIASEgBISAnRHQFej9+/dH8+bNUbJkSTublgxXCAgBISAEEoOArAuJQVX6FAJCQAgIASEgBITAKwK6An3mzJmYN2+eEujZsmWDu7t7NG5jxowRjkJACAgBIZCCCMi6kIJutkxVCAgBISAEhIAQSHICugJ9woQJugNihncj9u+//yJfvnxwc3Mz0lzaCAEhIASEgI0SkHXBRm+MDEsICAEhIASEgBBwCAK6Aj2hZlioUCHs3r1beeHFhIAQEAJCQAjIuiDPgBAQAkJACAgBISAEXieQJAK9SZMm6Nq1K2rUqCH3IIUSWL58OUaPHh01ey8vLxQoUACdOnXChx9+aLNUBg4ciODgYMyePTvZxnjjxg0wMdeOHTtUyUNr7NmzZ1i5cqX67PXr1/HixQtkzpwZfn5+6NChA4oUKWJNd/FqO3ToUDx8+BDffPONxX5CQ0OxcOFCbNy4Ebdu3YKPj4+KvGndujVq1aoVr2vLh22PgKwLtndPZERJS8B8XeQxwixZsuCDDz5A7969kT59+kQdUFBQEJYuXYrt27fj8uXL8Pb2RtGiRfHFF1+gYMGCUdfu1asXfv7552jr91tvvYX69eujVatWrx1/TNRBS+dCQAgIgRRAQFegV6hQQRfBgQMHDCG6cuUKGA7fqFEjlClTBh4eHtE+lylTJkP9SCP7JcAXEZ5dXbx4MSIiIvDgwQP8+OOP2Lp1qxKQpUuXtsnJ2bNA5787boCEhISgTZs2ePfddxEZGYmrV69i586d6NevnxLqSWWxCXTmtNi0aRM+++wztXkTGBiIY8eOoXDhwvj444/VMK9duwbekzVr1iTYsBOjzwQbnA12JOuCDd4UGZJdEtDWxWXLlqnxc0P1zJkzakOYAjghv+csAeJ1Kc6ZDJjldLmBO2fOHPzzzz9KkPv6+qqPUaBzo5oJImncaD169ChWrFiBPHnyKJFPcS8mBISAEBACCUNAV6AfPnw42lVevnypXpC5qPTp0wd169Y1NIoSJUrgyZMnMbY9f/68oX6kkf0S4DPDhf+PP/6INgl60XLmzIlp06bZ5OQoBp8/f45Zs2Yl2/ji4kGnN7px48ZwdXUFX8LojU5ui02gMxllz549lWc/JqOHfdeuXVi7dm2CTScx+kywwdlgR7Iu2OBNkSHZJYGY1sV169Zh2LBhOH78ONKkSZNoc+OGrZOTU7T+Hz9+rBIDL1iwAJUrV44S6C4uLpgxY0a0tnwfbNq0KapWrYrYclMk2iSkYyEgBISAAxKIU4j7f//9p8Kv1q9fbwgJw6j0jOHOYo5NIKYXEb6EnDt3Ltqz9Ntvv6kXASYXTJ06NSpVqoTBgwer0GxaWFgYpk+frrzv9+/fR7p06dQLBT2wmhC9dOkSxo0bhyNHjiBVqlSoU6cOKBDZH+37778HX4J49ILXunDhAjJkyKA8tX379gVfRmgU6OHh4eB52e+++w737t1TYeYDBgxQYYiacYxTp05Vnodvv/1WeSLo/WU/9GRPnDgRFDYUzvRa8/PvvfdetJu+d+9e5TnhvBllQo83Iw5u3779Wog7NwxWr16t5pAjR47XHh7mfOjevbvyjjBM3IgtWbIEq1atws2bNxWLBg0aKBamyR3p4eE86V3hi9ybb76pGGoebu06fLEcP3688gbx/rRs2RL83rh7926MIe7FixdXnpqOHTtaHK6/v7+KtjA1enAYlfPLL78oL87Zs2cVY3rdR4wYobxCNG5yVKtWDQEBARg7dqyK3uDnmBcjpj6NMJM2/yMg64I8DULAOgIxrYv8fmKY+alTp6LCx2P77v3rr7/wySefYNGiRShfvrwaCKOnGIZesWJFfPnll4YGxwir6tWrq/VFK7HL72VLAp0d8vuTa++hQ4cSPSTf0ASkkRAQAkLAAQjESaBz3txZpaAQEwJGCMT0IsLQa4pBCm4aj0107txZiTSeO2bkBUPjHz16hM2bN8PT0xPz589XoX8UWjyvR0FJ4cVNIxrD7yjIKYB79OihwgZHjhypXjYolGkU6MOHD8c777yj+qHoPnnyJLp06aLEMwUljQKdYpfikUKU1+cZab6U/PTTT1FnwinQ8+fPr67NdtwoKFeunBL09erVU6Kcc+IZww0bNmDLli1qDAzlpnFTguHoLVq0UPOmyOQ5bIYemnvQuTFG8UsxzfFbMr6M8YWNmxhGjPzpaed8yY0bHPSIlC1bFl999ZXqgt4WngfnnAYNGqTY86WMnyXfZs2aqXb8PcUwvSqcEyNv6I3hhkWpUqViFOi89sGDB1W0AnmbGzc9vv76a/z5559KjNO44cIXR25kkBnDrzlOinleV5u/xpDfW2nTplWbDzzfyfseU59GuEmb6ARkXZAnQggYJ2C+LlJQM6KQG9LcQNREtdHvXn6X/fDDD9i2bZtaq7iZyvwjFPza5nRMo+P35enTp1WuGB475Eaz5l3XE+jcQOZmNUvyUtiLCQEhIASEQPwJxEmg08PHL2x6rYwYQ4QpaOgp5SJgbuZhU0b6lDb2RcD8RYRClkKT4pvPhnYWmuFy2bNnjxLsnOXTp0/VC8Dnn3+uzlLT607vbUyJ2/g8UcDv2bMn6qWEApjCn5tKWbNmVeKYL0H8k0lxNKOXnZsBc+fOVT+iaORzTiFKT7xmDM2nIKdQplGg82w9z3ab5ljgCxLFOMfCcHPNmFiHnmVtDhS3GTNmjLqu6d01FegMKaRXm2HZeuf2uRnAFzRzRow+0MzZ2Rn8jxsYFOLkyg0CzejxpyDnRgTnSobs19wrz3vIzQKKa4plzpkviZyzFonAF08yoviPKUkcx8F7Qu88BTo3SXiMxpTblClTlNCPLcR9//79anOAGzeM0NEYMiEhj1qYmtE+7etfXNKPVtaFpGcuV7RvAlqSOH4P07iG8P+5scxjhJpANvrdy+9Z5vrhRijXUv7HKKNixYrFCEqLEOO1aR999JHacDUNrdcT6Nw84EYzN0W1jW37visyeiEgBIRA8hPQFegMlzI3erEuXryovI+Wfm9pShQUFBbM4s7FgiKAGUP5Ek3vpWRoTv4HIbFHYOlFhMllKHC1MDq+XDCr+OTJk5WH09S6deumhBoFJ8On27Zti5o1a6Jdu3avhYpT/FKEUyhqRk88cyFo5+oozCnG6THQRCTb0gPx+++/R4XcU6AzdJfh7abGvuntp1efRvFJrz09y6ZGDziT/WhCXvsdw8m5CcBEO5w3Nwno3TcPFWd7TVxSCHM8kyZNUtfSM/Khp9j07Dz/3Zr+W6OHn/Pi5gM58iWQXnFT44udtjHCPAH0xJhvzJEh75cm5Cni2Y/5nPnSyZfAmAS6dt2///5befPZH0Po6cnJlSuX+rVRMc0jC7Vr146ak8bQ9Fyldj2jfSb2vxF76V/WBXu5UzJOWyegJYnTjtlo71f0RnNTlN/fFOlGv3s5X34fU5jTC851gmtGbEbnCR0p/J7kZiv/5Caoth7oCXQKfGZ855EyLYoqtuvJ74WAEBACQkCfgK5Ap4gxN3qjeB5Xe2E2ApjeMCZ2Yigzz0NpYaf0LFKkayG0RvqSNvZJwPxFhB5uepvpLdVyEDBrN73CDFfmmTlTo5jmJg83eGgUYBR69OYyzJu/18Ki+VLCDSDTs9P8DF9AKBr58sJnm4KYAtnUKNApWBmGTuPLDT27mkdda8sxUmRT1NIo0OmxpTA2NY6Fod5a9lvtd3z2+TOGMzKagOGMlubN9pq4ZEg2X+AYCaCF88f0NDBMn4yYFV0zRq/wRYxGdoxMoEBnCCT74/l5huCbGkPVuWnA348aNQoUz+a5J7iBwfulZePnv3HyMJ8zveOMTohNoGvX57w//fRTlXtAC2m3JKYp+nlekpsHPO/Pv/M/XkvbdNAYso12rEC7jgh0675TZF2wjpe0FgIxEYjp6BePGHEDmse5WGLT6Hevdh1GmjEh6759+1SeDWuMR4W4ucl1i+sqTU+ga2fWefbdNC+LNdeUtkJACAgBIRCdQJxC3K2FSOFEbyNDbhk+Ra8jw7goNihMeFZWzLEJmL+IUPTyvBrD8bQdfooqbv7QQ2zJg05Pt3l4MpPEMaSdooEeV3rl6eFjZnhLIpabRCwHY41Aj8mDzpBuTQBTkFI488XI1Bgizs0sSx50zoXh2vSgM6kZvfL892FumrjkmXBuZrAMGQWppXPa2mcponl+kWHmll7QGAHDFysKdCbSY9RBTB50lmPjxgO9Ofy3G5MHXRO/7du3V/yZOMjUGAVBMyrQ2Zain+y4eUCzJKa5ecKQf/JjciQeReBGQsOGDV8T6JqX33RcItCT57tH1oXk4S5XtR0CMQl0ho1zLWSiOK4rRr97OTM6Q/idzSSj3NSlN95aoyDncSjtu1pPoDPCidFd3BCwhWoh1s5V2gsBISAEbJFArAKdXjhmRraUid1oOBNf7pl8i142nquiMKMQoTCnh8y8bI8tgpIxxY+ApRcRikhm2qZoYhg4jc8Ka69ywdeMYp4783x2KP4sGcO16aGlsKdQo4hkpIbp+WXTz1kj0Jkkjl510yQ7vA7D8XlEgxaTQKcIZ7TAr7/+Gs2jTyHPjQLt5Yle6ty5c0c7e6+N1zxJHOfJlyHOL6YXItaspQeEL3l8yTL3jJsKdHrWGbnAjRIKdc0YXcAzhTxPzigFbibweIr5GXQeO9BC5cmbGwnkzxdF7QwlvTIcD18arRHofDGlSNfK8/HvvB+MQNCM4fl8ETUt1cdni94fcw+6JYFuqc/4Pe2O/2lZFxz/HssME59ATAKd1S8YicSILv5p9LuX0Vj0fnMzlH/yP54nt3R0KqbZccOYR6H4nhabB53h9FwjuNHOtVxMCAgBISAEEoaArkCnV4oZmhkSaikDqHl5opiGRG8WE47Qk8hM2Xyh5t+Z7ZmiS/OsJcyUpBdbJGDpRYQec3o5mSxNC2FmUi+KRIaLM0EYw7D5DDJTLEUZRS2fO56v5rk3Ck8mfmO4Oj24FPr0qvOlhqKSgp/J1/gzvuRoZcOsEegU1zwjTi8CPdhaeTMKVZ6R1hPoPPvOeVCY8jnXsrjzfB9LpPHnNIpOntFmDXCGNlLQkgUzwpsLdG6WcYOLGwRa9ntL95wbX9wAowedTHmmkQL6wYMH6iw+/01rZ+sZnkihzURxPHfOIwL0gDOpm+lmCcdDzztf3Ngvz+sz4mHIkCFR4p73StuEI3/OheH7FOzcpLMk0NknIyGYhZ1JAulBOnHihDpawNroLBlH47EIRkbw57z/fB44bmYt5ucZDs/7zPkwnN+IQLfUJ58vMcsEZF2QJ0MIJAwB86NfFMfc/OKmIddHfq9pSUeNfPfyu5GlLLlGMUqR6wy/n9mPeX4RzoAbtdwY5vrG6DJ+d/O7k5UyuN5qRxm59nHTl8eWeOac12BUJDdCmeCV3wmxZYlPGGLSixAQAkIgZRDQFeh8meYCwi/whDSGDFO080U8pjJRCXk96Sv5CcTkKdDCq/lCoiUwo+eWngM+IxS09J5rZb04E4ZZM6yO5dX4EsI63xS39NBqdv36dRUOzTB0nj3nywefZ4pOhspbI9D58kJRzI0BCn3W1qa3Was1qyfQ+Tu+9NCrzBcavoBR9PJFxzyzLs+C06POc+l82aFXm2LWXKCzT4p3JqBj+De9FzEZhS9Z8drcEKNHmyzoWefGgWlIPTcMeK6en2Eb/o4bGqbed3rbtRr09NZwg4IhmI0bN442BHq8uWlCkczNOK2sGV/8LAl09sUswPw9/5/z52YLIw1Mx0jhzvOYjB7QEs5RqPNFk2KcL4+MpqDXiOf/yZQvphpDSx50S33y6I2YZQKyLsiTIQQShoCWPFXrjesZE5xyo5LfvUz0plls3738TuRGKf/kUS/N6BDRSlGaj5oCmyKeG7I8csjvSq47XE95TEkzCnTmi6FxDeF3Or93+b3OTfaYItUShpL0IgSEgBBIeQR0BTqTk/AMa1yNYe0MO6WXi8aFgKJA+3tc+5XPCQEhIASEQPIQkHUhebjLVYWAEBACQkAICIGUQUBXoDOkiqHGevWW9TDR08gwW54PpdFjyN3dHDlypAy6MkshIASEgIMRkHXBwW6oTEcICAEhIASEgBCwKQK6Ap2hrgxhYogvw65M60VzFuaZqc1nJgLdpu61DEYICAEhEG8Csi7EG6F0IASEgBAQAkJACAiBGAnoCnQmHOEZUp6HspQAhLWW9UwEujx5QkAICAHHIiDrgmPdT5mNEBACQkAICAEhYFsEdAU6EyWxXFJcz4xToDOzsvZ5JhphIihm1TY1JgETEwJCQAgIAdsnIOuC7d8jGaEQEAJCQAgIASFgvwR0BXq1atWUQI+rsTa0Edu3b5+RZtJGCAgBISAEkpmArAvJfAPk8kJACAgBISAEhIBDE9AV6CzPRGNtZtNSSw5NRCYnBISAEBACMRKQdUEeDiEgBISAEBACQkAIJB4BXYHODO779+9X4pz1OM1F+s6dOxNvZDbcM0P3WataTAgIASGQ0gjIumDsjn/22WeoXr066tWrZ+wD0koICAEhIASEgBAQAgB0Bfqvv/6qC6lq1aopEqII9BR522XSQkAIAJB1wdhjIALdGCdpJQSEgBAQAkJACEQnoCvQBZZlAiLQ5ckQAkJACAgBPQIi0OX5EAJCQAgIASEgBOJCwKJA3717N/Lnz4+TJ0/q9plSQ/dEoMflUZPPCAEhYM8EZF2w7u6JQLeOl7QWAkJACAgBISAEXhGwKNDbtm2Ljz76CCtWrNDltHnzZqs53r17F5GRkXjjjTes/qytfEAEuq3cCRmHEBACSUVA1gXrSItAt46XtBYCQkAICAEhIAR0BHpCw4mIiMCCBQswf/58PHnyRHXP2uidO3dGt27d4OLiktCXTNT+RKAnKl7pXAgIgRRAwNHWBfNbJgI9BTzEMkUhIASEgBAQAolAQPcM+oQJEzBkyJDXLvv8+XNMmTIFI0aMMDSkadOmqXrqX375JQoXLqw+8/fff2Ps2LGoUqUKvvjiC0P92EojEei2cidkHEJACCQ1AVkXjBEXgW6Mk7QSAkJACAgBISAEohPQFeilSpXC0aNHX2P28uVLFC9eHP/8848hnuXKlcPSpUtRoECBaO3Pnj2raqwfOnTIUD+J0Yjh9nPmzMGSJUtw/PhxQ5cQgW4IkzQSAkLAAQmkhHXB0m3bs2cPPv/8c6xcuRKFChWK9c6KQI8VkTQQAkJACAgBISAELBCwKNCXL1+umtJLPmDAgGgfCw8Px8GDBxEYGIgNGzYYgsqXmSNHjqiwdlN7+vQpKN7pTU8OCw0NRb9+/ZA5c2Zs3brV4maEpXGJQE+OuyXXFAJCIDkJpJR1wRLjRYsWqfJywcHBGDdunAj05HwQ5dpCQAgIASEgBBycgEWBvmnTJuzduxc7d+5UAtrUnJ2dkSNHDnTp0gXZs2c3hKdx48Zo1qwZPvnkk2jt6YmgMF6zZo2hfhKj0f79+1GhQgWUKFECf/75p6FLiEA3hEkaCQEh4EAEUtK6YH7b/vjjDxU11q5dOwwfPlwEugM91zIVISAEhIA9Eli1ahXOnTsHf39/NXw6Qrk+0fn4zTffqGpcMdm7775rOAraHtk4wph1Q9x5ZpznxONrDJP/9NNP1QsOvekMKz99+jQCAgKwbNkyFClSJL6XiNfnw8LCwLBNawR6828GRl2z1yNnpI1wgnul2nDOnDVeY5EPCwEhIARsmUBKWRcs3QNuMo8cOdKwQM9TsDCupI1Au0tO8BvWxZZvq4xNCAgBISAE7IiAuUBv2rSpinqmnqE5OTmJQLej+2k+VF2BrjVmabRr166pv7755pvIlCmT1VO+f/8+Vq9ejYsXL4KCmOfR6VW3hXJregK9fv36r831zJkzuLDm86ifb129GxWu3UGqOk3h0b6v1WzkA0JACAgBeyPg6OuCNQKdx8EYjWVqXCc98ufFuvKeOD/re6T+5mekTu9lb7dZxisEhIAQEAI2SMBcoJcuXVodxTI/Tmxp6OJBt8EbajYkXYHOFzB6S5gcJ126dCps4tmzZ6hRo4byrKdPn972Z2hghHoCnRnrza1o0aLw+/wL3CgI/JEmEpNvh6PLd2vg5OmNtEt3GLiiNBECQkAI2CeBlLIuWCPQuTZyHTG1wYMHI7hATnxfxBWXZm2Ay9RN8Mll/ea2fT4lMmohIASEQMog0LFjR1StWjUqT4mnpye+/vpr+Pr6KgCjR4/Gvn37lIby8/PDV199BTc3Nzx48ACDBg1SuoqOP/6e+mr69OkWwWnt6ejMmjWrikrmZ7nWsOLWtm3bULBgQZQvXx4DBw5U2m3q1KmqDZ2r1G25cuVSfWsCnesWo8IOHz6MkJAQFR3G8Hix5CegK9BZp5xeAIZMaGL8ypUrqrwaH8DYbuL69euRJUsWVKxYMWqmDGvnA3n79m31QDPhjpdX8noV4hLiXqnOabz85E+sSHUcfTMXwZiZCxF+9QI8ewyFe+U6yX9nZQRCQAgIgUQgkFLWBWsEuqW2zOIeXio/VrwZhssz1yFi9CqkL/jq5UhMCAgBISAE4kbgWEAkbt6OiNuH4/GpUn7OyJb19bBxCnQK7rlz58LFxQXjx4+Hj48Pevfura524sQJ0LFHa9WqFdq3b4/atWsr4Z4zZ05Vzer8+fPgmvHTTz/FOEL+ngKb1UQePnwIhrRTX2ln0IsVK4YDBw4oTXX9+nW0bNlSVR3hZ3bs2IFZs2apvF/MJaYJdJbA3rx5s/odjZ/jmMSSn4CuQC9TpowqgcYHztT+++8/VK9ePdbs6/Xq1UOfPn3w4Ycfqo9zd6ZatWpo3bo12Dd3kVgXnYI9OS2uAj1bzTsY88ZWVPLOhp233RA8dzxcCxWDt/+rB11MCAgBIeBoBFLKumDpvll7Bp0CfXnucFyZsRYhAxcic8mCjvY4yHyEgBAQAklK4Nul4Tj6Z9IL9K7tXFCquPNrc6VAp1im6KZRZGvea/PG1D2MSOZnmHSUlaToVadRYOvlwqLIpwBPkyaNaj9t2jQ8fvzYokBfvHgxbt26paKgNatbt66qzkUvuSbQmWSuW7duyrv+/vvvJ+l9lIvpE9AV6HXq1FEhE+bGEMcGDRrg999/1+39vffew5YtW5A7d27V7ocfflB/Z8ka2qlTp5SA54OcnBZXgZ7p3SBMLLEavi7uePh2Mzzu2QQIDkKa2eslWVxy3lC5thAQAolGIKWsC5YAxkWgf5cnAlenr8HzHjORtXLxRLsv0rEQEAJCICUQsEUPOhNhly1bVuHfvn278ljPmDEDPCY7Z84c5dCk5/rq1ato0aIFGIk2ZswYFZ3cs2dPlTSbnvd169ZZvIVBQUHKsWlalpqlTxnubsmDzr4yZsyoEnRrxk2BNm3aoEqVKlECnb87fvy4GuOdO3dUuLxp1HNKeJ5sdY66Ap07Pe7u7ujatav6k/bo0SP1UDF9P3+uZzwfwVrpb731lmrWvHlzVZ6NXnQaz1PwQWBGd3syllljiDttUduF6s/IEt0RPGccQvZtl2Rx9nQzZaxCQAhYRUDWBWO4tBD3ZXkicG36GjzrMBE5alcw9mFpJQSEgBAQAnZBgMKXeogCmmYq0CdOnIjg4GB1NNjV1RUTJkxQR4cp0KmnmIiaGilt2rTo379/1BlxSxNnxSs6RrUkcAxLp46yJNAXLFigBHdsHnTT61D8d+rUCT///HPU+Xm7uAEOOkhdgc6dF3q3Kc6Zbf3ly5dgNnaGvDMRAXd0WDJNM9ZNNzXe6GzZsqlzFdxNYsjFrl271C4S7cKFC0q0Hzt2zK7wUqC36vwvbtyKxN+dtuFw6C3syd8AFR8E4enADpIszq7upgxWCAgBawjIumCMlibQl7wViRvTVuNxsxF4s8mr415iQkAICAEh4BgE9AQ6c3hRM3DdpGDmuXDNg07NRMHNJG1GjBHHdI726tULgYGBSj+VK1fOokBn5S2ed6eXnVHMFN1MPsfwe9Mz6MwHljp1ahV2T03HMPiNGzc6TBJwI1xttY2uQGe6fmuMSd9MjQKcIp3nIJgsjiEUWqIEttu0aROYSI6lAuzJ+I9tiP8ZHDoSgVut92O78zksyV0F7TMUxJMejRFx/44ki7OnGypjFQJCwDABWReModIE+uK8wM2vV+FRvf7I3fZjYx+WVkJACAgBIWAXBPQE+tmzZ9U5cx6lzZEjhxLUrE9OD/rRo0dVyLmHh4fyrufNm1edBc+XL5/Fed+7d0/l7KK2ypw5s0q0zSPHljzo7IAJ4CZPnqzC7Jkojn1rR461M+hMYMewdo6Pie44Fx7lEkt+AobqoMdnmPSw0+ueIUOGKM+51t+lS5eUB54PpfahBZYAACAASURBVD0ZBfrUmWewdUcEHn10At/7nsDIrCXhn60UXv60Ds+XzZRkcfZ0Q2WsQkAIJCkBR1wXzAFqAn1RPuDWV6sQWK0H8nRtmaSc5WJCQAgIASFgewQotpnNnaHojDRmiTU6K5mbi6XRxISArkDn2Ya9e/eqtPs0pt6vXLmyEtsp2SjQf9x2DlNmh8G1+H/4tvCPKpP73gINEBn0FI87vMrkKMniUvJTInMXAo5JQNYFY/dVE+gL8znh9lcr8eD9dsj7WRdjH5ZWQkAICAEh4LAEmHtr2LBhKk8Xjw1HRESoylb8k5naza1Hjx5RWeIdFopMLBqBGAX6smXLVGgEzyUwNELLPsjaewMHDlTlAVKqUaD/dfI8+gwOxTPvZ1jbaA1yu/vgcpHWComWLM69cu2omugsvyYmBISAELBnArIuGL97UQL9bWfcnroC94s3Rb7BfY13IC2FgBAQAkLAYQmwTBrD0BlaTmFesmRJpa9SpUrlsHOWiRknYFGgM5kAExswzEKrYa51uXv3bpVpkOLd/HfGL2vfLSnQz58/j0H+oXgQ+L9M7jufdkWNys4I++cEno3qE22S4k2373suoxcCKZ2ArAvWPQGaQF/wthP+m7oSz7IVRY7pc63rRFoLASEgBISAEBACKY6ARYHetGlTsNZthw4dLAJZsWKFqmkeU70+R6eoCfTZC8MQcCoSm+ptxMP0DzHwWn1MaphDTT9o8mBEBj9DxN3bKmmce6Xa8Ow5zNHRyPyEgBBwUAKyLlh3YzWBPrugEwInrcSTbMWQa/os6zqR1kJACAgBISAEhECKI2BRoLPWHrOrs5SaJbt48SIaNmyIkydPGgLGZHDZs2ePCttgWv8tW7aon9WrV09lNLQn0wS6NuYP/96GXS+vIvPj9CiUIzU+9s2DvpmLql9ToD/p1VSVXkszZz2cvHzsaaoyViEgBISAIiDrgnUPgrlAD06bC9kW2FfFEutmLK2FgBAQAkJACAiBhCBgUaAXLlxY1cFjvT1LdvXqVVUrj0XtjVizZs1UDcDq1avjxYsXKtEB+75x4wZq1qwJ1vazJzMX6P63jmLU7ei13NtnKIAluV+VnXvm3wthpwOk9Jo93WQZqxAQAtEIyLpg3QNhLtDDXVIhw+pfrOtEWgsBISAEhIAQEAIpjoBFgd6gQQNQVLPIvSWjd51h7vSCGzE/Pz/s27cPadOmVWUEtm/fjuXLlyuB3rJlS+zfv99INzbTxlygXwl5iomrH+H6LaBQnUAsiDyKx+Eh8PPIgD8LNUPI3m0InjseLrnzwWfyUpuZhwxECAgBIWCUgKwLRkm9amcq0O9M2gB3vITvsp2Ah6d1HUlrISAEhIAQEAJCIEURsCjQ165di0mTJmHhwoUoXrx4NCB//fUXunTpgn79+qFFixaGYBUrVgwHDx6Eh4eHOts+dOhQVKxYUdX9o3j/559/DPVjK43MBTrHtWV7uKqLXr2SMwrWDkSx0+vVcAP9OsLXJRUeta8JBAfBZ/ISuOR+21amIuMQAkJACBgiIOuCIUxRjUwF+rmp+5Ap/AbSTF8F52y5rOtIWgsBISAEhIAQEAIpikCMZdbGjx+PJUuWqHOHefLkUefEr1y5Agr0tm3bYvjw4YZBde3aFTly5EBkZCSOHDmCrVu3qv54lr19+/b47bffDPdlCw0tCfSz5yNVXfSc2Z0wcqArKp/dgn3PbmFT3lrqTPqLdYvwYsMSSRZnCzdQxiAEhECcCMi6YBybqUA/Ou0f5AsJgPeImXAtHH3T23iP0lIICAEhIASEgBBICQRiFOicPEuJsaza9evXFQuKbJ4jj+lsekzA7ty5gwkTJqg6fyzfljNnTtV027ZtSvT36NHDrlhbEuicQOe+oWoeMye6YXLgq3PpfTMXwfScFaKSxfH3aZdsl2RxdnXHZbBCQAhoBGRdMPYsmAr0X2bcQfEXu+HZewTcK35orANpJQSEgBAQAkJACKRIAroCPaGI/Pvvv8iXLx/c3NwSqstk7ScmgT55ZhjOXYzEgF6uuJ3lNqqc2xJ1Dp0DZum10GMH4NGuD1LVbZasc5CLCwEhIASSk4CjrQvmLE0F+sbZYagStBYerXsg1UctkxO7XFsICAEhIASEgBCwcQJJItALFSqkPPHZsmWzcRzGhheTQF+zMRy790Wgfi1nNKjtAqfj81SHkSW6qz9Dj+xH0NShcM6UBWnmbDB2MWklBISAEHBAAo62LugJ9KXz0qHBk9lIVacpPNr3dcC7KVMSAkJACAgBISAEEopAkgj0Jk2agOfQa9SokVDjTtZ+YhLof56MxJxFYcif1wkD+/zvHPqe/A1Q2efV5sSTHo0Rcf8OPHsMg3PmLMk6D0sXd3kzn4Tf29xdkQEJAccj4Gjrgp5Anzn/bbQJ9Idb2Srw+nyM491MmZEQEAJCQAgIASGQYASSRKDznPmQIUPQqFEjlClTRmVzN7VMmTIl2ISSoqOYBPr9h8DgUaHIkB6YNNINn10/gBl3T2Fk1pLwz1ZKDU1LFpcU44zLNZw8veHtP0syzccFnnxGCAgBwwQcbV3QE+j+iyqi7/1uqonvugOGGUlDISAEhIAQEAJCIOURMCzQ7969q7Kwv/HGG1ZTKlGiBJ48eRLj55h0yJ4sJoHOOWiJ4hbOcMPmR5fR8OIOVPLOhr0FGqgpRgY9RdCUITY53Yi7t5V3nyLds8dQuJX+wCbHKYMSAkLANgjIuhDzfTA9g97pu86YcLcO3MKfI83c7+Gc0fp11DbuuIxCCAgBISAEhIAQSGwCugKdWdcXLFiA+fPnRwlsb29vdO7cGd26dYOLi4uh8QUFBem28/LyMtSPrTTSE+imieLeeCsE6QIWq2FrHvT4zoHe+MS04DnjELJvu7pEmtnr4Zw5a2JeTvoWAkLAzgjIumDshlGgR5YuiJkFIkGB3vfFYOQMPAyv/uPgVrqSsU6klRAQAkJACAgBIZDiCOgK9GnTpuGXX37Bl19+icKFCys4f//9N8aOHYsqVargiy++sApYaGgo7t+/j6xZ7Vv06Qn0xSvDcehIBDq0dEH5Ms7wO70Ofz1/YBUnvcaXi7RGbnefBOvPUkdatnnXQsVUuLuYEBACQkAjIOuCsWeBAh2lC2LG/wv0TyMmIf+dHSo6yb1yHWOdSCshIASEgBAQAkIgxRHQFejlypXD0qVLUaBAgWhgzp49iw4dOuDQoUOGgD1+/BgjR47Ejh07VJg8P0/bsmULrl69ij59+hjqx1Ya6Qn0LdvDsXXH/zK5L31wBldePo330NnP1ZBnME04F+9OY+iAYfiPezYBgoPkZTKxIEu/QsBOCci6YOzGmQr09qs6oFPYHBS+vQkeHfshVa3GxjqRVkJACAgBISAEhECKI6Ar0FkG58iRI2BYu6k9ffoUfEmjN92I9e/fHy9fvlRC/OOPP8Y///yjPkah/umnn2Lfvn1GurGZNnoC/ez5SEyZ/b9M7gk1aP9bRzHq9rFoCecSqm9L/YTs3YbguePVeXSvAePh+m7xxLyc9C0EhICdEJB1wdiNiibQV7ZHm8ilKH5zJVK37IrUH7cx1om0EgJCQAgIASGQSAQCAgIwZcoUrFy50uIVypYti23btiF9+vSJNIKE63bVqlU4d+4c/P39E67TZOxJV6A3btwYzZo1wyeffBJtiLyRW7duxZo1awwNvWTJkti5c6e6we+++26UQKdnnUL/9OnThvqxlUZ6At08k3tCjXn63ZPod/0g2mUogKW5qyZUt7r9PPPvhbDTAapNqjrNkLppBynBliTk5SJCwHYJyLpg7N5QoDuVKYjp+SPRblV7NMc6lL2+AKkbtkHqFl2NdSKthIAQEAJCwGEI0EE5ffp0ld/LFkwEui3cBctj0BXoR48eVR7u4sWLg14ThqdTTPOGLlu2DEWKFDE0M2Zx5w4MM8CbCnR65z///HMcOGBfZWf0BDqBmGZyNwTIQKO9T2+hyrkt0TLCG/hYvJow1P3lT+vwYsMS1Y97pdrw7DksXn3Kh4WAELBvArIuGLt/5gK9kfNWfHB1JlLVbgKPDp8Z60RaCQEhIASEgMMQeP78uYoe9vPzs4k5iUC3idtgcRCxllljUrfVq1fj4sWLCAsLU+fR6VW3ptzaqFGjcOvWLRV2UL16dfAF7/jx4+rvderUsTrZXHLjjE2gm2ZyL/C2U4IM91H4y6iM8JEluidIn0Y7Cb9yHk8HdlDNJbO7UWrSTgg4LgFZF2K/t6YCve3qdqjn8itqXJ4I9yp14dndNkttxj4raSEEhIAQEAKmBFasWIHly5cjJCQEPj4+qvJVlixZcOnSJYwYMULpp1SpUqmcXo8ePYoKKac4/uabb9Qx4jt37uDZs2fKaVmxYkWMHz8eadKkQa9evdSlwsPD1c83btyo+ja3b7/9VlXbYl4vXiM4OBjUXpoj9cqVKxg6dKi6Tvbs2TFp0iSVsNtcoK9fv16Nyd3dHbVr18b333+PTZs2qQhovT6oE9kfOQwaNAj58+fHvHnzkClTJjUmvjMMGTJE5SIjF1b3YgLyMmXKqKns3btXcXnx4oX6GfUhxxAYGIgBAwaozzDReOvWrdG166sItAcPHqhrkS+vTWcyGaaIEHdOPkOGDK89CBTq//33H3LkyGHoXykfWoZ08MYRPo3gmWiOLzGurq6G+rGVRrEJdPNM7gk1bt+ARXgcHoKkyORuPmat/Jp40RPqbko/QsA+Cci6YOy+cW1zLlMQ0/JHou3qtqjh+gfqXRoJt7JV4PX5GGOdSCshIASEgBCIRiD0jz0Iv3Ypyam4l6sK55x5ol2XObnoaNy9e7cS4Tdu3FDaiIK6bt266Nu3rxK6FJpp06bFyZMnowl0Ojw3b96sopSvX7+uHKA///wzbt++jd69e6vjwbTff/8ds2bNAs9ZWzIKdG4U8Pixr6+vqsC1ZMkS9TOWRq1Xr54Ss5UqVQJF+Pbt27F48eJoAp1Ct02bNlGbAPw8NwoOHz6s+tTro0uXLmjbti26d++uNB2FP+fC8dCxy+sxDxmPSJcuXRrHjh3DhAkT1AYA58q2a9euVUJ74MCByJcvnxLiHPuJEyfAo9IU+R9++KFizQ0DrrG5cuVSmxoPHz5E06ZN1SZGihDopUqVUt5uc6Pg5tlxesGtMe5+3Lx5Uz24OXPmVCLdHi02gW6eyT2h5lj57Bbse3YrSTK5m4854u5tPOnVVP3YZ/ISuOR+O6GmJf0IASFgRwRkXTB2s14J9HcwLX8E2qxpi0ouAWh8aRBc/crCe+hUY51IKyEgBISAEIhGIGj6CIQe+jXJqXh9Ngpu71eLdl3qmRo1aqjjwI0aNYrSNTwOTKH5448/Rmtv6rHm/9OrzSPAmlHgNmzYUAnRBg0aqLLW9ILT28wjwi1atIhRoFPoauKUYpb9/Pbbb+po8uDBg/HDDz+oz9LJWrRoUfz1118qJ5iWJI7n4ulh57Vo1Hq8NjcH6JTV64ObCfv374eT06uoYfO5Xbt2TeUzY180hvp/8MEHSmNyI4BR1sOGvTpCyw0BOnXplTc3CnlWBSMLzoFHpBlpQGMJWOY2S9ECnUD5EHEHxIhxl4ShDebGG8QHgyEg9mSxCfTEyuT+2fUDmHH3VJJlcje/Jy/WLVLn0aU+uj09rTJWIZCwBGIS6Cl9XTCnHF2gt0FZ13NoebEPXAsWhffouQl7U6Q3ISAEhEAKIWBLHnQip+Nxzpw5SiwyMpj/7dmzR3mvFy1aFO2umAt06iN6jjWjSKX4bNmypcr1RY88hTHFLMV+unTpLN5letAZoUyPPY0eZXr2//jjDzUW/tw0NJ5Clv1x7JpA51gYNc3NBs243tOjTzGv18fkyZOjefc5T9OfcR4dO3aMighgZS9miP/zzz8xceJEFUbPCAMaNz3osad3ncKeofLcIKD45zh4VOCtt95SofCm1cQYpc0oAIcW6NwFYqgFzzEQkqkRHM8OfPHFF9Fuot73QkwvdLxBPDOglV2zl++W2AS6I2VyN70npvXRvUfOlNJr9vLAyjiFQAIQkHXBOoimAr312jYo5nIDHS92VtFHjEISEwJCQAgIAcchcO/ePTDUm0I2Y8aMyjvOEG9TMxfoDM/+9df/RQNQ3NNLTg86RTarptCLTlGql/mdAl0rZ20u0OlBHz58uBK85mY6HvavnRXXhHLhwoVx8OBBJZCN9KH1b362XU+g04NOdow4MDdGAbRv315FE9BYqnvMmDHKs69597VS4DwCwCN4Di3QCYG7EDxPwF0hU3N2dlYJBiydTTcHy90MGndneMjf1Cj0edN5LmPDhg129S80NoHOyfQeFIrnL4CJI92QMYHKByZHJnfzGyNedLt6VGWwQiBBCci6YBwnBbpLmXfwdf4IUKC/4/IAPS62gnOW7Egz838eE+M9SkshIASEgBCwJQKMBKZ4zZMnjzovzXPW9evXR7Vq1VCzZk3l/WYIPJOX0QN8/vz5aGfQeW6aHmIm0Kao7dy5sxLsWtg2o5V5zp3tNJFqaf56Ap16i5/t2bOnOg/PilyXL19WXmhTIc2x0ctNTcZE4IwAYKI5hpzTu22kj7gIdIa3c1Ni4cKFoL7iRsPdu3fVUWhGDlB4v/feeyocnmKdJb4pzsmayeiYSI9asnnz5ur4tcMLdEI+c+YMChYsGOd/CwxZYGY+JjkgNHOhz0QK3G2i4LcnMyLQtURxnzR0QY3KzgkyveTM5K5NwNSL7tV/PNxKf5Agc5NOhIAQsA8Csi4Yu0/RBXpr5HF5gc8vNoSTb3qknf/qLKCYEBACQkAI2C8BZk6n15ueZyZHY5IyeppdXFyUhuJ5aWYx9/T0VOHuDC3XQsopjqdOnaoSozERGj/P89/sQzMmROvXr58KVffy8ooRlJ5A54cYKk7hyjFxI4GbBxTf5p7udevWqSzuHH/VqlXVdenhZlI2o33wetZ40NmeDltmlqcwZ34ynmnnpgQjEMiIc2fENc/FM5EdBTq97kx8d+HCBWTOnFmNl59PEQI9of7J8IFjiEZSGkM5mGSAN5O7V3wQ+cCZGx9EZjSkcTeJZyFiiw4wItAPHo7AklXh8CvihF6dEy5LvZbJPdCvI3xdUiUl0qhrhezdhuC54y1eO3XTjuB/YkJACAgBPQLJsS6Yj4cZdenh4ELPzeivvvpKLfTmxjN8fEngGT96NvjSFVsdW1WhpEwhfJU/HK3WtUJ2ZycMuVgbSO0B3+92ycMhBISAEBACKZiAJtDpqY7JfvrpJ+zatUvpGbGURSDWOugJhYMhC3wYGQqihWlQPNMSOps7QzcYns8wCL5s8bw8X6YYumFqTE7AFy224+4W/wHw3H1suy9GBHrwc6DP4FB1uYUz3BIKI7RM7n4eGeDrakygt8tQAO0zxD0SwtLgn/RojIj7dyzOi0nkvAaMh5OXT4LNWzoSAkLA8Qgk5bpgTk/Lvsvve4bRMSHPoUOHQE+EqbH6SIUKFUDPwptvvqmy0I4ePVqVjdEzU4Hecn1rZHRKjVEXq6iP+K474Hg3U2YkBISAEBAChgmYe5nNP8gNYYZtczObZcZo/fv3x9mzZ6M15fplfozY8CCkoc0SSBKBzvADnqsIDg4Gw0EYYkGjMGYJAPNz7vGlNX/+fHUdPsi0f//9V2WRZ61BU2P4PV+65s59lVGXL1ysHUhPiZ4ZEej8vP+kMNy4FYmenVxRrOir0gPxNS2TuzX9UKAvzV3Vmo/EqW3YPyfwbMoQIDgILrnzwXvkLBHpcSIpHxICjk8gqdcFc6LMBsvILi2CimF/PIrFkEIfn/9tLvLsIKOwmKGXUVhM3MNNZq5demYu0NNFpMbYO3WB58Hw/W4nkNrT8W+yzFAICAEhIAQsEtAT6MyozvJrFOg8Oy6W8ggYEuj0IPB8Bc9JxMVat26NSpUqqfPmLB+gZW3neQaeMWACgoQ0Zk7kbhOzDtPopeHfT506Fe0y2lmG999/X9XTmz17tjoDkS9fPt3hGBXoazaGY/e+CFSv5IzmjV4Pr4/LnK+EPMWVl08NfTTg+X30u34Q9Lb/WaiZoc/EtxHPqD/z743wqxdEpMcXpnxeCNgwAXtbF8xRbtmyRXnM+Z2vWZMmTVTZT64HpjZ+/HhVp5Vn33gsipl169Wrp3t3ogv0Vkgb5oEJT5siMvA+0s7fAiffDDZ8d2VoQkAICAEhIASEQHIR0BXoTGbAEPAdO3aorH9aWAVfbJj0gBn0jBhfdphogGHkpgKdngiGDrIEQEIayxYwIyJrAGpGUX3u3DmVRdHUeLaDL2T0ntArwjT/TNSgGRPcmRt3s5jtMDbT6qFnSA9MGplwYe6xXdf0907H56m/Rpbobs3H4tXWVKRrHTl5esPbf5YqMSQmBISA/RKw13XBnDhrz3LtYX4SzbiZzIywrM9qapcuXUKnTp3AKibZsmXDjBkzVNIczXiWnce3TI0RW14V/TA1fzharG8Fz+ce+NqpHSJuXUOaGavhnDWn/T4EMnIhIASEgBAQAkIg0QjoCnSGiGt19Vh7TvN8U6izkP2+ffsMDYznI+h1KFSoUDSBzhcY/pwbAAlpw4YNUyn5mzV75TVmiCJfuEwL2vPnDFGcOXOmyqyYOnVqjBs3DvQK0Vui2eTJk18bGmsFGhHo/GBilFuzhpXf6XX46/kD7MnfAJV9slnz0Xi1tSTSnTNlUfV/5Wx6vNDKh4VAshKw13XBHNoPP/yg1jAmhtOMm7Q8X871QzPWVeVawlI4LOmyceNGVY+WG9Va/hRmmuVRKlNjCH/aKiVfCfQNLeEZ7IlpHt0QfuksfCYthkue/Ml6H+XiQkAICAEhIASEgG0S0BXoDAunB5meAlPPNz0oPKtn1PO9atUqLF68WKXN51lwnvk+duyYSsrDM4B6tf3igo3XunPnjroWjd4Nina+RJkaEy8UK1ZMhSvSGPJOIc9yB3pmNMSdfUyeGYZzFxP2HLo1TNpf+RXLHpzFtJzl8Vnm6GGb1vQTn7bmYe9e/SfAOXPcjkvEZxzyWSEgBOJPwF7XBfOZc8OZ64KWmyQsLAylS5dWNWh9fX2jmnPd4Gau6WYtj2bR885N55iMIe7uZQphSv5wNP++BbyCvDA9XT+EnQ6A96g5cH3nf5sA8b8r0oMQEAJCQAgIASHgKAR0BXqJEiVUkgIWrDcV6EeOHAHDyJk0x6jRU0HhTK8Cs+fynHfXrl2j1fsz2lds7W7cuIGWLVti9erVUVnctWL2HAfPErZo0UJ5zvmSxhcvhrXTk896fwx9TCiBvmV7OLbuiED9Ws5oUDthzqHHNn/T30+/e1KdQ0+qRHExjY0i/emA9lGZ391KVVTl2CTk3Zq7KW2FQPITsNd1wZwcjzXVqlVL1axl3VluGDNB3PLly9WRJwpwbiozdJ3rHROKUrgzdwrXFyYVNU0mZ96/JYE+I+swhJ44BO8hU+FaLHoYffLfWRmBEBACQkAICAEhYAsEdAU6X1AoZlmGhme6jx49iuPHj6u/83w3y5fZqv34448q+Q/LFDBBHcPWGY7I0ESG6DNTOz3m9OAzURCz83IjguGNuXPnTjCB/ufJSMxZFIb8eZ0wsE/C1UM3yn3v01uocm4LKnlnw94CDYx+LFHahV85jxfrFiH02KuNHYa8p5mzIVGuJZ0KASGQOATseV0wJ8KKIsw7wnUub968al3ImTOnOtrFNY+byoyYomhfuXKlysXC41AU7FxX9MxUoLf+oQVSPfLCjDxjEXroF3h9Nhpu7yd+ZY3EeQKkVyEgBISAEBACQiAxCegKdApY1gbnywmFLo0it0OHDlAZak2SqcU2SL7Y8CxfUFDQa01ZW9aezJoQ92s3IzF6chhSWqI4vftp6k337DEU7pX/l8zPnp4DGasQSIkEZF0wdtdNBXqbrc3hHuiNafm/Qvi+H+HZbTDcq+pngTd2FWklBISAEBACQkAIOBoBw2XWbt68qULT6V3QEuMYhcHze4MGDcK9e/csfsRowjWj10vsdtYIdI6lc99QNaSZE93g6ZHYo3u9fy1R3J+FmsLPI2PSD8DCFUP2bkPw3PFgdvc0c9ZL4jibuCsyCCFgnAATasq6EDMvCvRUZd7F5PxhaLetOVzve2Na0XkI/3kdPNr3Rao6TY3DlpZCQAgIASEgBIRAiiGgK9B5HpthfG+99VY0IKwnzsRrrVq1MgSqZs2a6N69uzrvx/BAezdrBbqWKG5AL1cUeDt6mbekYPHxxe3Y8ugKluSugvYZCibFJQ1d45l/L5UwKXWTDkjdrJOhz0gjISAEkpeArAvG+JsK9A47PoHzXR98XWoZIn5YitTNuyB1o3bGOpJWQkAICAEhIASEQIoioCvQS5UqhTVr1qizeabGJDnMYnv48GFDsCpXroy9e/caamsPjawV6Gs2hmP3vgh80tAFNSo7J/kU/W8dxajbx9A+QwG0z6gv0N9090Fud58kGWPYPyfwbFQf8aInCW25iBBIGAKyLhjjqAR62Xcx+e0wdNz5CZz+88HX5dchYsM8pPq4NTxadjPWkbQSAkJACAgBISAEUhQBXYHOEjJ79uxRydNM7eHDh6hQoYLhMmuNGjVSpdWyZMniEHCtFei79kZg7aZwvF/aGR1bJX0mdy1RnBH4rJXOmulJZUGTB6ukce6VasOz57CkuqxcRwgIgTgSkHXBGDgK9NRl38Wkt8PQeXczRN5Kg6nVfgRWfIVUtRrDo2M/Yx1JKyEgBISAEBACQiBFEdAV6BTW9erVQ8eOHaNBYdK4DRs2YMuWLYZgBQQEqJrk7Ctr1qwqY7qpJXQddEODikcjawX62fORmDI7DDmzO2HkwKTP5P4o/CU+vrAj1hkHPL+Px+EhSqBTqCeFRdy9jSe9Xp3FTDN7vdRHTwrocg0hEA8Csi4Yg2cqWwKP3AAAIABJREFU0LvsaYaI62kwufYvcF48Fu6Va8Ozh2xIGiMprYSAEBACQkAIpCwCugKd9c47d+4M1r1lHXQnJydVN5zl1r755huUL1/eEC1mgv/2229VqLylM+gU+/Zk1gp0zk1LFLdwhpvNTlULhU9qL3rwnHEI2bcdrI3uNWCCzfKRgQkBIQDIumDsKTAV6J/ua4rwq2kx+aPf4fztULiVqQSvL8YZ60haCQEhIASEgBAQAimKQKxZ3Jl5nefQL126hIiICOTJkwfNmze3Kly9XLly+O6771Q9WUewuAj0Qf6heBAIjBjoilzZkz5RnBHu9LTnPrUiyb3oLLv2uGcTIDgIroWKwaN9H7jkdoxnxQh3aSME7I2ArAux3zEKdI+yhTHx7VB0/a0pwi6nxYQmAXCb1Q+u75WG97CvY+9EWggBISAEhIAQEAIpjkCsAj0hiFSpUkWdZXcUi4tAn70wDAGnIg0h6NnJFcWKJo+I17zoTBSXO5WxZHG+LqmwKW8tQ3OLqVHokf0ImjtOiXSj5j1yJlzfLW60ubQTAkLAhgg42rpgjtZUoHc/2AwhF9NgfItzcP+6K1wKFIHPmHk2dDdkKEJACAgBISAEhICtEIhVoL98+RLXr1/Hs2fPXhuzn5+foXn0799fed1LlixpqL2tN4qLQN+yPRxbd0QYmppfESf06pz0Z9U5OFMvuqHB/n+jhCjhRk/6i/WL8XLbekOXlhrqhjBJIyGQ4ARkXYgdqalA7/l7U7w4nxZj2l2Hx8S2cMmVFz5Tl8XeibQQAkJACAgBISAEUhwBXYHO0mhffPEFQkJCLJ4d51l0IzZz5kzMmzdPCfRs2bLB3d092sfGjBljpBubaRMXgW5k8MHPAYbCP38BTBzphozpjXwq4dswWdyjsBBDHbNtv+sH4evijstFWoPe9KQwrYa6nFtPCtpyDSHwPwKyLhh7GqIJ9CNN8OKML/w734f3mKZwzpwNaWavM9aRtBICQkAICAEhkIIIlC1bFtu2bUP69MkkhGyAta5Ar127Nvr164cPP/wwXkOdMEE/8RczvNuTJZZAJ4PFK8Nx6EgEqldyRvNGSV+SLS73ofLZLdj37BZGZi0J/2yl4tKF1Z9R2d8Htlch8anqNFPn1sWEgBBIfAKyLhhjTIHuWbYwJrwdit5HmyD4X18M7xaEtCPrwSmNL9Iu/NFYR9JKCAgBISAEHIIAE20zcfaCBQsSdD50pP7++++oVKlSgvYbn8527twZZ/2Y3AL9t99+U05lDw+P+CCI12d1BXrlypVBb4lYdAKJKdCv3YzE6Mlh4DMxaaQbPJPv2TB827U66/Sif/bGexY/x9/1zVzUcJ9GGqpz61OHqqYuufPBrdQH6v+dM2WBe+U6RrqQNkJACFhJQNYFY8BMBXqfE40R9Hc6DO3nivQDKwLu7vBd8auxjqSVEBACQkAIOASB58+f4+zZszB6RNjopKnV+J+/v7/RjyRquydPnqBNmzaGy3GbDyY5BXpkZCSaNm2K+fPnJ6sHX1eg161bF2vXroW3t3e8b2RYWBj+++8/8OyiubH8mj1ZYgp0cpg8MwznLkaiQ0sXlC/jbBdoNC+63mATo7562D8n8HzpTIRfvRDt0pJAzi4eGxmkHRKQdcHYTaNA9ypXGOPzheKzPxvj6al0GNTXFZkGV1Qd+K47YKwjaSUEhIAQEAI2S2DFihVYvny5Og7s4+OjhF2WLFlU9asRI0bg4sWLSJUqFZYuXYpHjx5hypQpWLlyJQICAlTJamqsO3fuqFxfn3/+OSpWrIjx48cjTZo06NWrl5p3eHi4+vnGjRtfq6JFwd+7d288fvwYWbNmRadOnZAzZ06sXr1a/Z1jGzRokPoc/9/Ue1+hQgX88MMPSoh+8MEH6NChAw4cOID79++jePHiGDlypLo+RSvLZa9btw5BQUGoX78+vvzySzUHHlMODAyEs7Ozmm+ZMmXUGP78809VvYt/Z6T0lStXMHToUDXX7NmzY9KkSWp8tPXr1ysWPALNKL3vv/8emzZtilEgcyzcBLh69apiGhwcjFGjRqFIkSKqP0vXypAhgxrLoUOHlGecJWNbtWqFgwcPInPmzDh//jz69u2rOLPyWL58+ZA2bVrw/vLejB49WpUZ5zyZV61Lly7qWrGNJa4Prq5AZ3gCB9a9e3fkypXrtbPjmTJlMnTdX375BUwUR3EeGhqq6qnzZvNGvPPOO0gJddANgfr/RgcPR2DJqnDkz+uEgX2SJ1mcNeNlW55F3xx42eLH+Lstj64gMeurv/xpHZhkLvzKeYQeO6A86j6Tl1o7DWkvBIRALARkXTD2iJgK9H4nG+NJQDoM6O2KLOPqqO8q36U/A55exjqTVkJACAgBIaAIbAi8iL+fP0xyGk3T58W7qaOfiX769Cnq1KmD3bt3KxF+48YN5MiRQwlqbmZT8FFwUsBS7J08eTKaQG/WrBk2b96MQoUKqYTc/PvPP/+M27dvK9HN9ZbG8PVZs2Zh1apVFudN4Xz69OkoDzqFMwVk27ZtlYZzdXXF/v37dQX6u+++q8b76aefqvHTizx48GCULl1aiXjqwYULF6pNCM6Hop5i+8WLF3jzzTexb98+TJw4Edu3b1fCuVu3bur/aSzTXa9ePbVRwDB8CnL+bvHixWoDg952bfNhyZIlaoPi8OHDugKd49m6dSt8fX1BncnP8Wd61+J1evToAZb/5kYJQ9n5M86VbC9cuKA2GUw3Ljh+bizw/g0cOFBtUHTs2FFtZvDeUqDHNJb4PKS6Ar1o0aJgOEZMxt0GI8Yz7HxAPv74Y3z00UfqRvPmcdeldevWYLkde7LE9qBrYe4Z0r8Kc7d3S8r66nzxfTqgPSLu34FHuz5IVbeZveOT8QsBmyIg64Kx22Eq0L/4uxEenUiPL3q6Itv0Joi8fwdpv9kMp/QZjXUmrYSAEBACQkARaH5pF9YGRo+aTAo0a96qgU/S5Yt2KQrZGjVqKFHbqFGjKEcmxTLF3I8/Rs81QuFs6kGn8GMyNM2olRo2bKjObjdo0ABjx45VXmF6qymgW7RoYVigU+BTlNMpSjMi0ClYtcRsFKq8NsUrxTbnp5eTjA7YUqVKKa+6uUAnD4p96j8ao6r5LvHXX3+pyAIKfc6RxkgEXpebEjEliaMo5iaGFtJPjz+5cfx61+Ln6CAmG24YkDc3CmbPnq1yrtWqVQs1a9Z8TaAXK1ZMbUAwqoHGTRR6+On11xtLfJ5LXYHOXQI98/IytvvPh4o3zM3NTQHRHljuFnEHgjtP9mSJLdDJonPfUIVk4Qz7F+ich1ZfPTG96NozxLD3Z6P6gGXYfCYvgXPmVyE0YkJACMSfgKwLxhhGE+inG+LRsQz4rJsrci1og4gbV5Bm+io4Z8tlrDNpJQSEgBAQAoqALXnQOZ6bN29izpw5KjScmob/7dmzR3lVFy1aFO2umQt0JtHmUWLNhg0bpoR4y5YtsWzZMuWRp7Bl+Dm1U7p06Sw+BZY86JMnT47mcbck0MuXL6+80BTCvO7ff/8dJegpfvPnz6/GQvHLv7/3XvQ8U3/88YcKB6cXnXbs2DEVJWAu0MmD3nmG2WvGkHzOiV55hp9zk0MzCn2KYD2BzmuyT9rDhw9VJAPHo3cthr7PnTtXeeh79uyJNWvWKCcxxXfVqlXVmXkyNvWgM7ydZ+LJRjPeR4bUU6RToMc0lvj8k421Dnp8Otc+y0lzh4Rh8tyJ4U7FG2+8oSZUokQJMKuhPVlSCHT/SWG4cSsSIwa6Ilf2V7tf9myW6qsnZtb3oMmDVai7lGGz56dGxu7IBBxtXTC/VxTo3uWKYFy+EPQ/0xCBRzKgz6euyLOyK8IvnIbPxIVweaugI99imZsQEAJCIMUQuHfvngorp2jMmDGjCoum+DU1c4HOM+e//vq/hKEU9/SS01NN0dm4cWPlRaeG0sv8zpBxainNo2x6He36PGvNkHJt04Ce5MKFCyuvsybQTfWYqUDnvBh+z2gBzXj2u3r16upc+ltvvaVCvxk6ToF+7do1dO3aNSrEnV7t4cOHq7Pl5sZ50QOuVfRiVALHxfHqCXQem+7T51UFJ1OBrncteucZYs+z/fwMPemMDqDXnFw0BzLPoVOs8/rkxKR+3OBgmDvN3IMe01ji8/DrCnSGtzORwblz5ywmd5sxY4aha0+dOlWFKxAAdxq4U8GHjrtN3HnizbUnSwqBPnthGAJORaJnJ1cUK2r/Ap33V/Oia/c6MWunM9T9cc8mqgybV//xcCv9KsO7mBAQAvEjIOuCMX6mAn3guYZ48EcG9OrsinybPkPY38fh7T8LroWKGetMWgkBISAEhIDNEeB6yATYefLkUWefKRiZQK1atWpK89D7TVFLLyxDzXk02DTEnU7LefPmKaFLUd25c2cl2LVQaoZg85w72zHkPSbbtWuX8tjT606zJNAZtcykaGzL8/IUowzr1s5604Mek0BnrjCKa4ppJrXjnBnS3qRJE+Wx9vT0VMnxGEnAsHV6x7kJT1HLaGuKbo6fXmue26bovXz5shL2ZMIz3bwGnbecB73TsZ1Bj0kU612LbHjmnOMbN26c0qZMpsdrcnNBC7PnPWSCPJZao3GzhfPmJoJ2Br1du3YqzwB1bZILdO4CcReEDxcHz10dAiVw7ugwVt9a4+4FBTvDEJhIgQkDmFzAniwpBPqW7eHYuiMC9Ws5o0Ft+6iHbs09TIra6Uwc93zZTFV2zbPnMDU854xZJOTdmhslbYWAGQFZF4w9EhToPuWKYGy+EAw6/zHu/54RPTq6osDPQ1R0j9egSXArUd5YZ9JKCAgBISAEbI4AM4nT600PMBOx0fNKT7GLiwvOnDmjRB7DvSlg6aGlMDQV6NRDzGR+4sQJ9XkKRPahGY8AU0RTM+kdK6a2opebIdwUwQxN165jCo0CeseOHcrDzyTddJTSOx+bB52bD3TKMqEdo58ptilaGaL/008/qRB1etgZMq5FDTDEnmfO6bGmGKaepFeeXNgfNzAoxGl01PI8N7lR2HO+TPoWFw86+9O7Fhkwmz3PuHPThGfZeYSAoe9ahAAZccz0mHMjgxssHDs/kzp1ajVXhuTz88ki0JlinzstBM/dBA063f4U6V999ZWhfyz//vuvSlfPM+iOYEkh0LVM7n5FnJTXxdHMtHb65SKt4euSKlGmyIRxpiXY6LGi50pMCAiBuBGQdcEYN1OBPvhiQ9w7mAFd27vg3QNjEfLbTnj19Ydb+erGOpNWQkAICAEh4FAE6OWmQKcDNCaj+KUOmz59ukPNXSYTOwHdEHe+iHF3hTs/zL7OnRPWf+PuCWvJMYzBiLF8AHeBsmXLZqS5zbdJCoF+9nwkpswOQ87sThg50PEEOm9yUnjRWXbt+dJXRzHCTgeoP9PMXi9edJv/VyYDtFUCsi4YuzOvBHpRjM33EkMufYy7BzKiS1sXFDnxNUJ2bYZn10Fwr1bfWGfSSggIASEgBByKgKUwdNMJUmux3ja96lqoNUtWs+65qdH7O2DAAIdio00mpc3X9CbqCnTWz2PIBMMteK6CZyQo1CnM6drn+QAjxjMKTBZgmlzAyOdstU1SCHTO3dEyuZvfT1MveqBfp0S/3cFzxiFk33Ypv5bopOUCjkxA1gVjd9dUoA+92gB39mVCp9Yu8DszDy+3rpbvIWMYpZUQEAJCwCEJ6Al0ho6z/BoFOkPWxVIeAV2BzpTyTFTA7OvMyscD8fw7MxVSsDPznRHjmQgerGcNPXrePTw8on0sU6ZMRrqxmTZJJdAH+YfiQSAcJpO7pRvodHye+nFkie6Jfn9Dj+xH0NShcMmdDz6Tlyb69eQCQsARCci6YOyuUqCnKVcUY/K9xLDrDfDfnkxo39IFJa8vw4t1i5C6WWekbtLeWGfSSggIASEgBISAEEgxBKwqs8asfXw5y549u0ouYNRYSo2JFGIyZvCzJ0sqgT55ZhjOXYzEgF6uKPC2Y2RyN7/PvgGL8Dg8BIF+HRPtHLrpNR+1r6kyu7M+ukvut+3psZOxCgGbJCDrguXbYirQh99ogFu/ZkLbT1xQ5uE6PP9uNlJ91BIerXvY5D2VQQkBISAEhIAQEALJR0BXoDPEQqtLZzpElhVgdsARI0YYGjlT0uuZXmZCQxdI4kZJJdAdPZM7b5t2Dn1P/gao7JP4OQq0MPdUdZrCo33fJH5y5HJCwP4JyLpg7B5SoKctVxSj873EiFsf4ebuzGjdzAXvP/8RwfMnw/3Dj+HZub+xzqSVEBACQkAICAEhkGII6Ar0UqVK4ejRo6/BYL03JgoyrZeXYogBSCqBrmVyf7+0Mzq2crxSa8kh0Jk07unADqr0Gr3oTl4+KenRlbkKgXgTkHXBGMJoAv2/j3BzZ2a0bOyCCpE/gxuF7pVrw7PHq/KPYkJACAgBISAEhIAQ0AhYFOisD0ejl9w8MyALwB88eBCBgYGqqLwRo8d95cqVOHfunCrmbm6srWdPllQCXcvkbspm4QzHKFWnzemz6wcw4+4pTMtZHp9lLpokj4FWeo1n0fmCLKHuSYJdLmLnBGRdsO4Gmgr0kffq48b2N/BJQxdUdv0FQTNHwb3Ch/DsYywKzborS2shIASEgBAQAkLAnglYFOibNm3C3r17sXPnTpQrVy7a/FhmLUeOHCq7O8+iG7G+ffuqovHM4s56fy1atMDly5dVLfWxY8eiVq1aRrqxmTZJJdCDnwN9BodGm7ejnUf3v3UUo24fw8isJeGfrVSS3OPIoKd45t9b1Ud38vRWnnTnzFmT5NpyESFgrwRkXbDuzpkK9FH36+PatjfQtIELqnruQ9DXw+FWriq8+o22rlNpLQSEgBAQAkJACDg8Ad0Qd9beo4COrzEcfteuXciQIQPq16+PrVu3qi63bNmiRPpXX30V30sk6eeTSqCbTmrNxnDs3heB6pWc0byR44S7T797Ev2uH0TfzEUwPWeFJLuPpiJdzqMnGXa5kAMQkHXB2E2kQPctVxSj8r3EqIf1cO3HLGhc3wXVfQ8haPJguJWqCK8BE4x1Jq2EgBAQAkJACAiBFENAV6BfunRJeclTpUqlgNy+fVuJav6sXr16cHIyllmcAv3AgQPw9PRUddQ3b94MeuJfvHihyq6xrro9WXIIdC3cPWd2J4wc6GpPuHTHqtVCr+SdDXsLNEjSeUXcvY0nvZoqL3qaOevlPHqS0peL2SsBWReM3TlTgT46sB6ubs2Cj+u6oFamI3g2oT9ci5eD9+ApxjqTVkJACAgBISAEhECKIaAr0Js1a4ZPP/0U1atXV2K6du3ayJ8/P27cuIGaNWuqWuhGrG3btiokvmLFiuoz7I9CncKc/R8+fNhINzbTJjkEOiffue+rcPeZE93gGb2UvM2wsXYgySnQOdZn/r0QdjoAqZt0QOpmnawdvrQXAimOgKwLxm45BXq6cu/BP98LjHlcD1e2ZMFHtV1QJ/sJPBvzGVyLloL3l9OMdSathIAQEAJCQAgIgRRDQFeg+/n5Yd++fUibNi1WrVqF7du3g4mCKNBbtmypwtONGGunp0mTBrly5cLJkyfRrl079fd79+4pwd6tWzcj3dhMm+QS6Fpd9A4tXVC+jLPN8IjPQB6Fv0S6gMXwdXFHoF/SC+Swf07g2ag+4kWPz02Uz6YoArIuGLvdpgJ97JN6uLw5C+p96Ix6eU6pjUHXQsXg7T/LWGfSSggIASEgBISAEEgxBHQFerFixVTGdg8PD9SpUwdDhw5VXvDQ0FDwJS2uZdb+++8/ULQzVP6dd95JFNjff/89pk+fjpCQEJWcbtSoUXBxef3sdnBwsMpWv3v3bhV2z/OVbK9nySXQd+2NwNpN4XC0smtOx+cp3JEluifKsxBbp5oXXa9dmtnrJZFcbCDl9ymCgD2vC+Y3iBvGgwcPVpvFBQsWVPlQMmfObPE+Llu2TFUjYSUSroeDBg3Svd+mAn3cs3q4tDEL6tRwRoP8Z/D0y65wyV8YPmO/SRHPjExSCAgBISAEhIAQME5AV6B37dpVZWyPjIzEkSNHVHI3nju/ePEi2rdvj99++y3WK/Gz169fB8uz5cmTJ9b2CdGAGeIZVr9mzRr1svXFF1+oDYWOHTu+1j2999wk6NGjB9zcjJUwSy6Bfu1mJEZPDkOG9MCkkcbGmhA8E7sP34BFeBwegkC/jvB1eZXvICkt9Mh+BE0dqntJSSSXlHdErmXLBOx1XTBnyjWJm7H+/v744IMPQAF+6NAhfPvtt6/hX7x4Mf744w9MnDgR6dOnN3R7lEB//z34532B8UF1cfH7rKhZ1RmNipzH08Gd4ZK3IHwmLDTUlzQSAkJACAgBISAEUg4BXYF+584dTJgwAREREaoees6cORWZbdu24cqVK0rU6tnNmzfRuXNnXLhwQTUrVKgQFi5ciEyZMiUq4fnz5+PJkyfo37+/us6///6LIUOGqOR0pnbmzBkMGzYM9LZbY8kl0DnG3oNC8fwF1FlGml8RJ+TKbixZnzVzTMq2lc9uwb5nt7AnfwNU9smWlJeO9VrhV87j6cAOEgIfKylpkFII2Ou6YH5/mAOFVUrWr1+vfsV1jmVFGU3l4+MT1ZxCvmrVqmr9SJcuneHbTIGe/n0/jMz7HONf1MHFddlQo7IzmhS/jKcD2sMldz74TF5quD9pKASEgBAQAkJACKQMAroCPb4IKJAfPnyoQsjpeaenwtvbG+PHj49v17qfZyh+yZIl0ahRI9WOIYn8+6lTp6J97rvvvsPp06fx7NkzFRWQO3dujBw5ElmyZNHtPzkF+uKV4Th0JCJqfB4ewIDernYt0m1ZoBO0FgLv2WMo3CvXSdRnVzoXAo5OILnWBXOurEhCj/mkSZOiftWkSROMGDECRYsWjfrZ2bNnVTg7xTtzslC8c8Oaa4qemQr0CS/r4MLabKj6gTOal72BJ/1awTlHbqT5eoWj326ZnxAQAkJACAgBIWAlAYsCnefxmBju8ePHut3F5gmvUKECvvnmGxQuXFj1w7PnzP6e2GXVPv/8c5UpnucENaOoPnfuXLTScNw4YDTAvHnz1PnDFStW4NdffwXDGTXr2bPnawx27tyJ8+fPW4k6YZqz3NqZC68E+vWbkQg4FQl7F+mfXT+AGXdPYWTWkvDPViphQCVgLyF7tyF47njxeCUgU+nK/gjY+7pgTnzt2rVqg5b5STRr3bo1evXqhbJly0b9jMlQGS3G9YLrFz/Do1FcB1g6lMY14/jx49EuwY3hNz+sgBF5n2NiSG2cX5MdVSo4o0XF//CkzydwzpIDaWausb8HQUYsBISAEBACQkAIJCoBiwL9/fffB19Upk3TLwETm0gtUKCAOrtOsa8ZxTprovv6+ibaxBi2/t5774HlgGj0kPOFi4npTO3rr79WieHo6aAxlJFekRMnTkQJeYp6c6tbt26yCXTzsWgedXs+l+5/6yhG3T5mswKdzB+1rwkEB6nMy5bMycsbXgMmJNozLR0LgeQmYO/rgjm/H374QXnEmRhOswYNGmD06NFq/dCMiVJnz56N1atXR/2sTZs2UblN+MPbt2/j6dOn0S4xa9YsZK5YQgn0SWG1cW5VdnzwvjPaVLuPxz0awznjG0gz17rjVcn9DMj1hYAQEAJCQAgIgcQnYFGgU9DSM/D8+XPdEXh5een+nl5rCnTNy8DG9KrzzPcbb7wR9dlUqRI2MRi9GTwnyXPnNGbqpWhnkjtT49lD7Rwif86M7wxjNPeEmE8yOUPcLQHX6qMvnGGfieOm3z2JftcPol2GAliau2riP/VxuMLzpTPwcturs6oxmdRSjwNY+YjdELD3dcEcNKuQcF3QcpOEhYWhdOnSKorKdAP52rVr6NSpE3bt2hXVxSeffKKOQzGvSkzGjd8M7/spgT45ojbOrsiOCmWc0a7OIzz+tAGc0mVE2m+j50Wxm4dBBioEhIAQEAJCQAgkGoFYz6AzcQ5D3VmijLXLrTEKWSMWmyfeSB+mbbQ67fR4aFnc8+fPr0IX6TG5desWWrRooeZVq1YtLFq0SL1oMXsvX9pmzpype0lbE+haffQBvVxR4G37Sxi39+ktVDm3BZW8s2FvgQbW3u4kaR8Z9BRMGGfJIu79p0LgaT6Tl8Alt7HnPkkGLhcRAolAwB7XBXMMnAO//4cPH67KhzKLOxPELV++XCWMY+h77969kTFjRjRv3hwNGzYEhTkjrHiMiiHu7u7uxgR6ZC2cXZ4D5Uo5o+PHQXjcsQ6cfNIi7aKfEuHuSJdCQAgIASEgBISAPROIUaDfv38fU6dOxc8//6xCxGksL8Pw7n79+kXLchsTAAplI8ZSbgltP/74o0r+8+LFC1SqVEklpuPL1IIFC8CkP5wbjecLmck3KChInZUfN26ceiHTM1sT6Gs2hmP3vgh80tBFZQm2N7MHgR4bU83DLpmZYyMlv7dnAva+LpizZyWPgQMHqk3bvHnzqnWB1Up4fpx5TBiNxe97etHZjn9y05fi3TQM3tI9pQc94/t+GE4POmri7Hc5UaaEM7o0fYlH7T4EPL3gu/Rne34cZOxCQAgIASEgBIRAIhCwKNCZeZ0Z0JmttkuXLsiXL58St0yOwzJpoaGh2LBhA2ILcU+E8dpEl7Ym0A8ejsCSVeF4v7QzOrZ6VX7NnuxR+EukC3iVmC+yRHd7GnrUWOlhZ+mkiPt3IKHudnkLZdCxEJB1wbpHxFSgT3WuiX+X5kSpYs7o2t4Fj5pVANzd4bviV+s6ldZCQAgIASEgBISAwxOwKNDpbeY57HXr1qnQdlOjZ4HJ1+hdYPhfSjRbE+jXbkZi9OQw5MzuhJEDXe3yljgdn6fGrYW4v+eRAb4uCZubILHBhP1zAs9G9VGXkVD3xKYt/Sc1AVkXrCNOgZ6pvB++fOs5prrWwr+Lc6D4e07o0dEbWGIAAAAgAElEQVT1lUAH4LvugHWdSmshIASEgBAQAkLA4QlYFOjVqlXDl19+iSpVqlgEwLB3ZqhlGHlKNFsT6LwH9p4ozjdgER6Hh0Q9Tpvy1sLHvnns7vGSUHe7u2UyYIMEZF0wCOr/m5kK9K/cauL0opwoVsQJPTuLQLeOpLQWAkJACAgBIZCyCFgU6O+8845KlpM9e3aLNFjPvEaNGjh16lTKovX/s7VFgW7vieJYCz0g+AGuhDzB1ZBnNl1yTe+hNw11N2/n5OmNNHPWw8nLJ0X+u5FJ2zcBWResu3+mAv1r95r4Z2FOFH3XCX0+dcWjVlWB0BDxoFuHVFoLASEgBISAEEgRBCwKdArQgICAGM+YM6Gan5+f4VrgEyZMiCp5ZkqVZdymTJmCESNG2BVsWxToWj10e00Upz0A9lATPbaH1TTU3bytZ4+hcK9cJ7Yu5PdCwOYIyLpg3S15JdCL4cu3gvF1qg/xz4JcKPyOEz7r5opHbT8EXgTD97tdQGoP6zqW1kJACAgBISAEhIBDE4hRoM+dOxcx1SfnOfQePXoYFuilSpXC0aNHXwPJfooXL65Km9mT2aJA37U3Ams32W+iOO3+L31wBh2u7LHpmuhxeVZD9m5TpdicM2VBmjkb4tKFfEYIJCsBfu/JumD8FlCgZy5fDMMo0D1q4J9v38SbOZ3QrIELMo2tC+fnT3Dvy22I8PhfRE2e3E5wdzN+DWkpBISAEBACQkAIOB4BiwKdZcmMGGuK6xnrydLoJR8wYEC0puHh4Th48CACAwNVRnh7MlsU6GfPR2LKbPtOFMdnwBFKrsX0LD/p0VhlefceOROu7xa3p0dexioEVLlKI5ZS1wVzNqYCfZpXDfw9782oJiPuNEKaiED4v7EJz5x9o34+bpgb3shshLK0EQJCQAgIASEgBByVQIx10BNiwps2bcLevXvxf+ydB3hUxdfG31QgIYA06YYWem/SexUEaSIghCaCgIUOAqGIgKB0C0qvUiR0ETGA8EfpIB2kiEFEBFIgJNnd7znDt3HTNjfJJrm7+87z+BiSmblnfufuzn3vzJyzd+9e1K5dO1aXrq6ukPznksYtsbPutrAhLfrQo0CXcdp7oDhHF+gR336DiE3L4FG9HrxHzUiLW5N9koDuCTjqvJCQQH+xbhWMK/YEi3I0R9hO35gqbxzrCp9nf2NtjY0Iy5QHN/8wITISmDLWHQXyuejehzSQBEiABEiABEgg7QikqUA3my0R4adNm5Z2o0jnnvUq0EcHROHBQ2DGJA/kzpnOUGx0uZuRoSh6bjVyuHniYeV+NupVH91IALnH73QGnoQj28KNcM2bXx+G0QoSyAACjjYvWBPoa4s2wxs5S8ZUCRnaFcZ7wci28Fu45i2AgJnRuBNsQsBodxQqQIGeAbcjL0kCJEACJEACuiGQLgI9KioKHh7/HayT7e1nz55Fvnz5kD+//YkUvQp0e4/kbv5UmHOim6oN0s0HxVaGPFn0ESIP7Ebmzn2QuatjvYCwFSP24xwEHG1esCbQ1xRthu6WAv297jAG30a2uWvhWqAIps6Oxq0/TJg40h1FClGgO8cngKMkARIgARIggYQJpItAHzRoELp06YImTZrAZDKhX79+uHDhAiRI3PTp09G6dWu78g8Fetq6y5EFetSvBxE+exzcy1ZG1oCFaQuSvZOAjgk42rxgTaCvLtoUPXL6xVQJHekPw61r8Jm9Am5FiuOjOdG4cduE8cPdUbQIBbqOb1uaRgIkQAIkQAJpTiBdBHrNmjWxbds2tWK+f/9+SNq17du3q+jtEyZMwK5du9J8oLa8AAW6LWnG76vyhW9x5ukDnCrbBZWz5E7bi6Vz72qbe5/nL6SyL9vNnOjpzJ+X0w8BR5sXEhLo+epWwdhiT7DStynezGUh0McPhOHqefhMXwK3EmXw8dxoXL9hwrj33VHMlwJdP3cpLSEBEiABEiCB9CdgVaAPHToUkyZNQu7cqRNJ5cuXx8mTJ+Hp6Ql/f3+88sorakVdtrpXqlQJv/32W/qPPBVX1KtAX7/FgH0HjLD3XOiNLgfiQFgwfvJrj0Y+BVLhKX02DQsYgugLp+E9Yjo8ajbQp5G0igQSIcB5QdutIVHczQJ9hW8T9MpVKqah+Tsg6+RFcC9TCTPnRePq7yaMftcdJYtRoGsjzFokQAIkQAIk4JgErAp0yVG+efNmFC1aNFWj79SpE/r06QN3d3cl+CUNT+bMmfHXX3+hXbt2CeZIT9UF07ixXgV64G4Dtu8xol0rV7Rv7ZbGFNKue0cX6OZo7p4NW8PrnfFpB5I9k0AaEOC8oA2qCPT8datiTLFwLPdtgt6WAn3a+4g+ewxZP/wM7hVrqBSZkipz5BB3lCpJga6NMGuRAAmQAAmQgGMSsCrQFy9ejN9//11tSbcM8pZcFMePH8ewYcPUirnkRG/Q4Pmq4bp165RY/+KLL5LbZYbWp0BPW/wBwccw+e5xTMpfHQEFaqTtxTKgd8PNqwgd1QeuefIh26JNGWABL0kCKSfAeUEbO0uBvsy3MfxzlY5pGD5zNKJOHIb3mFnwqFoHny6OxoXLJgx/xx1l/CjQtRFmLRIgARIgARJwTAJWBfqKFSuwfv16REREoFq1asiSJUssClOnTnVMKkmMigI9bd3u6AJd6D3yb8l0a2l7G7H3NCLAeUEbWEuBvtS3MfpYCvRPJyDq6E/wHv4RPGo1xNwvovHbRRPee9sd5ctQoGsjzFokQAIkQAIk4JgErAp0WTm3VsaOHauZikRsP336tNrW3r59e9UuMjJS/V/OpttT0atAly2SslXSr7gLRg1ztyeksWx1BoFuTrfmUaM+3Hz/y4+ckNO01LFbZ9NwuyPAeUGbyywF+jcvNUbf3P+toD9ZMAWRh/bCe9gkeNRrjvlfRePseROGveWOiuUo0LURZi0SIAESIAEScEwC6RLF/dq1a+jfvz+ePHmCkJAQXLp0SdGU1flDhw5h0aJFdkWXAj1t3RUUGozGVwLRMGsBBJV6/jLH0Upk0C48WTxd07A8qteD96gZmuqyEgnYCwFHmxficheBXqBuNYwuFoavX2qEfrnLxFR58sUMRO7fAa9BY+HZ+BUs+joap86ZMKS/OypXoEC3l3uYdpIACZAACZBAWhBIUqBfuXIFe/bsUSvfkrNcijxYSSlRooQmm3r27ImGDRtiwIABKFeunEqvJuX27dsqmvsvv/yiqR+9VKJAT1tPOINAN/59FyLSkyoRm5apKtkWboRr3vxJVeffSSBdCHBeSBqzpUD/6qWGGJC7bEyjp1/PwbO938Gr/wh4tuiAxUujcfKMCYP7uqNqJQr0pOmyBgmQAAmQAAk4LgGrAn3fvn0YMWIE6tevD/n54sWLioT8vHTpUqxdu1YTmYoVK+Lo0aPw8vKKJdD//fdf1KtXDxcuXNDUj14q6VWg3/7ThCmzopErJzBzkodecCXbjtNP/0GVCxtROUsunCrbNdntHamBeSt85s59kLlrP0caGsdipwQ4L2hznKVA//KlhnjLUqCvXIBnOzYgi/8wZGrTFV8uN+DYKSMG+ruhRhVXbRdgLRIgARIgARIgAYckYFWgt27dGhMmTECdOnViCet79+5B/ia5zbUUidoukdrLli0bq5+tW7eq38sKvT0VvQp0Ydj/3SiF8ut59ivQxX6XE5+rcZiqDbKnW8PmtkafP4mwycMY8d3mZNlhSglwXtBGTgR6wXrVMKpoGL4o0gAD85SLaRix9ktEbF2FLD0GIVP7Hliy0oBfThgxoJcbalWjQNdGmLVIgARIgARIwDEJWBXosh1dUqRJ9HbLremy3b1p06YxW9WTQiMr7bLiPnToUEhgOUnTI/1KNOBp06bFBI1Lqh+9/J0CPe09QYH+H+OQwZ1g/OcevEdMh0fN5ykKWUggowhwXtBG3lKgf16kAd62FOgblyJi41Jk7tofmTv745vVBvzvmBH9erqhdg0KdG2EWYsESIAESIAEHJOAVYEu0dYlf7mIcUuBPnv2bJw6dQpr1qzRTEXynYtIl/Prkg9dzq8PHDhQbZ+3t0KBnvYey3H6Gzw2ROJGhZ7w9fRJ+wvq+ArPdn6Lpyvmx1go+dN9Zi2Di7dzc9GxyxzaNM4L2txrKdAXF2mAQZYCfesqyCp65tfeROY3BmL5WgN+/sUI/+5uqFeLAl0bYdYiARIgARIgAcckYFWg//rrrxgyZAiaNWuGLVu2oE+fPmrlW0S2rH7L2XJnLHoW6KMDovDgITBxlDuKFLTfYEONLgfiQFgwfvJrj0Y+BZzxNosZsyk8FI/7tI7FwL1sFWQNWODUXDj4jCHAeUEbdxHohepVw8iiYVhUpD4G5ykf09D80i1T227I0msIVm4w4OARI3p3c0P92hTo2gizFgmQAAmQAAk4JoEko7hLIDdJh2a58t2jRw/kzJlTE5Hw8HD8+eef8PX1VfnOHzx4gO+++w5GoxGNGzeGiF17K3oW6LPmR+PKdRNGDnFHqZIU6PZ2byVlrxLr73QGnoQjU5suyOL/blJN+HcSsDkBzgtJI7UU6AsK18OQvBX+E+h7v4NEcs/UqhOy9H0fq781IOiwET27uqFRXQr0pOmyBgmQAAmQAAk4LgGrAl3EdK5cueKNPjo6WqVdK1SokFUyErn9rbfewtOnT1GsWDEsX74cb7zxRkyfkg/9q6++Qt26de2KMAV62rvL/+Z+rHhwGct8G8M/V+m0v6AdXcFw8ypCR/VRFmedNB/u5arakfU01d4JcF7Q5kFLgT6/cD0MtRDokgNdcqF7Nm0Hr4GjsXazAfsPGtG9kxuaNKBA10aYtUiABEiABEjAMQlYFeg1atTAsWPH4o08MjIStWvXxokTJ6xS6datGypVqoT3338fmzZtgkRtf/nll1XqNikSLC4oKAjffvutXdGlQE97dwUEH8Pku8cxKX91BBSokfYXtLMrPF0+D892beQqup35zRHM5bygzYuWAn1e4XoYZinQD+3FkwVT4NmgFbyGfIgN3xnwQ5AR3Tq6oVlDCnRthFmLBEiABEiABByTQIoEuoj2QYMGqfPo1kqVKlUQGBiIIkWKqMBwEmhOtreXKVNGNQsODkabNm1w+vRpu6KrZ4G+fosB+w4Y0a6VK9q3drMrrpbGmgW6BIjzzWS7YGiVsuTC3ML17JaL2XBz+jU33xLwmbXc7sfDAdgPgcQEurPPC3E9aCnQ5xaui3fz/hezJepoEMI//RAetZvA+/0p2BhowPf7jejS3g0tm1Cg28+ngZaSAAmQAAmQgO0JJCjQO3bsiD/++AOPHj1Cjhw5Yl1VhLacKx8+fLjavm6tiJCVaO9Zs2ZV1apXr44dO3YgX7586t/ST+XKlXH16lXbjywNe9SzQA/cbcD2PfYv0Lc+uoHXru+xuRcbZi2AoFLtbd5vRnT4yL+lOouebeFGuObNnxEm8JpORIDzQvKcLQK9cL3qGFE0FJ8Vrov3LAX6icMInzkaHtXrwXvUDGzebsDufUZ0aueG1s0o0JNHmrVJgARIgARIwLEIJLqCfv36dfTq1QuLFi2KNWJXV1cULFgwwbPpcdGIkJXVcW9vb/UnWXnZvn07BXoa3kOOItAfGZ7h9JMHNiXV+Eogcrh54mHlfjbtN6M6C581BlHHf4bX4HHwbNQmo8zgdZ2IAOcF7c4WgV6kfnUM9w3Fp4Xq4P0XK8U0jj57DGHT3od75VrIOm4Otu40YMdeI157xQ2vtKBA106ZNUmABEiABEjA8QhY3eIuQdxKl055gC4R6BUqVICIeim//fYbSpUqBQ8PD/VvieR+7tw5rqDb8L4yC3Q5xyjnGVn+I+By4nP1D1O1QQ6BJTJoF54snh6zCucQg+IgdE+A84I2F1kK9NmFamP4i5X/E+gXTiMsYIgK8CiBHs3f23IsSY4nsZAACZAACZAACTgvAasCXQT0hg0b1Lb0e/fuYd++fYrUzz//rLant2zZ0iq5zZs3ayLbqVMnTfX0UknPW9wvXzXhk4XR8CvuglHD3PWCTBd2OJpAN/59FyFDusDFKyuyL7f9cQBdOI1G6I4A5wVtLrEU6J8Uqo0RFgLdcO0CQse9BTe/8vCZ9gV2fG/E1l0GtG3pig5t+GJVG2HWIgESIAESIAHHJGBVoC9cuFCJ8549e2L69Om4cOGCoiDB4SZOnIhdu3bploq8HJg7dy4k4nzz5s0xefJkuLkl/uBz6NAh9O3bF0eOHEGePHmsjosCXbdut2pY5Qvf4szTBzhVtgsqZ8ltn4OIY3XI4E4w/nMPXoPHwzXv89gOUlxz5+O5dIfwsP4GYc/zQlyaZ8+exZgxY3D//n21W2zOnDnImzdvotClXuvWrREQEIC2bdtadY6lQJ9VqDZGWgr0m9cQOsofbkX94DNzKXb9YMSWHQa0ae6Kjm0p0PV319MiEiABEiABEkg/AlYFev369bFixQqVw1wisJ8/f15Z9vDhQ8jfZMu6HsuNGzfU+fn169erhy0JaCfB6ESAJ1TCwsJU/YiICDVeCnQ9ejX1NjW6HIgDYcH4ya89GvkUSH2HOujBnG4trimyqu4zaxlFug585Ggm2Ou8ENcPEvBUXt6K2G7QoIH67pcXtF9++WWiLnv77bfV7rHXX389WQJ9ZsGXMSpflZh+jX/eQsj7PeBaqCiyfboKe340YtM2A1o1dUXnVynQHe0zw/GQAAmQAAmQQHIIWBXo5cuXx9GjR1UUdkuBfu3aNXTt2hUnT55MzrXSre5XX32FkJCQmHzrFy9exNixY1Ue9oSK/K1OnTqQdkuXLrVrgf7Pv8CYyVHIlROYOen5WX+W5wQcUaBLurWIjUtjuVi2vsuqOlOw8c5PCwL2Oi/EZXHmzBlMmzYNGzduVH+Srfu1a9dWR7l8fOKndpT5Q3aPZc6cWb3w1bKC/lL9GvjANwRFPX3wTt7yMefQjX8HI2RIV7jmK4hs8zfgh5+M2LDVgBaNXdG1AwV6Wty37JMESIAESIAE7IWAVYE+YMAAVKxYEUOHDo0R6JJ67YMPPkD27Nnx2Wef6XKc48aNUyndJC2QlGfPnql/S0C6uOXAgQPqAU22bcrWxZUrV9q1QJfx9X83Sg3z63kU6Jb+fu+PnzHv73OYlL86AgrU0OW9awujTOGhCB3pr0S6Z6PWavs7CwnYioC9zgtxxx8YGKhWzGfOnBnzp86dO6vjWzLvWZa///4bMu41a9Zg9uzZaj5JjkCXvnrl8sMK36aqW9PDf/B4YAe45MqL7J9vwb4DRqzfYgCDe9rqLmU/JEACJEACJGC/BKwK9Lt37ypxLlvaJS+6rJzI6rmc1Vu8eDFy59bnOV55gdCsWTO0afNf6ik5N37lyhW4uLjEeCs0NBQ9evTA8uXLkTNnzgQFuqy+xy2vvvqqriPPU6An/IEMCD6GyXePO7xAl9Ebbl5FaMAQlSedadjs9wtaj5bb67wQl6UEQJW4KhKfxFwk3sqQIUPw8ssvx6o+cOBA9OnTR/1etsTHFeh//vmn2rVlWWSObNC8KS7VKISJwcfQKUcxbCr+PLCqKSwEj/u2gUu2HMj+9Q78dMiINZsMaFzfFT06cwVdj/c9bSIBEiABEiCB9CJgVaCbjThx4oQS5nJmr0SJEqhZs2ay7Ett1N9kXQzA+PHjUalSJbUNX4qcMZcHq7hn5kePHo1GjRopYS4loRV0eUERt+zZs4cCPblO0UF9ZxLogtuchk1+pkjXwQ3oYCbY27wQF/+2bdsgO6gkMJy5tG/fHlOmTFHzh7lIwFGZOyZNmqR+lZBAl5e8wsOySEwT6c+9QUW0vroTrbMVwa6SrzyvEvEUj3o1B7J4IceKvThwxIhVGwxoWNcVb3alQHewjwqHQwIkQAIkQALJIqBJoCerxwQqp3fUXzlHLmnh5Gy5FInUK6J9+/btsayTc/Wenp4xv5PgP97e3mpFRVbJEyt6juKuHiBnRuNOsAkTR7mjSMH/dgyk1o/23j4oNBiNrwSiYdYCCCrV3t6Ho8l+S5HuPWI6PGo20NSOlUggrQmk97wQdzwS9FTmBXNskujoaPXyef/+/ciRI0dMdVk5P336dMy/5ciUZASRI1SWq+9x+5co7rKTK1ujqmh4Of73zqOu9VSTHN/+jEP/M2LFegPq13ZF724U6Gl977F/EiABEiABEtAzAasCXVKUyeqBbPMW8Rq3WK48WBtkekf9vXPnDrp3745169bFRHH38/NTWxdlxSQ4OBhvvPFGPJMd5Qz6rPnRuHLdhJFD3FGqJAW62dHOKNBl7M92founK+bDo3o9eI+aoefvI9pmBwTsdV6Ii1Z2drVq1QoTJkxQWUkkirsEiFu1apUKGCfiW3ZQxT3KldAKekJuMwv0fE1qocbFTajplRe/lOkUU9VSoB/51YilawyoU9MVfXtQoNvBx4AmkgAJkAAJkECaEbAq0EeMGIFLly6pFDQSuTZuGTZsmCbDMiLqr+Rvl+A/ss2wYcOGKo+7rJYvWbIEly9fVoF+4hZHE+iFC7rAKwvUQ1/dWq6afOXIlZxVoEvQuMd9nh/jyL5sN1y840eodmS/c2y2JWDP80JcEjK/jRo1Sr20LV68uJoXChcurAKLyuq37MaSHVOWJbkCvVizuih3fj3KZ86Jc+Ve/0+g92wKRD5TK+hHjxvx9SoDatdwRb+eFOi2vWPZGwmQAAmQAAnYFwGrAr1evXrYu3cvvLy8UjUqR4n6a4ag9y3u5hV0s73tWrmifWs+9AkPlxOfKyymaoNSdU/bW+PwWWMQdfxnnkW3N8fp0F7OC9qcYl5BL9eiAYqdW4NintlwvUKPmMby0kxenskZ9F8vZsZXKwyoWdUVb/Xmd7U2wqxFAiRAAiRAAo5JwKpAb9q0KX788cdUj9xRov7ai0CXXOgPHphw+08TNnxnQOUKLhjS3z3VfnSEDpxVoJvPojM3uiPcxRk7Bs4L2vibBXqNVk2R78xy5HPPgruV/P8T6G+9CtOjf1UU9xO/Z8cXy6JRvbIL3u7D72pthFmLBEiABEiABByTgFWBPm3aNJV+TFbAPTxSn1M7tVF/9eICva+gmzldvmrCJwuj4VfcBaOG8aFPuJgF+sPKfZHDLZNebqk0t8Nym3u2hRvhmjd/ml+TF3BMApwXtPnVLNAbtmmJbKe+RjZXDzyu0j+mccg7nWG8/5fKg376zzxY9E00qlZ0weB+/K7WRpi1SIAESIAESMAxCVgV6JI3XCLVmkwm5MmTR0WutSy2WF23R6wU6Pbotec2N7ociANhwfjJrz0a+RSw34GkwHLzNvdMbbrCo2b9WD24l62Sgh7ZxBkJcF7Q5nWzQG/btm2CR2tC3usOY/BtZJu/Aef+KYAFS6JRqbwLhg6gQNdGmLVIgARIgARIwDEJWBXoIs6LFSuGFi1aJBgkToLHaSlPnz7FypUrVS7ZhKLBSyAeeyoU6Pbkrdi2OrNAt0y5FteDWSfNh3u5qvbrWFqebgQ4L2hDnZRADx3RG4bb15Ht01W4EOqLuV9Ew9sLKJjfBc0auqFqJWbg0EaatUiABEiABEjAsQhYFeh16tTB4cOH4eKSugcFiforOWfbt2+v8ozHLW+++aZdUbUXgS5n0KfMikaunMDMSak/omBXTkrE2A7XdyPw0U18V7wVOuQo6ghD0jwG2eYe/snYWPWNf9+F8Z97yNy5DzJ37ae5L1Z0XgKcF7T53lKg5zj9DR4bIvGocj9kd/NUHYSO7Q/D9UvwmbkUlyNL4tPF0TEdv/6aG5o3YuYNbaRZiwRIgARIgAQci4BVgS5pxwIDA1V6stSU6tWrY/v27cif3zHOvdqLQBef9X83Srnu63kU6MIhIPgYJt89jkn5qyOgQI3U3NYO0Tbq14MInz0O7mUrI2vAQocYEweRtgQ4L2jjaynQC5xdgbtRTxBcsTfyezzPihI2cTCiL52Fz7QvEFGoPO78acJPh404fsqIrh3c0KIxBbo20qxFAiRAAiRAAo5FwKpADwoKwvr169GvXz8UKFAgnlCXc+laSpUqVdRKfGrTtWm5VnrUoUBPD8ppcw0K9NhcLYPHST5mFhJIigDnhaQIPf+7pUAv8dsaXH8Wgmvle6B4pmzPBfrU9xB97jgsj5ds2mbAnh+N6PyqG1o1pUDXRpq1SIAESIAESMCxCFgV6BUrVoScH0+sXL16VRONMWPGQPrq3r27pvp6r0SBrncPJW7f3L/P4v0/DqN3rlJY7tvEfgdiQ8tDR/rDcOsavEdMh0dNbXElbHh5dmVnBDgvaHOYpUCveGEDzj39F+fKvo7yWXI+F+gzRiL65P+QddwcuFeupX63ZYcBu34wolM7N7RuRoGujTRrkQAJkAAJkIBjEbAq0BMK6GY5/ITOk5v/PmHChJiqBoNBbZUvU6YMihYtGi/g3NSpU+2Kqj0K9PkzPOCVxa4wp4mxQaHBaHwlEA2zFkBQqfZpcg176zTi228QsWkZMrXpgiz+79qb+bQ3nQlwXtAG3FKg17q4Gb8++RvHynRGda/nO8/C54xH1C8H4D3iI3jUbKh+991OA3buNeK1V9zwSgsKdG2kWYsESIAESIAEHIuAVYGemqF+/PHHmpuPHRs7cJXmhhlU0Z4E+qz50bhy3YSRQ9xRqmTqgv1lEG6bXpYCPT7O6PMnETZ5GNx8S8Bn1nKb8mZnJGBJwJHnhbiethTo9S59h8Phf+FI6ddQ2zufqvpkwRREHtoLryET4Nmgpfpd4C4Dtn9vRIc2bmjbkgKdnx4SIAESIAEScEYCSQr0c+fOQfLePnv2LB4fR9mynlzHU6Anl5h+6t+MDEXRc6vh6+mDGxV66sewDLbkUdd6yoLsy3bDxdsng63h5fVOgPNC0h6yFOiya0deDh4o1R4NshZ4LtC/moXIfdvg9dZIeFLbOyEAACAASURBVDZ7vptn2x4jtu024NXWbni1FQV60pRZgwRIgARIgAQcj4BVgb5o0SIsWbIElSpVwpkzZ1C+fHncunULYWFh6jz5yJEjNRHp0qULNm7cGK+unG9//fXXsW3bNk396KUSBbpePJEyO1xOfK4amqoNSlkHDtgqLGAIoi+c5jl0B/StrYfEeUEbUUuB3uLqdvwQcgf7/NqhqU8h1cHT5fPxbNe3yNJ7GDK90lX9bsf3RmzdZVCr57KKzkICJEACJEACJOB8BJLMg7506VKULl0a7dq1U6nSjEYjZsyYgRdeeAGDBmkTODVq1MCxY8fi0b1//z6aNm2Ks2fP2hV5CnS7clc8YynQ4/uP59Dt+55OT+slDzrnhaSJWwr0V67txK7Ht7G75Ctola2Iahyx7ktEfLcKmbu9hcwde6nfSYA4CRQn58/lHDoLCZAACZAACZCA8xGwKtArVKiAEydOqPRqbdu2xY4dOxShx48fo2XLljh69KhVYkOHDoXJZML+/fvRpEnsiNkSOE62SVatWhXz58+3K/L2JNDXbzFg3wEjXn/NDc0bccuk3GgU6PE/bjyHbldfQRlqLOcFbfgtBXqH67sR+OgmtpVojXbZfZ8L9C0rELF+iRLnItKl7N5nxObtBhXBXSK5s5AACZAACZAACTgfAasC/dVXX4UE9SlXrhx69+6NUaNGqZ9l5bt58+Y4ffq0VWLBwcGQnLkzZ87E4MGDY9V1dXVFoUKFVD/u7u52Rd6eBHrgbgO27zGiXStXtG/NBz650RpdDsSBsGD85NcejXyenwdlAXgOnXeBFgKcF7RQip0Hvcvv32PTw9+xuXhLdMxRTHXwbMcGPF25QG1vl23uUr7fb8TGQIPKgS650FlIgARIgARIgAScj4BVgS5nw/Pnzw/Zor5r1y5MnjwZDRs2VOfRJWXa3LlzNRHbvHkzOnXqpKmuPVSiQLcHLyVuIwV6wmzCZ41B1PGf4TV4HDwbtbFvJ9P6NCPAeUEbWssV9O43fsC6f69hXdHm6JazhOog8oeteLJkNjybd4DXgBHqd3t/MuLbrQa0aOyKrh0o0LWRZi0SIAESIAEScCwCSUZxtxzujz/+qLa1y8p3t27dkClTJseioXE0FOgaQem0GgV6wo55tvNbPF0xH54NW8PrnfE69R7N0hsBzgsJe8RSoPe++SNWPriClb5N8WYuv+cC/eAePFk4DZ4NWsFryIfqd3IcSY4lyXEkOZbEQgIkQAIkQAIk4HwErAp0OUM+adIk5M6d2/nIWBmxPQn0w78YsWytAXVquqJvDz7wiVsp0BO+uQ03ryJ0VB+45smHbIs28TNPAgkS4Lyg7cawFOgDbgXh638u4puXGqNv7tKqg6ijQQj/9EN4vNwI3h9MU7/78aAR6zYb0LSBK97oxO9rbaRZiwRIgARIgAQci4BVgS4B3GR7etGiRR1r1KkcjT0J9MtXTfhkYTT8irtg1DD7OuufSjcl2tz/5n6seHAZy3wbwz/X84dllucEHvm3BJ6EI9vCjXDNm59YSCAeAc4L2m4KS4E++PZBfH7/PL4o0gAD85RTHUSfOoqwj0fAvcrLyDp2tvrdT4eMWLPJgCb1XdG9MwW6NtKsRQIkQAIkQAKORcCqQF+8eDF+//13FSjOw8PDsUaeitFQoKcCng6aBgQfw+S7xzEpf3UEFKihA4v0YwLPoevHF3q1hPOCNs9YCvR3//gZ8/8+hwWF62FI3grPBfqFUwgLGAr3slWQNWCB+l3QYSNWf2tAo7qu6NmVAl0badYiARIgARIgAcciYFWgr1ixAuvXr0dERASqVauGLFmyxBr91KlTNdO4du0aLl++jPDw8HhtunbtqrkfPVSkQNeDF1JuAwV64ux4Dj3l95WztOS8oM3TlgJ9xJ0jmHPvDD4tVAfvv1hJdWC4dhGh4wbArUQZ+Exfon538IgRKzcY0LCOK958nQJdG2nWIgESIAESIAHHImBVoMvKubUyduxYTTS+/vprFfG9VKlSyJw5c7w2a9as0dSPXirZk0C//acJU2ZFo3BBF0waxS3ucg9RoCf+SWI+dL18y+jXDs4L2nxjKdDH/nkUM/46hZkFX8aofFVUB8bbvyNkRC91lMRr0PO59NwFE/bsN6JiWRe0bOKq7UKsRQIkQAI6J+BerqrOLaR5JKAvAsmK4p5S0+vXr49Vq1bB19c3pV3oqp09CXQB1//dKMXv63k8pkCBnvRHyZwPPce3PyddmTVIIIUEHG1eiIvBUqBPDP4VU++ewLQCNTE+f7XnAv3vYIQMsa/dYyl0NZuRAAk4OQE+Tzj5DcDhJ5tAugj0xo0b46effkq2cXptQIGuV89osysoNBiNrwSiYdYCCCrVXlsjJ6oVMrgTjP/cg8+sZXDzLelEI+dQ05OAo80L1gT61LvHMTH4WKy4F6bQxwifEzudYUioCXfvAdl9gHwvuqSnO3gtEiABEkgzAlkDFqZZ3+yYBByRgFWBbg4Qd+XKFTx79izW+N3c3HD48GFNTAYOHIh+/fqhZs2amurrvRIFut49ZN0+CnTrfMIChiD6wml4j5gOj5oN7NvZtN7mBDgvaENquYI+46+TGPvnLxiXryo+Klgr0Q6OHjfi61UGvFzdFf3f5Bl0baRZiwRIgARIgAQci4BVgd6tWzeIGO3QoQNGjx6N6dOn48aNG1i+fDnmzJmDsmXLaqJx69YttG/fHhUrVkT+/Pkh4t6ySL/2VCjQ7clb8W2lQLfuv4hvv0HEpmXI3LkPMnftZ9/OpvU2J8B5QRtSS4E+595pjLjzP4x8sTJmFaqdaAe/njTiqxUG1KrmigG9KNC1kWYtEiABEiABEnAsAlYFeoUKFXDs2DEV2K1t27bYsWOHGv3Jkycxa9YsFeFdSxk6dChkFb5evXoJBokbOXKklm50U8feBPqs+dG4ct2EkUPcUaokt01SoFv/KEUG7cKTxdPhUb0evEfN0M3njobogwDnBW1+sBTokmJNUq29l7ciPitcN9EOjp0y4svlBtSo4oqB/hTo2kizFgmQAAmQAAk4FgGrAr127drYuXMncubMqVbA161bBy8vL0RGRqJKlSo4f/68Jhq1atXCjz/+iKxZs2qqr/dKFOh695B1+25GhqLoudXw9fTBjQo97XswaWC94eZVhI7qAzffEvCZtTwNrsAu7ZkA5wVt3rMU6J/fP4/Btw/inTzlsbBI/UQ7OHHGhM+XRqN6ZRe83YdZN7SRZi0SIAESIAEScCwCVgX6Bx98gIYNGypxPnnyZLU13d/fH/v374fkwhXRraU0bdpUc10t/WV0HQr0jPZA6q/vcuJz1Ymp2qDUd+aAPTCSuwM61UZD4rygDaSlQP/6n4sYcCsIA3KXwVcvNUq0g5NnTVj8TTSqVnTB4H4U6NpIsxYJkAAJkAAJOBYBqwL933//hY+PDzw8PHDv3j289dZbuHDhAnLkyIHZs2cr8a6lfPnll6panz594OnpqaWJrutQoOvaPZqMo0C3jil0pD8Mt64h66T5YP5STbeU01TivKDN1ZYCfcWDy/C/uR/+uUphmW+TRDs4fc6EhV9Ho0oFF7zTnwJdG2nWIgESIAESIAHHIpDsNGuhoaFqq7qLi/azzBLB/eDBg0qc58mTJ55I37t3r11RtTeBvn6LAfsOGPH6a25o3sjVrlinlbEU6NbJhs8ag6jjP8Nr8Dh4NmqTVm5gvw5CgPNCfEdaCvS1/15Fjxv70CNnSawu2ixRr585b8KCr6JRqZwLhr5Fge4gHw8OgwRIgARIgASSRSBRgb5r1y61ld1gMKgAcbJNPaVF+rFWmjRJfEUhpddMy3b2JtADdxuwfY8R7Vq5on1rBh6Se4MC3fonhJHc0/IbxH775ryg3XeWAn3jw+vo+vtedH2hODYUa5FoJ+cumDDvy2hUKOuCdwdSoGunzZokQAIkQAIk4DgEEhToGzduREBAADp37qxWyrdu3apSrLVpYz8raZs3b8bcuXNVQLvmzZvHnKG3dN0///yDmTNn4tChQ2obf4MGDdS45WdrhQLd/j8AjS4H4kBYMH7ya49GPgXsf0A2HkHUrwcRPnsc3MtWRtaAhTbund3ZIwFHmBficj979izGjBmD+/fvo3Tp0ip9aN68eWNVi4qKwueff45NmzapF9Z+fn5qPpSUodaKpUDf+ugGXru+B6/lKIotxVsl2uz8JRM++zwa5cu44L23KdDt8XNCm0mABEiABEggtQQSFOgSFK5nz57o0qWL6l+CwcmZ8927d6f4eqdPn8ZXX32Fq1evwmQyoUSJEpCt7zVq1Ehxn4k1lFztvXr1Umng5GFr+PDhqFy5Mvr27RuryalTp1Re91dffRVGoxFvv/222inQo0cPCnSbe0VfHVKgW/eHOZK7vryWsDXZFm6Ea17rYskexqF3G+19XojLV8S2vLyVl7LyclYCnx45cgTmmCnm+o8ePcLatWvVnCLHuxYsWKDmsfnz52sW6Dsf30Lba7vQNvtL2F4i8RfdFy6b8OniaJQt5YIPBlOg6/0zQftIgARIgARIIC0IJCjQRcyKGDevEERHR6N8+fI4d+5ckqvLCRkp2yInTJigHnDKlSunVuV/++03rFy5EpMmTVIC2ZZFXgSEhIRgxIgRqtuLFy9i7NixaieAtbJs2TLcuXNH2Wqt2NsK+uFfjFi21oA6NV3Rtwe3uItvKdCT/sSZI7knXTNja7iXrYKsAQsy1ggnuLq9zwtxXXTmzBlMmzYNsjNAiryklRRy+/btU8FREysSKHXUqFHYsWOHZoG+N+QPtLy6Ay2zFcaekm0TbXfpqgmzF0ajjJ8Lhr9Dge4EHysOkQRIgARIgATiEUhQoIsAlRVvb2/vmAbVqlWDCO0XX3wx2RhbtGiB8ePHx4v6HhQUpLYK2jpI3Lhx41C9enV07NhR2frs2TP1b3nBYK0MGzZMraDLSpEjCfTLV034ZGE0/Iq7YNQwPvRRoCf7I6zLBqbwUDx+pzPwJJzR5tPBQ/Y+L8RFFBgYqFbM5ZiTucixrokTJ6JixYqJEl2zZg3Onz+v5i5rxXKLe1BoMBpfCUQTn4L40S/xF9KXr5nwyYJolCrhgpFD+V2dDrc1L0ECJEACJEACuiOQqECXlGiWZ7Fl+588vFiK9pEjR2oaUJkyZXD8+PFYbaVhWFgYatasqVK32bJInt5mzZrFOjMvD5dXrlxJNPr8zz//jM8++wwbNmyAu/t/D0YzZsyIZ9o333yjtjjaSzEL9Fw5gbq1Yq+gy6p67pz2MhLb2SkpjyT10TLfxvDPVdp2HbOndCVgDmbnmicfsi3alK7XdraLyXeoPc8Lcf0l3/Uy90yePDnmT3K0a8iQIXj55ZcTdO9ff/2FN998E8uXL0fBggVj6mzfvh2XLl2K1ebatWto166dCrJ6OOwv1Lv8HepnzY+DpTokeutc/d2EmfP4MtXZPlscLwmQAAmQAAlYEkhQoMv2PS1l1qxZWqqpVemPPvoo3kOPiOKpU6fi+++/19SP1kqyWl+pUiV07dpVNZEXAfLAJdvqEyoSKEjGLFvc4wb+ke2OccugQYPsUqAnNPaRQ9xRqqT2lHlafaD3egHBxzD57nFMyl8dAQVsHwdB7+N3JPtCBneC8Z97TAmXxk6193khLp5t27bhwIEDKjCcucjuqSlTpqj5I255+PAhevfuDXkxXb9+/Vh/ljnk7t27sX4n/bdu3VoJ9F/D/0atS5vxsveL+F/p5zu7EirXbpgwY240ShR1wZj3uIKexrc0uycBEiABEiABXRJIdh70lIxCgrXJ6rQEhStbtqwKEicrF7ISLWI6qS3lyb3m0qVLce/ePXXuXIo8PMl1ZJUjbpFVj/fffx8LFy5E8eLFNV3K3s6g//MvcPgXQ6yxyar6lesm9Onuhrq1nC83OgW6plvdLipFBu3Ck8XT4eZbAj6zltuFzTQSKohnes4LcZnLNnWZF8yxSSTWiuzokrSgOXLkiFVd8rzL7gGZw0R0aymWW9xPPfkHVS9uRDWvPDhepnOizX+/ZcL0T6NRzNcF496nQNfCmXVIgARIgARIwNEIpItAF2g//fSTEuTXr1+HPAiVKlVKPew0btzY5kwl0Fv37t2xbt26mCjukhpHti7KiklwcDDeeOMNZYucO583b56KKq+12JtAT2hczp4bnQJd691uH/Ue+bdUZ9F9Zi2Dm29J+zCaVqbrvBAXtwSFa9WqlQoKKivicoxLdkytWrVKBYyTre9Dhw5FlixZ0L9/f7W1PTmpRi0F+m9P/0WFCxtQMUsunCn7fGdXQuXGbRM+mhONokVcMH44BTo/IiRAAiRAAiTgjATSTaCnN1yJsCvBfyIiIlRwOgno4+npiSVLluDy5csqbZysnEs9V9f/VpAzZcqkVtytFQr09Pam7a9HgW57phnZ45NFHyHywG5katMFWfzfzUhTeG07IiA7qGTrvry0lR1UMi8ULlxYBRaVOCayG+vEiRNKxFvOEzJEOcMuke0TK5YC/XLEI5Q+vw5lMufAhXJvJNrm1h8mTJ0djZcKu2DCCAp0O7qVaCoJkAAJkAAJ2IxAugh02TYoEXPjnu+22SjSuSNHEOjOHtndHFW5YdYCCCplPWp/Ot9evFwKCJjztrt4ZUX25XtS0AObpDcBR5sX4vKzFOi/PwtB8d/WoESmbLhavkeiqP/404TJs6JRpKALJo6iQE/ve5LXIwESIAESIAE9EEgXgd6oUSPMnz/fauoaPcDQagMFulZS+q1Hga5f36TUMnOwOO8R0+FRs0FKu2G7dCLgaPOCNYH+R2QYipxbhSKeWXGrwpuJEr4TbELAzGgUKuCCgNEU6Ol0K/IyJEACJEACJKArAkkKdElNtmfPHkh6GXPeV0kfI0XruW0JuvPll1+qLee+vr66ApASYxxBoEvguDGToyCp12ZO8kgJBrtuQ4Fu1+5L0PhnO7/F0xXz4V62CrxHToeLt4/jDVInI+K8kLQjLFfQ/4p6gvxnVyC/hxeCK/ZOtHHwXyZM/DgaBfK7YMoYCvSkKbMGCZAACZAACTgeAasCXQLmjBgxQgXQkZ8vXryoCMjPcjZv7dq1mogMHjxYtZXgbfny5VNBdyzL3r17NfWjl0qOINCFZf93oxTSr+dRoOvl3qIdKSdg/PsuQkb5q2BxEtE966QFFOkpx5loS84L2qBaCvQH0RHIfWYZcrtnxv1KfRLt4O49YML0KOR/EZg6zvm+l7WRZS0SIAESIAEScGwCVgW6pJOR4Dh16tRBuXLlIGlppEgKM/nbyZMnNdGRFXRrpUmTJpr60UslCnS9eCLldtyMDEXRc6vh6+mDGxV6prwjttQVATmLHj5rjMqLzrRraeMazgvauFoK9BBDJLKf/gbZ3TzxqHK/RDu4dx8YPy0KL+YFPhpPga6NNGuRAAmQAAmQgGMRsCrQRZQfP35crXhbCnTZ7t60adMYwZ4YknPnzqFMmTJwd3esrXqOItBnzY9WudBHDnFHqZIujnVnaxiNy4nPVS1TtUEaarOKvRAwhYcidKS/EulMu2Z7r3Fe0MbUUqA/NUbD69QSeLm6I7zKgEQ7+PsfYNzUKOTNDUyfQIGujTRrkQAJkAAJkIBjEbAq0Nu3b6/yhIsYtxTokorm1KlTWLNmjVUaImR/+eUX5MyZU9WTlXJpY+/R3CnQHeNDQIHuGH5MaBRPl8/Ds10bkblzH2TumviKpeMSSLuRcV7QxtZSoEsLLd835tgguXMBMyZSoGsjzVokQAIkQAIk4FgErAr0X3/9FUOGDFH5YLds2YI+ffqoFXUJErdixYoko7LHFehVqlTB9u3bUahQIbum6CgCfekaA478akSf7m6oW+u/XPB27ZxkGK/lgTkZ3bGqjghE/XoQ4bPHcZt7GviE84I2qCkR6A8eAqMDopDrBWBmAAW6NtKsRQIkQAIkQAKORSDJKO7//vsv1q9fr0S5wWBQkdt79OgRsypuDQcFur5vlsDdBmzfY0S7Vq5o39pN38amgXUU6GkAVUddPvJvqQLGZVu4Ea558+vIMvs3hfNC0j5MiUB/+BgYOTEKL+QAPplMgZ40ZdYgARIgARIgAccjkKRAT82QKdBTQy/t2zq7QG90ORAHwoLxk197NPIpkPbAeYV0JSDB4qKO/wyvwePg2ahNul6bF0ucgKPOC3FHHFege59agifGaDypMgBZXBOOy/I4BBg+IQrZswFzplKg83NEAiRAAiRAAs5IIEmB/uzZM9y+fRvh4eHx+FSuXNkqM3kQk7Pr5iBxEjSuVKlS8PT0jNVu06ZNdsXeUba4nzprwqJvouFX3AWjhjlWID8tN5RZoPvnKgXfTNm0NElWnYZZC1D4J4uYbStHBu3Ck8XT4VG9HrxHzbBt507eG+eFpG+AuAI9x+lv8NgQiceV+yGbW+w50NxbSCjwwYdRyOYDfDqNAj1pyqxBAiRAAiRAAo5HwKpAP3DgAD744ANERETAy8sr3uiPHTtmlcjmzZs1EevUqZOmenqp5CgC/fJVEz5ZSIGeVveVCPSgUu3Tqnv2mwQBlRd9SBdVK8e3P5OXjQhwXtAGMq5Az3NmGf6JjsA/lfogl3vmBDsJCwfeGxeFrN7A3OkU6NpIsxYJkAAJkAAJOBaBJPOgd+/eHT179oSLi/Ol4UrM1Y4i0G//acKUWdHIlROYOcn5HgaXP7iEm89Cbf6JlhzrKx5cBgW6zdEmu0NJt2a4dQ1ZJ82He7mqyW7PBvEJSB50zgtJ3xlxBXqBsytwN+oJ7lbsjXwe8V94S4/hT4B3x0bB2wuY97HzfScnTZU1SIAESIAESMDxCSSZB13SqcXdku74WKyP0FEEuoyy/7tRarBfz+PDoC3vawagsyXNlPfFdGspZ5dYSzm2xHkhaa5xBbrvuVW4FRmG2xXeRGHPrAl28DQCGDo6ClmyAAtm8Ds5acqsQQIkQAIkQAKOR8CqQG/VqhUWL16MYsWKOd7IUzEiCvRUwHOSpmaB/rByX+Rwy+Qko9bfMHkO3fY+4bygjWlcgV7ytzW49iwE18r3QPFEYl48ewa8MyoKmTIBi2ZRoGsjzVokQAIkQAIk4FgE4gn0+/fvx4zw6NGjWLNmDQYPHoyiRYsic+bY5+by5MnjWDQ0jsaRBHrAzGjcCTZh5BB3lCrJYwwab4EkqzFCfJKI0qWC+Ry6a558yLbIvoJRpgsgjRfhvKARlEW1uAK97Pl1uBjxCBfLvYHSmXMk2GFkFDB4RBQkjuriTyjQk0+dLUiABEiABEjA/gnEE+giPrWWq1evaqq6f/9+NGnSJNG6d+/exZMnT9RLAFdXV019ZmQlRxLos+ZH48p1CnRb308dru9G4KOb+K54K3TIUdTW3bO/ZBBgPvRkwEqkKueF5DOMK9ArXfgWZ58+wNmyXVEhS65EO5RjR+7uwBdzKNCTT50tSIAESIAESMD+CcQT6AmlU0tsmN7e3poI+Pn5YdeuXZA0a25ubqhduzbMq++ff/45Fi5ciCxZsiBv3rxYtmwZXnzxRU39ZlQlRxLoC7+OxulzJvTp7oa6tfT/ciSjfJ7c6wYEH8Pku8cxKX91BBSokdzmrG9DAmEBQxB94TS8R0yHR80GNuzZebrivJB8X8cV6NUvbsKJJ/dxokxnVPVKfPcZ44IknzVbkAAJkAAJkIAjEbB6Bv3jjz/G2LFj44336dOn+OSTTzBx4kRNLETQSqC5KlWqqPpXrlzBokWLUL16dVSsWBHr1q1D+fLlVZ8hISGYOnWqpn4zqpIjCfTA3QZs32OMh5JBilJ3d839+yze/+MweucqheW+ie8eSd1V2FoLgYhvv0HEpmXI3LkPMnftp6UJ61ghwHlB2+0RV6DXvrQFR8Pv4WjpjqjlnfhLaAp0bXxZiwRIgARIgAQclYBVgV6jRg0klOv82bNnqFq1Ks6fP6+JS+nSpbFz504UL15c1b9w4YIS4bJ6Lte4dOmSWlkPCwtDu3bt8NNPP2nqN6MqOYNAF7YzJnkgd86Momzf1w0KDUbjK4FMtaYDN0b9ehDhs8fBvWxlZA1YqAOL7NsEzgva/BdXoDe4vBWHwu7iUKkOqJc1f6KdmAW6X3EXDOrrDp+EA75rM4K1SIAESIAESIAE7I5AggJ91apVaiCyoj1y5MhYgzIYDDh8+DAePnyITZu0BV1q3LhxLNFtMpnQrFkzbNy4EbVq1YLlWXbZ/v6///1P1yAdSaAnBJrb3lN/+0ku9KLnVsPX0wc3KvRMfYfsIcUEzIHiXLyyIvvyPSnux9kbcl5I3h0QV6A3vbIN+0P/xH6/V9HYp2CSAl0qTBvvgXx5k3dd1iYBEiABEiABErBvAgkK9O+++w5BQUHYu3evOi9uWSSIW6FChTBgwAAULJj4Q4Zlm549e6JFixbo2rUrXFxcsHLlSsyfP1/1sWDBAhw5ckSdSZcV9NatW+PQoUO6puroAv2HICM2fGdAnZqu6NvDTde+0LNxzIWuH+8wUFzqfcF5IXkM4wr0Vld34PuQP/B9ybZoka1wop1dvmbC6m+jcfceMGGEO14qzOwaySPP2iRAAiRAAiRg3wSsbnH/8MMPMW3atFSP8MaNGxg+fLgKEielRIkSmDlzJtavX48CBQoogS5b23/88Ucl/gMCAlJ9zbTswNEF+u0/TZgyKxq5cgIzJzGScErvJd9zq3ArMgynynZB5Sy5U9oN29mAgDlQnGej1nDNk19td3cvV9UGPTtfF5wXtPk8rkBvd20Xdjy+hR0l2uCV7C9Z7WT2wmhcumrCyKHuKFWCAl0bcdYiARIgARIgAccgYFWg23qIoaGhiIiIiIngbu5fVma+//57iPB955134uVbt7Udqe3P0QW68Bk6OgpPI3gOPTX3CnOhp4aebduaA8VZ9prFPwfQKQAAIABJREFUfxgytelq2wuxt2QTcJR5Ie7A4wr0jtf34LtHN5LNx1qDt3KXxZcvNbRpn+yMBEiABEiABEggYwmkq0DP2KHa7urOINDN+dHf6eeOKhW5gpOSu+e9P37GvL/P4bPCdfFe3oop6YJtbERAzqFHBu1SvZmehOHZro3qZ1lR9xo83kZXYTck8B+BuAJdUi9K8EgDjDCYTOq/6P//OdpkhAH//zuTEY/DTYiIMiBzFsDVwwT1d6lvMuKpyRBzkdreL+JI6Y7ETgIkQAIkQAIk4EAE0kWgS1o2OXcuUd/lnHncsnTpUrtC6gwC3Zx+rVlDV3TryHPoKblBmQs9JdTSp405srtcLfuy3XDx9kmfC/MqMQQcbV6I69q4Aj05rl+1wYADR4zo3c0N9Wu7xmsaboxG1lNL4O3qjrAqA5LTNeuSAAmQAAmQAAnonEA8gT5u3DiMGjUKOXLkwKNHj9T/U1tGjBiBW7duoXnz5sgiCbbjlDfffDO1l0jX9s4g0C9fNeGThdEoXNAFk0a5pytfR7nY1kc38Nr1PWifwxdbi7d2lGE5zDjM59KzTprP8+hJeJXzQvJv+9QI9I2BBny/36hejspL0oRKid/W4PqzEEwtUBM9c/mpjBEsJEACJEACJEAC9k8gnkCvWLEijh8/Dk9PT5WjPKE86Mkddv369VVE+ITEeXL70kN9ZxDowtmcj3f+DA94xX+vogdX6NoGcy50eXD2z106xbaKwGeQuRTjS7Th0+Xz1Fb3zJ37IHPXfra/gAP1yHkh+c5MjUDftseIbbsN6PCKG9q2SFig97m5H8sfXFaG+bh6IKRK/+QbyRYkQAIkQAIkQAK6IxBPoLdt2xbyX8OGDdGjRw8VaT2x4ufnp2lAcfOga2qk40rOItDN59Almnvf7u4oVZJn0ZNzWz4yPMMLp1N/fKORTwH85Nc+OZdmXQ0E5Ez6k8XT4VG9HrxHzdDQwnmrcF5Ivu9TI9Bl9VxW0Vs3c0WndokfMZK86pJfXYqp2qDkG8kWJEACJEACJEACuiMQT6CfPXsWU6ZMwbVr1xAeHq5W0hMrcqZcS5Et7pLfvGnTplqq676Oswh0Sbe2dLUBd4JNyicMGJf8W1POoaemzP37LB4bInGjQk9uYU0NyATaGm5eReioPnDNkw/ZFm2yce+O1R3nheT7MzUCXc6fyzn0JvVd0b2z9RgguU8vxQPDMzyo3Bc53TIl31C2IAESIAESIAES0BUBq0HiOnXqhM2bN6fa4E8//RRffvklqlatiiJFisQT/VOnTk31NdKzA2cR6Gam67cYsO+AEZUruGBIf55HT897zf/mfqx4cBm9c5XCct8m6Xlpp7jWo6711DgZKE67uzkvaGOVGoH+ywkjlqw0oE5NV/TtYV2gl/xtDa49C8H18j1QLFM2bcaxFgmQAAmQAAmQgG4JWBXoV65cgdZt7NZG+PHHH1sFMHbsWN0CSsgwZxPoT54Cw8ZEKRQ8j56+t+rNyFAUPbcaOdw81Sp6Dq6Q2dQBDBSXfJycF7QxS41AP33OhIVfR8O3iAs+HG79pWiNi5tw/Ml9nCjTGVW98mgzjrVIgARIgARIgAR0SyDJNGuSFk1W0a9evQqTyYQSJUqgc+fO8PFx3oixzibQ5e6Vh0V5aOzT3Q11ayUctEi3d7mdG9bociAOhAUjoEANyHn0jCjZ3TwdMlAdA8Wl7G7ivJA0t9QI9IePgIkzovD0KfDe2+4oXybx+B/Nr2zHvtA72OfXDk19CiVtGGuQAAmQAAmQAAnomoBVgX7hwgX06dMHxYsXR7ly5eDi4oLffvtNifVly5ahfPnyVgd3//59ZM+eHY8fP7ZaL0+ejHvrLy8f5s6di8jISJUGbvLkyXBzS2JLYcmSioEzlcO/GLFsrQGlSrhg5FBuc09P3y9/cAl9bv6UnpdM8FodchTFMt/GDrWKz0Bxyb+tnGFeiEtFzuCPGTMGMqeVLl0ac+bMQd68ea3CS41Al45XrDfg0P+M6NHFDY3rJf5StOvve7Hx4XVsKtYSnV4olnyHsgUJkAAJkAAJkICuCFgV6N26dUPLli2VSLcsIs4lbdq6deusDqZOnTro2bMnPvvsM6v1Mkrs3rhxA7169VKR6uVha/jw4ahcuTL69u1r1V5nXEG33OY+Y5IHcufU1X3s8MZ0uL4bj6IjM2ycp5/+o4LVSco430yxd89ICrhJBarbpXA3/n0XIUO6MFBcMu4sR58X4qIwGAzq5W1AQAAaNGiAFStW4MiRIyquirWSWoG+6wcjtuwwoGUTV3Rpn/hL47duBWHJPxex5KVG6J+7TDI8yaokQAIkQAIkQAJ6JGBVoMuq+dGjR+NtZw8JCUHt2rWRVBR32Qbp5eWFp7JPz0rx9vbOEDZfffUVZCwSZV7KxYsXIefht27dSoGeAAHzNvcqFVxQuJArChd0gfzM4vgE5Cy8/439aqt9QqVyllxYVrSJXW6Df+TfEngSDveyVVLsSNe8+ZC5c1+45s2f4j7spaGjzwtx/XDmzBlMmzYNGzduVH8yGo1q/tu3b5/Vo16pFejHT5vwxbJoVK3kgsF9E9+1NOrO//DJvdOYXag2hr9Y2V5uI9pJAiRAAiRAAiSQCAGrAr1WrVpqdblo0aKxmksKNll5llWElBY5zy5b5jOyjBs3DtWrV0fHjh2VGc+ePVP/PnfuXIxZkmoubpFV9oxa9c9IXuZt7pY2ZMkC1K3pCi+v/3yZ6wXwnHpGOioNrx0UGlugS653SSV35umD+J+TLLmQw/2/tE+y0v7uixV1ly7OHCjOFthSI/Jtcf3k9OHmWxIu3lmT00TVbfjRPKx4qyd88+SCe7mqcC/7XBQ6yrwQF0hgYKCa62bOnBnzJ4nDMnHiRFSsWFH9LioqCrLSbllkS3yzZs0gOeRTUm7fMWHKJ9Gq6Qs5gFrVXNH51fgr6dP/Oonxf/4S6xJZXd2R2z0Lcrtn/v//siCXeyb4Zc6BwXmsH01Lia1sQwIkQAIkQAIkYDsCVgX6Rx99hNOnT+PDDz9EmTLPt87J+UM5p12/fn188MEHmiyZP38+6tWrp9KsSVm0aBEWL16MAgUKQP5m7ltTZzasJPbLA1SbNm1iepXt6xKl2PzyoEOHDvGuKDsHnFGgyzb3H4L+ewg9ddYUkyPdEpJfcReMGsZz6ja8VXXdlVmkz/v7vxdbiRmsx3zuss3deP9uqhhHBu1G5IHdqerDXhp/eicUv4VH4YNCWVHxzbeQuWMvh5oX4vphw4YNMeMz/02Obg0ZMgQvv/yy+tWsWbNw6NChWE0ltoq8/E2pQH8WCRX348IlI+S7t1J5FwwdEP979Wj4PZWK8a+oJ+q/u1HhuBUZluDtVD9rfhwsFX9Os5d7j3aSAAmQAAmQgDMQsCrQJXCa5DBftWqVCqImJXPmzOjRowdGjhyZZDA1M0AR83JuXSLAi8B/8803sXLlSpw8eRLff/89Vq9enSGsx48fj0qVKqFr167q+rIlXx64JBCeteKMZ9AT43H7TxNOnTXG+nPunC5cQc+QO1pfF4272h4U+qeKRO+oxRQeCsNN+wkeabh5DWJzcktkdDTm/3AQ6/53ApH/v2rsSPNCXB7btm3DgQMHVGA4c2nfvj2mTJmi5o/ESmq3uFv2e+2GCUYjIC8/tRZ5cXb3/0W7Wbzn8/DCGzlLau2C9UiABEiABEiABDKAQJJp1sQmEed37txBdHQ0ihQpokR6coqcWTx16hQ8PT0xevRoFCpUCEOHDlX9yjZ6+VtGlKVLl+LevXvq3LkUidQron379u1WzaFAzwhv8ZokQAJ6IuCo80JcxrJjSuYFc2wSmQdr1qyJ/fv3I0eOHOki0PXkd9pCAiRAAiRAAiSQtgQ0CfTUmtC0aVN88cUXyJQpE2Tl4YcffkDu3Lnx6NEjNGrUSG2jz4giLx26d++uotGbo7j7+fmprYvWCgV6RniL1yQBEnAkAnqdF+IylqBwrVq1woQJE9TRLoniLgHiZGeZtWLLFXRH8jvHQgIkQAIkQAIkYJ1Augh0OcMnZ/TkQWfgwIF4++23lVXykCOpaszRcTPCWTt27FDBfyIiItCwYUNMnz5drfRToGeEN3hNEiABZyGg53khrg8uXbqEUaNGITg4GMWLF8fs2bNRuHBhCnRnuVk5ThIgARIgARJIRwLpItBlPNevX4dEbpdz6OZy+/Zt9aNsm7enwhV0e/IWbSUBEtArAUeaF+Iy5gq6Xu862kUCJEACJEAC+iaQLgL9999/R8GCBdUWdyl3796FpK6R30mE24xOt5ZcF1GgJ5cY65MACZBAbAKONi9QoPMOJwESIAESIAESsAWBJAW6pBzbs2cP/vrrL7X9W4rku5ViuRpuzRiJkv7WW2+plGaylbx169aQs95yBrxly5YYNmyYLcaSbn1QoKcbal6IBEhAhwQ4LyTtFK6gJ82INUiABEiABEiABOITsCrQ5Yz4iBEjVGAc+fnixYuqB/lZIqCvXbtWE9PKlSurNDXZs2dXbXbv3q0C7JiDtB08eFBTP3qpRIGuF0/QDhIggfQmwHlBG3EKdG2cWIsESIAESIAESCA2AasCXVa6JXJtnTp1IKnSJN2MFElNJn+TPOZaSpUqVXD48GFkyZIFbdq0wbhx45Toj4qKgoh3c79a+tJDHQp0PXiBNpAACWQEAc4L2qhToGvjxFokQAIkQAIkQALJEOgiyo8fP66EtaVAl+3ukiJHq7CWyO2S+1yCxP36668qz7icO5cAQf7+/jh06JBd+YUC3a7cRWNJgARsSIDzgjaYFOjaOLEWCZAACZAACZBAMgS65CyX8+Eixi0FuqSYOXXqFNasWaOJp6y4f/zxxyrN2siRI2PS0+zatQs3b97E4MGDNfWjl0oU6HrxBO0gARJIbwKcF7QRp0DXxom1SIAESIAESIAEkiHQZbV7yJAhKrjbli1b0KdPH7WiLkHiVqxYgYoVKzolTxHoLCRAAiTgjARkJ5QU2QUl//Xr14/zQgI3ggj0nTt3OuMtwjGTAAmQQCwCV69eJRESIIFkEEgyivu///6L9evXK1FuMBhU5PYePXogZ86cSV7m/v37KjDc48ePrdbNkydPkn3pqYIEuJOH1F69eunJLNqikYDs/IiMjFQvnFjsj8DGjRsh30tydIYlYwhwXkia+x9//IGJEydi2bJlSVdmDd0SCAoKws8//4wPP/xQtzbSsKQJfPPNN/D29ka3bt2SrswaJEACJJDBBKwKdInaLoLcw8MjRWZKcLmePXvis88+s9re3t6sUaCn6HbQTSMKdN24IkWGUKCnCJvNGnFe0IaSAl0bJ73XokDXu4e02UeBro0Ta5EACeiDgFWBXrZsWZVSrUCBAimyNiwsDF5eXnj69KnV9vJW054KBbo9eSu+rRTo9u0/CvSM9R/nBW38KdC1cdJ7LQp0vXtIm30U6No4sRYJkIA+CFgV6J07d1bbSJs3b64Pa3ViBQW6ThyRQjMo0FMITifNKNAz1hGcF7Txp0DXxknvtSjQ9e4hbfZRoGvjxFokQAL6IGBVoEuE9bFjx6Jjx46oVauWSrdmWZI6O/7pp59qGuUHH3ygqZ5eKlGg68UTKbODAj1l3PTSigI9Yz3BeUEbfwp0bZz0XosCXe8e0mYfBbo2TqxFAiSgDwJWBXq1atUQEhKSqKVJnR2XaOfFixdH1apVVVAuc/TfuB3OmTNHHzRoBQmQAAmQgFUCnBd4g5AACZAACZAACZBA2hGwKtDDw8OtXjmps+OyUimrXQ8fPoRsi+zUqVOKz7OnHQL2TAIkQAIkoJUA5wWtpFiPBEiABEiABEiABJJPIMk0a8nvMn4LiforQn3Hjh0oV64cunTponKre3p62qJ79kECJEACJGBnBDgv2JnDaC4JkAAJkAAJkEC6ELAq0CX6uqyCX7lyBc+ePYtn0Lx585JlpGxz37t3rxLrly5dQrt27ZRYL1WqVLL6YWUSIAESIIGMIcB5IWO486okQAIkQAIkQALOQcCqQH/33Xdx+/ZtFcV99erVeOONN3Djxg0cPHgQ06ZNQ6tWrVJESc6ib968GQEBAUr4J3WWPUUXYSMSIAESIAGbE+C8YHOk7JAESIAESIAESIAEYghYFegS3O2HH35Arly51Gr39u3bVcPAwEAl0pMb3O3u3btKmMt/spr+2muvqbPpvr6+duESo9GIjz76SG3V9/DwwKBBg9CjRw+7sN1ZjVy0aBEWL14MNzc3hUB2a8gODilnz57FmDFjcP/+fZQuXVrdz3nz5nVWVLoZt7zAE78tW7YMJ06ciGWXfHfMnTtXfX/Ii8PJkycr3/KzmX7u47yQNGt+tyTNSA81/vnnH8ycOROHDh1Sc3qDBg3UwoH8LIXfN3rwUvJsEF/27dsXR44cgWQasjY3cN5IHlvWJgESSD8CSQr0n3/+GV5eXnj11VexdetWuLq6IiIiQqVdO3PmTJKWyoP0jz/+qETRL7/8gkaNGilRLhOhWTQl2YlOKsgY5CXFV199hSdPnqBbt26QVHLly5fXiYU0Iy6BKVOmoEaNGmjdunWsPxkMBiXw5GFM7sUVK1aoCf3LL78kxAwkEBUVhffff1+9KJHP2rFjx2Kskd07vXr1wvr169Xfhw8fjsqVK6uHMX42089pItA5LyTOm98t6XcvpvZKp06dUrsC5flGxNrbb7+Npk2bqhfv/L5JLd30bx8WFqbmCHlGlTldBLq1uYHzRvr7iFckARLQRsCqQJcvugEDBqB+/foYNmyYCuwmE5kI87feeksJbmtl6tSp2LZtm3qYFlHevn175MyZU5tlOqzVr18/+Pv7Kx5Sli9fDtkVILniWfRJQLbj9uzZU4l0yyL3sBzTMK+my8NZ7dq1sW/fPvj4+OhzME5ilezOqVevHiSdlzxAm4u8GJO0jyNGjFC/kiBj8tmTF4f8bKbfzcF5wTprfrek371o6yvJrp07d+5gwoQJ6kU8v29sTTht+5P5oE6dOsp3S5cuVQLd2tzAeSNt/cHeSYAEUk7AqkD/7bffkC1bNhQpUkRtB+7du7f6t2wJFsEub5utFcmDXqxYMZULPTo6OtE86EuWLEn5CNKxpbxZX7lyJQoWLKiuKkJC/v3111+noxW8VHIIyAum33//Xd1/+fLlU6uzL7/8sjqmISvmsr3RXOQl0sSJE1GxYsXkXIJ104CA+EteqlgK9HHjxqF69ero2LGjuqLEr5B/nzt3Tq168bOZBo5IoEvOC9Y587slfe7DtLiKPNfId4ksJvD7Ji0Ip12fBw4cUC/cFy5cqHbMyXwgAt3a3MB5I+38wZ5JgARSRyBZadb++usvyMOZCNQyZcokeWU5v6WlSH50eyh169ZVOwLkTL6UX3/9VZ2HXbt2rT2Y75Q2ylY3OUrh7u6u/CUPYLLiKi9XLly4oM4wm4ustA8ZMkQJeJaMJZCQQP/ggw/ULp42bdrEGCcvASXLhKy487OZMT5z9nkhLvUNGzbwuyVjbsVUXVWObXz22WcQ/8l8we+bVOFM18ahoaHqWILsapRdmpYC3dpzG5/p0tVNvBgJkEAyCCRLoCejX4esKuLgm2++wUsvvaTGJ2frRZzL71jsg4CsoEscBBcXF8gbd8tAh7JqImfWK1WqZB+DcWArExLo48ePV77p2rWrGrmcN5SXKfLSkJ9NB74Z7Gxo8qKI3y325TTZIThq1CgVmDJ//vzKeH7f2I8PR48ereZ1c6wZS4FubW7gvGE/PqalJOBsBKwK9Js3byrBIg/A4eHh8dicP3/eqXgNHDgQr7/+Opo0aaLGLVvz7927hw8//NCpONjzYGUFvW3btmoXiDyAyWq6FBGENWvWxP79+5EjRw57HqJD2J6QQJczhfJ5M8d8kIdq8aEEk+NnM/3cznnBOmuZF/ndkn73Y2qvdOnSJXX0SbZGy3E8c+H3TWrJpl/7cuXKwdPTM+aC8rzq7e2tdsjt3Lkz0ec2zhvp5yNeiQRIIHkErAp02fL74osvqiBb8mUXt/j5+SXvanZeW84WyrZ9cxR3Wcn7+OOP4wUgs/NhOpT5IrglSrt5i7tE/hZBJ7EUWrVqpYIBSdA/ifgqAeJWrVrlUOO318EkJNAleFP37t2xbt26mCju8h0kxxL42Uw/T3NesM5aAk7yuyX97sfUXOn69evq2NO8efNQokSJWF3x+yY1ZDO2reUKurW5gfNGxvqJVycBEkicgFWBLsGyJJBW1qxZyfD/CcyaNUuJdNkiLRFAJQgZi34JDB48WOXSlrfrsmouq6/mLeyyciLbGoODg9XKyezZs1G4cGH9DsaJLEtIoMvwd+zYoQL7SWyBhg0bYvr06TErJ/xsps8Nwnkhac78bkmakR5qyMq5fKdI+lhzyZQpkwqKy+8bPXgoZTZYCnTpwdrcwHkjZYzZigRIIG0JWBXokq5CJi97To2WtvjYOwmQAAk4FwHOC87lb46WBEiABEiABEggfQlYFegS/Ozq1avqjDVX0dPXMbwaCZAACeiRAOcFPXqFNpEACZAACZAACTgKgXgCvUWLFjFjk3O7t27dgpypk3ySmTNnjjXuvXv3OgoHjoMESIAESCARApwXeGuQAAmQAAmQAAmQQPoQiCfQJaiW1mKOZq61PuuRAAmQAAnYHwHOC/bnM1pMAiRAAiRAAiRgnwSYB90+/UarSYAESIAESIAESIAESIAESIAEHIxAggL95MmTeOGFF1C0aNGY4T548EClIrl7967KA/7GG284GAoOhwRIgARIIDECnBd4b5AACZAACZAACZBA2hNIUKD36NED7du3h+T5Npdu3brBx8cH1atXx+rVqzFo0CCVk5iFBEiABEjA8QlwXnB8H3OEJEACJEACJEACGU8gQYEuInzt2rXw8/NTFv7yyy+YPHlyTL7QgwcPqlzEO3fuzPgR0AISIAESIIE0J8B5Ic0R8wIkQAIkQAIkQAIkgAQFeoUKFbB7924UKlRIIXr33Xfx8ssvx2xrv3//vtrmfu7cOSIkARIgARJwAgKcF5zAyRwiCZAACZAACZBAhhNIUKB36NABXbp0gWxpvHDhAnr37o2goCB4e3srg2/fvq22wJ86dSrDB0ADSIAESIAE0p4A54W0Z8wrkAAJkAAJkAAJkECCAv3HH3/EsGHDULhwYdy5cwdTpkxBx44dY2hJyp05c+ZwizvvHxIgARJwEgKcF5zE0RwmCZAACZAACZBAhhJINM3ajRs3cP78eZQpUwbFixePZeShQ4fw9OlTtGjRIkON58VJgARIgATSjwDnhfRjzSuRAAmQAAmQAAk4JwHmQXdOv3PUJEACJEACJEACJEACJEACJEACOiNAga4zh9AcEiABEiABEiABEiABEiABEiAB5yRAge6cfueoSYAESIAESIAESIAESIAESIAEdEaAAl1nDqE5JEACJEACJEACJEACJEACJEACzkmAAt05/c5RkwAJkAAJkAAJkAAJkAAJkAAJ6IwABbrOHEJzSIAESIAESIAESIAESIAESIAEnJMABbpz+t0uRr1//37MmDEDe/fuzXB7//33X4wcORLHjx9HoUKFsG3bNri5uWW4XY5oQIcOHdC/f3+0bdvWEYfHMZEACdiYgJ6+M7Zs2YLPPvsM4eHhGDt2LLp06WLj0bI7IaCn5wN6hARIgARsTYAC3dZEHai/O3fuoHHjxhg2bBiGDh0aa2Rr167FwYMH8cUXX6TZiPU0AX/yySe4evUq5s+frx68cuXKFWvcmzdvxpgxY+KxkIe1ChUqpBkj6Tg4OBgff/wxFixYEHMd+VnsTMgmWxhjvjfi9jV69GglrlNTbP2w/d133yEsLAxvvvlmjFm9evVC79690bRp09SYyrYkQAIAGjZsiMKFC2P16tWxeFy/fh2dO3fGqVOn0pSTrb8zUmpsSEgIateujRUrVqBs2bIwmUzw9vaO6S4tvze12CzzQd++feHn56eqHzlyBJ9++ik2bdqkpXmK6si9IXOUZWnUqBGWLFmSov7MjWz9fJAR82iqALAxCZCAQxOgQHdo96ZucPIw8corr6iHjMDAQBQtWjSmw/QS6LNmzcKePXtSNxAbtB44cKB68PL390+wNxHoq1atwtKlS2P9PVu2bHB3d7eBBYl3Ib6QB62F/9fenYdaN71xAF+UMTJkVsgQIvOU6Q+ZC3kV74t/JDKVMX+Y51IUZYiIlEz/KFNCCJki85SMyRxSZvr1Wb/Wad1t37v3Oec9l/t6Vum87tl77bW+a+31PN9nOtdcM7johRdeSL/++mvabbfdJvLsomg+9dRTackllxw8Y9lll01LL730WM9c2Mr2ySefnLbbbrspBJ1CusMOO6R11llnrLHGzYFAIPB/gv7jjz+mc889Nx188MEDSGaToB977LFp//33/0eX480338znzMsvv9w6jkmem10T/+2337JB8uabbx4Q9C+++CJ7og8//PCu20f+3t5guN1pp50GfZAZyy233Mh9unFhE/R/Qo6OBUDcHAgEAos0AkHQF+nlHW9ylAmC+8ADD0yvvvpqJqClNQk6IXzZZZelXXbZZXDNEUcckQ466KB06KGHZmHqnu233z7dc889WZlDkM4444wcxv7OO++kP//8Mx111FH5vyKAr7766qx03XrrrfmenXfeOV166aVp1VVXHTznzjvvzJ58YehbbLFFuvDCC9MGG2yQv0f2Lrjggjz2hx9+OCsKtSe1dEKh4oV+66230gorrJDHLHLgjz/+SCeeeGJ65plnMtFeaqml8nibnlcE/Y477mj1RPju7rvvTnfddddgzM8//3w6/fTT09NPPz0YJ68ujzvcF1tssQS/2hv9+eefp4suuiiT8cUXXzzxQiDg5vv7779nT816662X8TWXn376KV188cVKeq7CAAAOxElEQVS5f4qYf3teuff8889PK664Yv7e9Yj1Z599lpVL86ZQeV4b4S6K5htvvJExqZvxWKsrrrhi8GfXwwyhh6O98txzzyUeJ54m/7/++usPsCgh7n2ws+7T9XfOOeckfSyxxBJ5nPPmzcthp00jwHTrD6uyj2Zany+//DLB07oyaG288cYZ0zKn8d7EuDsQ+Hcj4PxHkEUYOWfLudIk6GeeeWZaY4010mmnnTaYkHs+/vjjdOWVVw7etWOOOSaf2byazgueX2cFcikyiLee8Xbttdce3HPAAQekxx57LMsqEU6ivurw8pdeeimfZ++//35ad9118/lbznHyyTnhetd4hne52WY6Rx988MF85n366ad5/mQQ2VS3mc7N8t3bb789xai70UYbpUcffTSP2Thvv/32tM022ySRQUg3I6Pzrxgb/Q029913X44cMo5bbrkly1V9L7/88jk9ixyFbTONjPwgT8kbODNwFsNHn+c3MbM3yJ7dd999ylcM78b95JNPZnlXGrlGTu+3337p/vvvz2v+wQcfZPlGJpLHWpOgd+kg7hEt8NBDD+W5rbXWWvk59gC5OxtylFyF9wMPPJD3szXzLuy1117/7hc8RhcIBAKzjkAQ9FmHfO48kMKA0CBVlJ8TTjghExttFILOC42Q+6Q4HHLIIQmxufHGGzNZ/+ijj3LeMW89pYIAJoxdR5lCfJDtX375Jd+jGRvBSsmjwBgXokwII2TGi7wyFFAykG8KSt2+/fbbtOeeeybKo3kiqZ7n38aqCQsU7t9G7n2/MAj6N998k5VSkQqw93yGiS233DKPwVog4BQmhPOrr75KW221VbrhhhvS66+/PsWD3iTowkyFNVIGGEIoCT/88MPA4+96Stz111+fFZaff/45IaQUB4p3s82kaL7yyis50oCCW8i7MT777LN5PtaDMsu4wON+ySWX5H1QQh5r8tyHoHf117Z29TP6rL/rZ1qfU045Ja200kp5f1PCRDBQSJvGi7nz9sdIA4H+CCBHN910Uz6XkT7niTYqQWfgQ0SReYZNpNl5wWDrnTrrrLPyGSXXW/N+fv311+mqq67KRlrvH4LuPJVixIiH8CGEjLwMcmQLMooAkzVI5CqrrJLOPvvstPrqq6c111zzbwB0naPOPsaFF198sRW8hUHQySQGTDVRGBCdnx9++GEmspqznRHX35HQ9957L89Z22yzzTKxLyHuTZKLLJODcCV3zIMs1DdZ4/qu5zcnPh1BZ0jYcccdc98MDlqRHYy3DMOev8wyy+Tx2ksLFiwYrOkoBJ3xaNNNN81ri/zbV55hz86GHKWbMAZce+21OYKAQ4Czge4SLRAIBAKBGoEg6LEfpkWghLjzSCiOdtJJJ+Vwc96BUQg6hUkuYgmJphDJ677tttsGY0DGESqh9YWgE6AlHI4SRtngCaZEySNGXBHw0pB9OdiEP8UN2S/embbJCg03rqLguIaCQIHjddH6EHRKI8JZGsJWPDN9POg8B4heaUcffXTaY489steAwnncccdlTz6FpW5digX83EtpK4SRgUS0A+V3k002yQr1a6+9lo0bpVG2ecgZP5qtKJrNMEUK74YbbphJPu/E3nvvnW+1PmWtmn3BmOGAcqgNS9C7+usi6H3W35hmWh/RFhQtIb7RAoH/GgJIGNKhgCYi7MwQLTUqQWcwJW80hkQpKs4mn5qzAtlGuMqZ4TxDWks777zz0l9//ZWJ6nXXXZeNnu4pjTxCzr27hXg+8sgj2Qja1vqco30Jetu5iZAyAnd50OHCwFAim8hnRlQGUaR36623zrUAfDZbF0FngGYIqY2yjCLvvvtuxhBOMz2/DTd747vvvptSVFVExGGHHZajmcjMcm5aH+t9+eWXt64BGSKij54wCkGvO2Xwh4citPbtbMhRRqd777036zxNOf5fOzNivoFAIDAzAkHQY4dMiwCFhtcZcdN4quU1E6KjEHTW6ieeeGLwPIXXeCVrYdwMixc2zEteN4ofTy9ljVJG+NchcjzE+kQKESt9zlRJ99RTT80CmqegNASWgoMQr7baar0IusJAlJjShBGy1PfxAhsnjzVjQ2kUId4fHguhkvpBgJutS7FwL6s9I0Hd4MMTw1OPoH///fdT1oL36fHHH/9bXr0+CkGnINc56IwmvPs8Wbw6lDvhqwwujB4UU95yY2YU4f0WEQFv32vDEvSu/roIep/171ofYa3HH398JgRHHnlkXsdxc/HjaAoE5goCSBhDl/OKEdd775cuPvnkkylF4vqGuNdnIZmz+eabZ9lRQtrbUoSa57zzC+FGhhgARe3Uv7zhXZUvT54he22ypsa/zznal6C3nZvOsT4EvSlHecjNQ/67M5dR1L/rc7nMo4ugM34Lj991110HU5c2wCsPSzjN9Py2/WpviPpiOC+NkZ8sEFVVUr3IcFFHnlVS5awZuSXKSXPO2kNS74Yl6GSNGjHSBURfeJ7UOvuVEX825Ki9zIjE4M5AQVbU6Xpz5X2PcQYCgcDkEQiCPnmM5+wTmgRdXp4Q9FLRnBejVHFvy/8SDiiXu+SgN3Pd9INc116NJkHnBSl52gXIbbfdNodS+pQnrV/ezbbWp+AYT7lc4XEJ+jA56Crg87jXOejNnxarCTqDCMt7k2Sbc5diQUEVzte8lydCOGYh6HXOun77EPS2HHT3yhmEPUVaWDuvUPHEMwwIaRQOLq+QssKL1ZegN7Hr6q+LoPdZ/7Z9VK+POfPIMCbZm3IcS4junD0AYuCBQE8EaoLuFu8GMrjPPvtkb2ep4t5G0MkBud11Dnp9FhaC7t0S8q61EXSkjawpjcEUifOJIJac47Yp9Sk41ucc7UvQ287Nthz0Mvc6B70pR2uCLmJh3333HZmgM3ozrtYE3bMZvAtBn+n50xH0thx01zKSIOVyw4WZO4vJRIYUhgEyUuqTtAUNoeU06EvQax2EnsHZYH72UakVIh2uD0Hvs/7N1LLp5KiIBCllDDUMW3Xtnp6vXFwWCAQCizgCQdAX8QUeZ3pNgq4vShIhJNSMd7UQdEKzLrpD8LLG81yMQ9DlvSNwqqFriA+BLlyb5ZnAlhuH7I1K0IXDUyDrCuzIIo+oUEKW9j4h7tMRdBZ6Hn+59aUJQYRdX4LO00DprcPUS18UGOP0jNJqRQF+5tIW4m7MirT1VSxK/zPlUpZrkFrrJ/QVARf2LrcUObd3RC1owuzlPLYR9C7s+vRH2adw1hX4a8LdZ/37EPR6/wkRNU+pBdECgUUdgSZBFxnlneGNRboKQReFJcIG8SpNqDlv77gEnbG2/llJz0D6eHy94wx7bRFIxtGHoPc5R8ch6IzVvMywKiHwUsDI1r4EHaEnD53rPptNhANDrTzstnmTp0LcS+0V14iGYGAlr9pwqg0Ebft8uhz0Wlap21GiG8reUMROuLs9pNEp9EWWtRH0Lh2EQZrewmCkqXmjxkrxoP8TclRaHR0AWY8WCAQCgUCNQBD02A/TItBG0F1MCRIaxgpdCLqwLQKUN0ThGoKHpZ2QHYegU9547RFwFm8eda08l8GAAlgs9EKlEVEhf5S+Ph503hvC3TMI8VIkTi5lqRg7DkEX4q1/Yeaqe3seRUFEQl+CDluebgoWbxDFk7eEUsoDAGfFfyh2cttqwu1engS55qVIHI8IJbrk/49K0IWd1qGU5fnWiNIhyoK3yJq4zhpKUUDY58+fnz09FDLKaRtB78KuT38KC1pTngpYwKfeF33Wv4ugWwNKL6OD4n0Iuv/sp2iBwKKOQJOgm6/ziPfaO1wIup83RIR8Ktap/oRwdl7fcQm6904VdcXNnCXqeTD+MUAqEsdAKMcauSOjeFMV5CwFSZue4eaa9TlHxyHonsf4jIAqhoZsk0kIZF+Crg/nnbx08yGjyWoeaOcemeZMcjYhxVK46nkXr3UpEqf2DJlB3jq3RyXo5lH/zJpaKMXorlAa4zNDOGOAdAZN5BVDA2M22cHQy8BC12gj6F06CFylHZF1atnAyT6RimEPzIYcZeQxd7JYvQB6C4MV+R0tEAgEAoEg6LEHeiEwHUH38yAUKkK/EGUkB9Fi8UceKUNymnkExiHopWgPYe25QsGEqqm2W5rQb+OgCCKIQt+FU/cl6PpRBZ2Q9ElxYGWXm1ys+uMQdP0LUVflmJK38sorZ488xagvQdeHfE7eIOGdxsX6zyBC0aJEIcuqwfp5nSbhpqDyXvEiFUVQzqWxaKMS9OZGUhiu/DQchZk3Rv6/Qk2lUfJK5XbKs3EJtacsak0y3IVdV3/IOYMARVXeHyNP8xld699F0NUeME44+4knBiL7p66N0Ouli4sCgTmIQBtBNw3nHHJeCLqzyhkmgsYZxmAp0oQXdlyC7uwpBR/JB+88w2RpSCvDpE8yyrPJEkUt+3jQ9dN1jo5L0BWiQ9p4jhE55yJiytBRfmatK8RcfrVr5G9LW1IID8klGxm0/fSknG5YIO3N/kR6Oc/kezM4Is/F0DgqQfdzeXWTklZ+tcPfGQ7sDfK+NLVJpEQw8iLWjCv+JlWhjaB36SDy8/XHIMBwQV+hN5g/gj4bchR+cKdbKY5Hn2EoKD9LOAdf/RhyIBAITAiB8KBPCNjoNhAIBAKBQCAQCAQCgUAgEAgEAoFAIBAYBoEg6MOgFdcGAoFAIBAIBAKBQCAQCAQCgUAgEAgEAhNCIAj6hICNbgOBQCAQCAQCgUAgEAgEAoFAIBAIBAKBYRAIgj4MWnFtIBAIBAKBQCAQCAQCgUAgEAgEAoFAIDAhBIKgTwjY6DYQCAQCgUAgEAgEAoFAIBAIBAKBQCAQGAaBIOjDoBXXBgKBQCAQCAQCgUAgEAgEAoFAIBAIBAITQiAI+oSAjW4DgUAgEAgEAoFAIBAIBAKBQCAQCAQCgWEQCII+DFpxbSAQCAQCgUAgEAgEAoFAIBAIBAKBQCAwIQSCoE8I2Og2EAgEAoFAIBAIBAKBQCAQCAQCgUAgEBgGgSDow6AV1wYCgUAgEAgEAoFAIBAIBAKBQCAQCAQCE0Lgf1GEMv4YdwFmAAAAAElFTkSuQmCC" }, "metadata": {}, "output_type": "display_data" @@ -248,6 +248,419 @@ "\n", "fig.show(renderer=\"png\")" ] + }, + { + "cell_type": "markdown", + "id": "a4aa5184", + "metadata": {}, + "source": [ + "## 5a. Convergence report\n", + "\n", + "The **Convergence Report** shows for each problem and optimizer which problems the optimizer solved successfully, failed to do so, or where it stopped with an error. The respective strings are \"success\", \"failed\", or \"error\".\n", + "Moreover, the last column of the ```pd.DataFrame``` displays the number of dimensions of the benchmark problem." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "16f0493e", + "metadata": {}, + "outputs": [], + "source": [ + "df = em.convergence_report(\n", + " problems=problems,\n", + " results=results,\n", + " stopping_criterion=\"y\",\n", + " x_precision=1e-4,\n", + " y_precision=1e-4,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "3a8e42bc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
nag_dfolsscipy_neldermeadscipy_truncated_newtondimensionality
problem
bard_good_startsuccesssuccesssuccess3
bdqrtic_8successsuccesssuccess8
box_3dsuccesssuccesssuccess3
brown_dennis_good_startsuccesssuccesssuccess4
chebyquad_6successsuccesssuccess6
freudenstein_roth_good_startsuccesssuccesssuccess2
helical_valley_good_startsuccesssuccesssuccess3
mancino_5_good_startsuccesssuccesssuccess5
powell_singular_good_startsuccesssuccesssuccess4
rosenbrock_good_startsuccesssuccesssuccess2
\n", + "
" + ], + "text/plain": [ + " nag_dfols scipy_neldermead \n", + "problem \n", + "bard_good_start success success \\\n", + "bdqrtic_8 success success \n", + "box_3d success success \n", + "brown_dennis_good_start success success \n", + "chebyquad_6 success success \n", + "freudenstein_roth_good_start success success \n", + "helical_valley_good_start success success \n", + "mancino_5_good_start success success \n", + "powell_singular_good_start success success \n", + "rosenbrock_good_start success success \n", + "\n", + " scipy_truncated_newton dimensionality \n", + "problem \n", + "bard_good_start success 3 \n", + "bdqrtic_8 success 8 \n", + "box_3d success 3 \n", + "brown_dennis_good_start success 4 \n", + "chebyquad_6 success 6 \n", + "freudenstein_roth_good_start success 2 \n", + "helical_valley_good_start success 3 \n", + "mancino_5_good_start success 5 \n", + "powell_singular_good_start success 4 \n", + "rosenbrock_good_start success 2 " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "markdown", + "id": "b5215dc3", + "metadata": {}, + "source": [ + "## 5b. Rank report¶\n", + "\n", + "The **Rank Report** shows the ranks of the algorithms for each problem; where 0 means the algorithm was the fastest on a given benchmark problem, 1 means it was the second fastest and so on. If an algorithm did not converge on a problem, the value is \"failed\". If an algorithm did encounter an error during optimization, the value is \"error\"." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "f9671d82", + "metadata": {}, + "outputs": [], + "source": [ + "df = em.rank_report(\n", + " problems=problems,\n", + " results=results,\n", + " runtime_measure=\"n_evaluations\",\n", + " stopping_criterion=\"y\",\n", + " x_precision=1e-4,\n", + " y_precision=1e-4,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "4e29d9dd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
algorithmnag_dfolsscipy_neldermeadscipy_truncated_newton
problem
bard_good_start021
bdqrtic_8120
box_3d010
brown_dennis_good_start120
chebyquad_6021
freudenstein_roth_good_start120
helical_valley_good_start021
mancino_5_good_start120
powell_singular_good_start021
rosenbrock_good_start021
\n", + "
" + ], + "text/plain": [ + "algorithm nag_dfols scipy_neldermead scipy_truncated_newton\n", + "problem \n", + "bard_good_start 0 2 1\n", + "bdqrtic_8 1 2 0\n", + "box_3d 0 1 0\n", + "brown_dennis_good_start 1 2 0\n", + "chebyquad_6 0 2 1\n", + "freudenstein_roth_good_start 1 2 0\n", + "helical_valley_good_start 0 2 1\n", + "mancino_5_good_start 1 2 0\n", + "powell_singular_good_start 0 2 1\n", + "rosenbrock_good_start 0 2 1" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "markdown", + "id": "56e83beb", + "metadata": {}, + "source": [ + "## 5b. Traceback report¶\n", + "\n", + "The **Traceback Report** shows the tracebacks returned by the optimizers if they encountered an error during optimization. The resulting ```pd.DataFrame``` is empty if none of the optimizers terminated with an error, as in the example below." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "96614437", + "metadata": {}, + "outputs": [], + "source": [ + "df = em.traceback_report(results=results)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "f9d63ee9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
scipy_neldermeadscipy_truncated_newtonnag_dfols
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [scipy_neldermead, scipy_truncated_newton, nag_dfols]\n", + "Index: []" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4d5e24af", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -266,7 +679,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.8" + "version": "3.10.10" } }, "nbformat": 4, diff --git a/setup.cfg b/setup.cfg index 6c16c830a..8f9d4d974 100644 --- a/setup.cfg +++ b/setup.cfg @@ -7,7 +7,7 @@ url = https://github.com/OpenSourceEconomics/estimagic author = Janos Gabler author_email = janos.gabler@gmail.com license = MIT -license_file = LICENSE +license_files = LICENSE classifiers = Development Status :: 4 - Beta Intended Audience :: Science/Research diff --git a/src/estimagic/__init__.py b/src/estimagic/__init__.py index 67531d764..296ccd8b8 100644 --- a/src/estimagic/__init__.py +++ b/src/estimagic/__init__.py @@ -1,6 +1,9 @@ from estimagic import utilities from estimagic.benchmarking.get_benchmark_problems import get_benchmark_problems from estimagic.benchmarking.run_benchmark import run_benchmark +from estimagic.benchmarking.benchmark_reports import convergence_report +from estimagic.benchmarking.benchmark_reports import rank_report +from estimagic.benchmarking.benchmark_reports import traceback_report from estimagic.differentiation.derivatives import first_derivative, second_derivative from estimagic.estimation.estimate_ml import LikelihoodResult, estimate_ml from estimagic.estimation.estimate_msm import MomentsResult, estimate_msm @@ -45,6 +48,9 @@ "get_benchmark_problems", "profile_plot", "convergence_plot", + "convergence_report", + "rank_report", + "traceback_report", "lollipop_plot", "derivative_plot", "slice_plot", diff --git a/src/estimagic/benchmarking/benchmark_reports.py b/src/estimagic/benchmarking/benchmark_reports.py new file mode 100644 index 000000000..da4823525 --- /dev/null +++ b/src/estimagic/benchmarking/benchmark_reports.py @@ -0,0 +1,239 @@ +import pandas as pd +from estimagic.benchmarking.process_benchmark_results import ( + process_benchmark_results, +) + +from estimagic.visualization.profile_plot import create_solution_times + + +def convergence_report( + problems, results, *, stopping_criterion="y", x_precision=1e-4, y_precision=1e-4 +): + """Create a DataFrame with convergence information for a set of problems. + + Args: + problems (dict): estimagic benchmarking problems dictionary. Keys are the + problem names. Values contain information on the problem, including the + solution value. + results (dict): estimagic benchmarking results dictionary. Keys are + tuples of the form (problem, algorithm), values are dictionaries of the + collected information on the benchmark run, including 'criterion_history' + and 'time_history'. + stopping_criterion (str): one of "x_and_y", "x_or_y", "x", "y". Determines + how convergence is determined from the two precisions. Default is "y". + x_precision (float or None): how close an algorithm must have gotten to the + true parameter values (as percent of the Euclidean distance between start + and solution parameters) before the criterion for clipping and convergence + is fulfilled. Default is 1e-4. + y_precision (float or None): how close an algorithm must have gotten to the + true criterion values (as percent of the distance between start + and solution criterion value) before the criterion for clipping and + convergence is fulfilled. Default is 1e-4. + + Returns: + pandas.DataFrame: indexes are the problems, columns are the algorithms and + the dimensionality of the benchmark problems. For the algorithms column, + the values are strings that are either "success", "failed", or "error". + For the dimensionality column, the values denote the number of dimensions + of the problem. + + """ + _, converged_info = process_benchmark_results( + problems=problems, + results=results, + stopping_criterion=stopping_criterion, + x_precision=x_precision, + y_precision=y_precision, + ) + + report = _get_success_info(results, converged_info) + report["dimensionality"] = report.index.map(_get_problem_dimensions(problems)) + + return report + + +def rank_report( + problems, + results, + *, + runtime_measure="n_evaluations", + stopping_criterion="y", + x_precision=1e-4, + y_precision=1e-4, +): + """Create a DataFrame with rank information for a set of problems. + + Args: + problems (dict): estimagic benchmarking problems dictionary. Keys are the + problem names. Values contain information on the problem, including the + solution value. + results (dict): estimagic benchmarking results dictionary. Keys are + tuples of the form (problem, algorithm), values are dictionaries of the + collected information on the benchmark run, including 'criterion_history' + and 'time_history'. + runtime_measure (str): "n_evaluations", "n_batches" or "walltime". + This is the runtime until the desired convergence was reached by an + algorithm. This is called performance measure by Moré and Wild (2009). + Default is "n_evaluations". + stopping_criterion (str): one of "x_and_y", "x_or_y", "x", "y". Determines + how convergence is determined from the two precisions. + x_precision (float or None): how close an algorithm must have gotten to the + true parameter values (as percent of the Euclidean distance between start + and solution parameters) before the criterion for clipping and convergence + is fulfilled. Default is 1e-4. + y_precision (float or None): how close an algorithm must have gotten to the + true criterion values (as percent of the distance between start + and solution criterion value) before the criterion for clipping and + convergence is fulfilled. Default is 1e-4. + + Returns: + pandas.DataFrame: indexes are the problems, columns are the algorithms and the + dimensionality of the problems. The values are the ranks of the algorithms + for each problem, where 0 means the algorithm was the fastest, 1 means it + was the second fastest and so on. If an algorithm did not converge on a + problem, the value is "failed". If an algorithm did encounter an error + during optimization, the value is "error". + + """ + histories, converged_info = process_benchmark_results( + problems=problems, + results=results, + stopping_criterion=stopping_criterion, + x_precision=x_precision, + y_precision=y_precision, + ) + + solution_times = create_solution_times( + histories, runtime_measure, converged_info, return_tidy=False + ) + solution_times["rank"] = ( + solution_times.groupby("problem")[runtime_measure].rank( + method="dense", ascending=True + ) + - 1 + ).astype("Int64") + + success_info = _get_success_info(results, converged_info) + + df_wide = solution_times.pivot(index="problem", columns="algorithm", values="rank") + report = df_wide.astype(str) + report.columns.name = None + + report[~converged_info] = success_info + report["dimensionality"] = report.index.map(_get_problem_dimensions(problems)) + + return report + + +def traceback_report(problems, results, return_type="dataframe"): + """Create traceback report for all problems that have not been solved. + + Args: + results (dict): estimagic benchmarking results dictionary. Keys are + tuples of the form (problem, algorithm), values are dictionaries of the + collected information on the benchmark run, including 'criterion_history' + and 'time_history'. + return_type (str): either "text", "markdown", "dict" or "dataframe". + If "text", the traceback report is returned as a string. If "markdown", + it is a markdown string. If "dict", it is returned as a dictionary. + If "dataframe", it is a tidy pandas DataFrame, where indexes are the + algorithm and problem names, the columns are the tracebacks and the + dimensionality of the problem. Default is "dataframe". + + Returns: + (list or str or dict or pandas.DataFrame): traceback report. If return_type + is "text", the report is a list of strings. If "markdown", it is a + formatted markdown string with algorithms and problem names as headers. + If return_type is "dict", the report is a dictionary. If return_type is + "dataframe", it is a tidy pandas DataFrame. In the latter case, indexes + are the algorithm and problem names, the columns are the tracebacks and + the dimensionality of the problems. The values are the tracebacks of the + algorithms for problems where they stopped with an error. + + """ + + if return_type == "text": + report = [] + for result in results.values(): + if isinstance(result["solution"], str): + report.append(result["solution"]) + + elif return_type == "markdown": + report = "```python" + for (problem_name, algorithm_name), result in results.items(): + if isinstance(result["solution"], str): + if f"### {algorithm_name}" not in report: + report += f"\n### {algorithm_name} \n" + report += f"\n#### {problem_name} \n" + report += f"\n{result['solution']} \n" + report += "\n```" + + elif return_type == "dict": + report = {} + for (problem_name, algorithm_name), result in results.items(): + if isinstance(result["solution"], str): + report[(problem_name, algorithm_name)] = result["solution"] + + elif return_type == "dataframe": + tracebacks = {} + for (problem_name, algorithm_name), result in results.items(): + if isinstance(result["solution"], str): + tracebacks[algorithm_name] = tracebacks.setdefault(algorithm_name, {}) + tracebacks[algorithm_name][problem_name] = result["solution"] + + report = pd.DataFrame.from_dict(tracebacks, orient="index").stack().to_frame() + report.index.set_names(["algorithm", "problem"], inplace=True) + report.columns = ["traceback"] + report["dimensionality"] = 0 + + for problem_name, dim in _get_problem_dimensions(problems).items(): + if problem_name in report.index.get_level_values("problem"): + report.loc[(slice(None), problem_name), "dimensionality"] = dim + + else: + raise ValueError( + f"return_type {return_type} is not supported. Must be one of " + f"'text', 'markdown', 'dict' or 'dataframe'." + ) + + return report + + +def _get_success_info(results, converged_info): + """Create a DataFrame with information on whether an algorithm succeeded or not. + + Args: + results (dict): estimagic benchmarking results dictionary. Keys are + tuples of the form (problem, algorithm), values are dictionaries of the + collected information on the benchmark run, including 'criterion_history' + and 'time_history'. + converged_info (pandas.DataFrame): columns are the algorithms, indexes are the + problems. The values are boolean and True when the algorithm arrived at + the solution with the desired precision. + + Returns: + pandas.DataFrame: indexes are the problems, columns are the algorithms. + values are strings that are either "success", "failed", or "error". + + """ + success_info = converged_info.replace({True: "success", False: "failed"}) + + for key, value in results.items(): + if isinstance(value["solution"], str): + success_info.at[key] = "error" + + return success_info + + +def _get_problem_dimensions(problems): + """Get the dimension of each problem. + + Args: + problems (dict): dictionary of problems. keys are problem names, values are + dictionaries with the problem information. + + Returns: + dict: keys are problem names, values are the dimension of the problem. + + """ + return {prob: len(problems[prob]["inputs"]["params"]) for prob in problems} diff --git a/src/estimagic/benchmarking/process_benchmark_results.py b/src/estimagic/benchmarking/process_benchmark_results.py index 8176a8c48..c5dca5a19 100644 --- a/src/estimagic/benchmarking/process_benchmark_results.py +++ b/src/estimagic/benchmarking/process_benchmark_results.py @@ -65,6 +65,7 @@ def process_benchmark_results( } infos.append(info) + # breakpoint() histories = pd.concat(histories, ignore_index=True) infos = pd.DataFrame(infos).set_index(["problem", "algorithm"]).unstack() infos.columns = [tup[1] for tup in infos.columns] diff --git a/src/estimagic/optimization/bhhh.py b/src/estimagic/optimization/bhhh.py index 10c1adebe..37baf753b 100644 --- a/src/estimagic/optimization/bhhh.py +++ b/src/estimagic/optimization/bhhh.py @@ -19,7 +19,8 @@ def bhhh( ): """Minimize a likelihood function using the BHHH algorithm. - For details, see :ref:`_own_algorithms`. + For details, see + :ref: `_own_algorithms`. """ result_dict = bhhh_internal( diff --git a/src/estimagic/optimization/cyipopt_optimizers.py b/src/estimagic/optimization/cyipopt_optimizers.py index c04e00f37..4e98f4c4b 100644 --- a/src/estimagic/optimization/cyipopt_optimizers.py +++ b/src/estimagic/optimization/cyipopt_optimizers.py @@ -217,7 +217,8 @@ def ipopt( ): """Minimize a scalar function using the Interior Point Optimizer. - For details see :ref:`ipopt_algorithm`. + For details see + :ref: `ipopt_algorithm`. """ if not IS_CYIPOPT_INSTALLED: diff --git a/src/estimagic/optimization/fides_optimizers.py b/src/estimagic/optimization/fides_optimizers.py index f62ed9712..d33f843b5 100644 --- a/src/estimagic/optimization/fides_optimizers.py +++ b/src/estimagic/optimization/fides_optimizers.py @@ -50,7 +50,8 @@ def fides( ): """Minimize a scalar function using the Fides Optimizer. - For details see :ref:`fides_algorithm`. + For details see + :ref: `fides_algorithm`. """ if not IS_FIDES_INSTALLED: diff --git a/src/estimagic/optimization/nag_optimizers.py b/src/estimagic/optimization/nag_optimizers.py index 97a94c28d..3e786af99 100644 --- a/src/estimagic/optimization/nag_optimizers.py +++ b/src/estimagic/optimization/nag_optimizers.py @@ -88,7 +88,8 @@ def nag_dfols( ): r"""Minimize a function with least squares structure using DFO-LS. - For details see :ref:`list_of_nag_algorithms`. + For details see + :ref: `list_of_nag_algorithms`. """ if not IS_DFOLS_INSTALLED: @@ -281,7 +282,8 @@ def nag_pybobyqa( ): r"""Minimize a function using the BOBYQA algorithm. - For details see :ref:`list_of_nag_algorithms`. + For details see + :ref: `list_of_nag_algorithms`. """ if not IS_PYBOBYQA_INSTALLED: diff --git a/src/estimagic/optimization/nlopt_optimizers.py b/src/estimagic/optimization/nlopt_optimizers.py index eaa93d54f..196df5bb9 100644 --- a/src/estimagic/optimization/nlopt_optimizers.py +++ b/src/estimagic/optimization/nlopt_optimizers.py @@ -43,7 +43,8 @@ def nlopt_bobyqa( ): """Minimize a scalar function using the BOBYQA algorithm. - For details see :ref:`list_of_nlopt_algorithms`. + For details see + :ref: `list_of_nlopt_algorithms`. """ out = _minimize_nlopt( @@ -83,7 +84,8 @@ def nlopt_neldermead( ): """Minimize a scalar function using the Nelder-Mead simplex algorithm. - For details see :ref:`list_of_nlopt_algorithms`. + For details see + :ref: `list_of_nlopt_algorithms`. """ @@ -122,7 +124,8 @@ def nlopt_praxis( ): """Minimize a scalar function using principal-axis method. - For details see :ref:`list_of_nlopt_algorithms`. + For details see + :ref: `list_of_nlopt_algorithms`. """ out = _minimize_nlopt( @@ -163,7 +166,8 @@ def nlopt_cobyla( ): """Minimize a scalar function using the cobyla method. - For details see :ref:`list_of_nlopt_algorithms`. + For details see + :ref: `list_of_nlopt_algorithms`. """ @@ -205,7 +209,8 @@ def nlopt_sbplx( ): """Minimize a scalar function using the "Subplex" algorithm. - For details see :ref:`list_of_nlopt_algorithms`. + For details see + :ref: `list_of_nlopt_algorithms`. """ @@ -245,7 +250,8 @@ def nlopt_newuoa( ): """Minimize a scalar function using the NEWUOA algorithm. - For details see :ref:`list_of_nlopt_algorithms`. + For details see + :ref: `list_of_nlopt_algorithms`. """ if np.any(np.isfinite(lower_bounds)) or np.any(np.isfinite(upper_bounds)): @@ -290,7 +296,8 @@ def nlopt_tnewton( ): """Minimize a scalar function using the "TNEWTON" algorithm. - For details see :ref:`list_of_nlopt_algorithms`. + For details see + :ref: `list_of_nlopt_algorithms`. """ @@ -332,7 +339,8 @@ def nlopt_lbfgs( ): """Minimize a scalar function using the "LBFGS" algorithm. - For details see :ref:`list_of_nlopt_algorithms`. + For details see + :ref: `list_of_nlopt_algorithms`. """ @@ -374,7 +382,8 @@ def nlopt_ccsaq( ): """Minimize a scalar function using CCSAQ algorithm. - For details see :ref:`list_of_nlopt_algorithms`. + For details see + :ref: `list_of_nlopt_algorithms`. """ out = _minimize_nlopt( @@ -416,7 +425,8 @@ def nlopt_mma( ): """Minimize a scalar function using the method of moving asymptotes (MMA). - For details see :ref:`list_of_nlopt_algorithms`. + For details see + :ref: `list_of_nlopt_algorithms`. """ # cannot handle equality constraints @@ -462,7 +472,8 @@ def nlopt_var( ): """Minimize a scalar function limited memory switching variable-metric method. - For details see :ref:`list_of_nlopt_algorithms`. + For details see + :ref: `list_of_nlopt_algorithms`. """ if rank_1_update: @@ -508,7 +519,8 @@ def nlopt_slsqp( ): """Optimize a scalar function based on SLSQP method. - For details see :ref:`list_of_nlopt_algorithms`. + For details see + :ref: `list_of_nlopt_algorithms`. """ out = _minimize_nlopt( @@ -552,7 +564,8 @@ def nlopt_direct( ): """Optimize a scalar function based on DIRECT method. - For details see :ref:`list_of_nlopt_algorithms`. + For details see + :ref: `list_of_nlopt_algorithms`. """ if not locally_biased and not random_search and not unscaled_bounds: @@ -606,7 +619,8 @@ def nlopt_esch( ): """Optimize a scalar function using the ESCH algorithm. - For details see :ref:`list_of_nlopt_algorithms`. + For details see + :ref: `list_of_nlopt_algorithms`. """ out = _minimize_nlopt( @@ -649,7 +663,8 @@ def nlopt_isres( ): """Optimize a scalar function using the ISRES algorithm. - For details see :ref:`list_of_nlopt_algorithms`. + For details see + :ref: `list_of_nlopt_algorithms`. """ out = _minimize_nlopt( @@ -693,7 +708,8 @@ def nlopt_crs2_lm( ): """Optimize a scalar function using the CRS2_LM algorithm. - For details see :ref:`list_of_nlopt_algorithms`. + For details see + :ref: `list_of_nlopt_algorithms`. """ if population_size is None: diff --git a/src/estimagic/optimization/pounders.py b/src/estimagic/optimization/pounders.py index afb98cb39..ebec3b5d9 100644 --- a/src/estimagic/optimization/pounders.py +++ b/src/estimagic/optimization/pounders.py @@ -59,7 +59,8 @@ def pounders( ): """Find the local minimum to a non-linear least-squares problem using POUNDERS. - For details, see :ref:`_own_algorithms`. + For details, see + :ref: `_own_algorithms`. """ batch_evaluator = process_batch_evaluator(batch_evaluator) diff --git a/src/estimagic/optimization/pygmo_optimizers.py b/src/estimagic/optimization/pygmo_optimizers.py index d5e240b31..906ac926a 100644 --- a/src/estimagic/optimization/pygmo_optimizers.py +++ b/src/estimagic/optimization/pygmo_optimizers.py @@ -53,7 +53,8 @@ def pygmo_gaco( ): """Minimize a scalar function using the generalized ant colony algorithm. - For details see :ref:`list_of_pygmo_algorithms`. + For details see + :ref: `list_of_pygmo_algorithms`. """ _check_that_every_param_is_bounded(lower_bounds, upper_bounds) @@ -123,7 +124,8 @@ def pygmo_bee_colony( ): """Minimize a scalar function using the artifical bee colony algorithm. - For details see :ref:`list_of_pygmo_algorithms`. + For details see + :ref: `list_of_pygmo_algorithms`. """ population_size = get_population_size( @@ -175,7 +177,8 @@ def pygmo_de( ): """Minimize a scalar function using the differential evolution algorithm. - For details see :ref:`list_of_pygmo_algorithms`. + For details see + :ref: `list_of_pygmo_algorithms`. """ population_size = get_population_size( @@ -245,7 +248,8 @@ def pygmo_sea( ): r"""Minimize a scalar function using the (N+1)-ES simple evolutionary algorithm. - For details see :ref:`list_of_pygmo_algorithms`. + For details see + :ref: `list_of_pygmo_algorithms`. """ _check_that_every_param_is_bounded(lower_bounds, upper_bounds) @@ -301,7 +305,8 @@ def pygmo_sga( ): """Minimize a scalar function using a simple genetic algorithm. - For details see :ref:`list_of_pygmo_algorithms`. + For details see + :ref: `list_of_pygmo_algorithms`. """ _check_that_every_param_is_bounded(lower_bounds, upper_bounds) @@ -412,7 +417,8 @@ def pygmo_sade( ): """Minimize a scalar function using Self-adaptive Differential Evolution. - For details see :ref:`list_of_pygmo_algorithms`. + For details see + :ref: `list_of_pygmo_algorithms`. """ _check_that_every_param_is_bounded(lower_bounds, upper_bounds) @@ -499,7 +505,8 @@ def pygmo_cmaes( ): r"""Minimize a scalar function using the Covariance Matrix Evolutionary Strategy. - For details see :ref:`list_of_pygmo_algorithms`. + For details see + :ref: `list_of_pygmo_algorithms`. """ _check_that_every_param_is_bounded(lower_bounds, upper_bounds) @@ -564,7 +571,8 @@ def pygmo_simulated_annealing( ): """Minimize a function with the simulated annealing algorithm. - For details see :ref:`list_of_pygmo_algorithms`. + For details see + :ref: `list_of_pygmo_algorithms`. """ _check_that_every_param_is_bounded(lower_bounds, upper_bounds) @@ -627,7 +635,8 @@ def pygmo_pso( ): r"""Minimize a scalar function using Particle Swarm Optimization. - For details see :ref:`list_of_pygmo_algorithms`. + For details see + :ref: `list_of_pygmo_algorithms`. """ _check_that_every_param_is_bounded(lower_bounds, upper_bounds) @@ -720,7 +729,8 @@ def pygmo_pso_gen( ): r"""Minimize a scalar function with generational Particle Swarm Optimization. - For details see :ref:`list_of_pygmo_algorithms`. + For details see + :ref: `list_of_pygmo_algorithms`. """ _check_that_every_param_is_bounded(lower_bounds, upper_bounds) @@ -807,7 +817,8 @@ def pygmo_mbh( ): """Minimize a scalar function using generalized Monotonic Basin Hopping. - For details see :ref:`list_of_pygmo_algorithms`. + For details see + :ref: `list_of_pygmo_algorithms`. """ _check_that_every_param_is_bounded(lower_bounds, upper_bounds) @@ -868,7 +879,8 @@ def pygmo_xnes( ): r"""Minimize a scalar function using Exponential Evolution Strategies. - For details see :ref:`list_of_pygmo_algorithms`. + For details see + :ref: `list_of_pygmo_algorithms`. """ _check_that_every_param_is_bounded(lower_bounds, upper_bounds) @@ -926,7 +938,8 @@ def pygmo_gwo( ): """Minimize a scalar function using the Grey Wolf Optimizer. - For details see :ref:`list_of_pygmo_algorithms`. + For details see + :ref: `list_of_pygmo_algorithms`. """ _check_that_every_param_is_bounded(lower_bounds, upper_bounds) @@ -976,7 +989,8 @@ def pygmo_compass_search( ): """Minimize a scalar function using compass search. - For details see :ref:`list_of_pygmo_algorithms`. + For details see + :ref: `list_of_pygmo_algorithms`. """ _check_that_every_param_is_bounded(lower_bounds, upper_bounds) @@ -1039,7 +1053,8 @@ def pygmo_ihs( ): """Minimize a scalar function using the improved harmony search algorithm. - For details see :ref:`list_of_pygmo_algorithms`. + For details see + :ref: `list_of_pygmo_algorithms`. """ _check_that_every_param_is_bounded(lower_bounds, upper_bounds) @@ -1104,7 +1119,8 @@ def pygmo_de1220( """Minimize a scalar function using Self-adaptive Differential Evolution, pygmo flavor. - For details see :ref:`list_of_pygmo_algorithms`. + For details see + :ref: `list_of_pygmo_algorithms`. """ _check_that_every_param_is_bounded(lower_bounds, upper_bounds) diff --git a/src/estimagic/optimization/scipy_optimizers.py b/src/estimagic/optimization/scipy_optimizers.py index 6871a4663..82a15859c 100644 --- a/src/estimagic/optimization/scipy_optimizers.py +++ b/src/estimagic/optimization/scipy_optimizers.py @@ -80,7 +80,8 @@ def scipy_lbfgsb( ): """Minimize a scalar function of one or more variables using the L-BFGS-B algorithm. - For details see :ref:`list_of_scipy_algorithms`. + For details see + :ref: `list_of_scipy_algorithms`. """ options = { @@ -117,7 +118,8 @@ def scipy_slsqp( ): """Minimize a scalar function of one or more variables using the SLSQP algorithm. - For details see :ref:`list_of_scipy_algorithms`. + For details see + :ref: `list_of_scipy_algorithms`. """ options = { @@ -153,7 +155,8 @@ def scipy_neldermead( ): """Minimize a scalar function using the Nelder-Mead algorithm. - For details see :ref:`list_of_scipy_algorithms`. + For details see + :ref: `list_of_scipy_algorithms`. """ options = { @@ -191,7 +194,8 @@ def scipy_powell( ): """Minimize a scalar function using the modified Powell method. - For details see :ref:`list_of_scipy_algorithms`. + For details see + :ref: `list_of_scipy_algorithms`. """ options = { @@ -223,7 +227,8 @@ def scipy_bfgs( ): """Minimize a scalar function of one or more variables using the BFGS algorithm. - For details see :ref:`list_of_scipy_algorithms`. + For details see + :ref: `list_of_scipy_algorithms`. """ options = { @@ -254,7 +259,8 @@ def scipy_conjugate_gradient( ): """Minimize a function using a nonlinear conjugate gradient algorithm. - For details see :ref:`list_of_scipy_algorithms`. + For details see + :ref: `list_of_scipy_algorithms`. """ options = { @@ -284,7 +290,8 @@ def scipy_newton_cg( ): """Minimize a scalar function using Newton's conjugate gradient algorithm. - For details see :ref:`list_of_scipy_algorithms`. + For details see + :ref: `list_of_scipy_algorithms`. """ options = { @@ -315,7 +322,8 @@ def scipy_cobyla( ): """Minimize a scalar function of one or more variables using the COBYLA algorithm. - For details see :ref:`list_of_scipy_algorithms`. + For details see + :ref: `list_of_scipy_algorithms`. """ if trustregion_initial_radius is None: @@ -359,7 +367,8 @@ def scipy_truncated_newton( ): """Minimize a scalar function using truncated Newton algorithm. - For details see :ref:`list_of_scipy_algorithms`. + For details see + :ref: `list_of_scipy_algorithms`. """ options = { @@ -407,7 +416,8 @@ def scipy_trust_constr( ): """Minimize a scalar function of one or more variables subject to constraints. - For details see :ref:`list_of_scipy_algorithms`. + For details see + :ref: `list_of_scipy_algorithms`. """ if trustregion_initial_radius is None: @@ -591,7 +601,8 @@ def scipy_basinhopping( ): """Find the global minimum of a function using the basin-hopping algorithm. - For details see :ref:`list_of_scipy_algorithms`. + For details see + :ref: `list_of_scipy_algorithms`. """ n_local_optimizations = max(1, n_local_optimizations - 1) @@ -695,7 +706,8 @@ def scipy_differential_evolution( ): """Finds the global minimum of a multivariate function. - For details see :ref:`list_of_scipy_algorithms`. + For details see + :ref: `list_of_scipy_algorithms`. """ workers = _get_workers(n_cores, batch_evaluator) @@ -750,7 +762,9 @@ def scipy_shgo( SHGO stands for “simplicial homology global optimization”. - For details see :ref:`list_of_scipy_algorithms`. + For details see + + :ref: `list_of_scipy_algorithms`. """ if local_algorithm == "COBYLA": @@ -821,7 +835,8 @@ def scipy_dual_annealing( ): """Find the global minimum of a function using Dual Annealing. - For details see :ref:`list_of_scipy_algorithms`. + For details see + :ref: `list_of_scipy_algorithms`. """ local_algo_options = {} if local_algo_options is None else local_algo_options @@ -869,7 +884,8 @@ def scipy_direct( ): """Finds the global minimum of a function using the DIRECT algorithm. - For details see :ref:`list_of_scipy_algorithms`. + For details see + :ref: `list_of_scipy_algorithms`. """ diff --git a/src/estimagic/optimization/simopt_optimizers.py b/src/estimagic/optimization/simopt_optimizers.py index 09268e877..23b5ff465 100644 --- a/src/estimagic/optimization/simopt_optimizers.py +++ b/src/estimagic/optimization/simopt_optimizers.py @@ -38,7 +38,8 @@ def simopt_adam( ): """Minimize a scalar function using the ADAM algorithm from SimOpt. - For details see :ref:`list_of_scipy_algorithms`. + For details see + :ref: `list_of_scipy_algorithms`. """ solver_options = { @@ -94,7 +95,8 @@ def simopt_astrodf( ): """Minimize a scalar function using the ASTRODF algorithm from SimOpt. - For details see :ref:`list_of_scipy_algorithms`. + For details see + :ref: `list_of_scipy_algorithms`. """ solver_options = { @@ -153,7 +155,8 @@ def simopt_spsa( ): """Minimize a scalar function using the SPSA algorithm from SimOpt. - For details see :ref:`list_of_scipy_algorithms`. + For details see + :ref: `list_of_scipy_algorithms`. """ solver_options = { @@ -207,7 +210,8 @@ def simopt_strong( ): """Minimize a scalar function using the STRONG algorithm from SimOpt. - For details see :ref:`list_of_scipy_algorithms`. + For details see + :ref: `list_of_scipy_algorithms`. """ solver_options = { diff --git a/src/estimagic/optimization/tao_optimizers.py b/src/estimagic/optimization/tao_optimizers.py index f99200ba5..8248589b9 100644 --- a/src/estimagic/optimization/tao_optimizers.py +++ b/src/estimagic/optimization/tao_optimizers.py @@ -39,7 +39,8 @@ def tao_pounders( ): r"""Minimize a function using the POUNDERs algorithm. - For details see :ref:`tao_algorithm`. + For details see + :ref: `tao_algorithm`. """ if not IS_PETSC4PY_INSTALLED: diff --git a/src/estimagic/sensitivity/msm_sensitivity.py b/src/estimagic/sensitivity/msm_sensitivity.py index ff689a22d..cffa1e87f 100644 --- a/src/estimagic/sensitivity/msm_sensitivity.py +++ b/src/estimagic/sensitivity/msm_sensitivity.py @@ -343,12 +343,12 @@ def calculate_sensitivity_to_weighting(jac, weights, moments_cov, params_cov): def _sandwich(a, b): - """calculate the sandwich product of two matrices: a.T * b * a.""" + """Calculate the sandwich product of two matrices: a.T * b * a.""" sandwich = a.T @ b @ a return sandwich def _sandwich_plus(a, b, c): - """calculate the sandwich product of three matrices: a.T * b.T * c * b * a""" + """Calculate the sandwich product of three matrices: a.T * b.T * c * b * a.""" sandwich = a.T @ b.T @ c @ b @ a return sandwich diff --git a/src/estimagic/visualization/profile_plot.py b/src/estimagic/visualization/profile_plot.py index ab7341d52..992b16e3f 100644 --- a/src/estimagic/visualization/profile_plot.py +++ b/src/estimagic/visualization/profile_plot.py @@ -86,7 +86,7 @@ def profile_plot( y_precision=y_precision, ) - solution_times = _create_solution_times( + solution_times = create_solution_times( df, runtime_measure=runtime_measure, converged_info=converged_info, @@ -139,29 +139,41 @@ def profile_plot( return fig -def _create_solution_times(df, runtime_measure, converged_info): +def create_solution_times(df, runtime_measure, converged_info, return_tidy=True): """Find the solution time for each algorithm and problem. Args: - df (pandas.DataFrame): contains 'problem', 'algorithm' and *runtime_measure* + df (pandas.DataFrame): contains 'problem', 'algorithm' and 'runtime_measure' as columns. runtime_measure (str): 'walltime', 'n_batches' or 'n_evaluations'. - converged_info (pandas.DataFrame): columns are the algorithms, index are the + converged_info (pandas.DataFrame): columns are the algorithms, indexes are the problems. The values are boolean and True when the algorithm arrived at the solution with the desired precision. + return_tidy (bool): If True, the resulting DataFrame will be a tidy DataFrame + with problem and algorithm as indexes and runtime_measure as column. + If False, the resulting DataFrame will have problem, algorithm and + runtime_measure as columns. Returns: - solution_times (pandas.DataFrame): columns are algorithms, index are problems. - The values are either the number of evaluations or the walltime each - algorithm needed to achieve the desired precision. If the desired precision - was not achieved the value is set to np.inf (for n_evaluations) or 7000 days - (for walltime since there no infinite value is allowed). + solution_times (pandas.DataFrame): If return_tidy is True, indexes are the + problems, columns are the algorithms. If return_tidy is False, columns are + problem, algorithm and runtime_measure. The values are either the number + of evaluations or the walltime each algorithm needed to achieve the + desired precision. If the desired precision was not achieved the value is + set to np.inf (for n_evaluations) or 7000 days (for walltime since there + no infinite value is allowed). """ solution_times = df.groupby(["problem", "algorithm"])[runtime_measure].max() solution_times = solution_times.unstack() - solution_times[~converged_info] = np.inf + + if not return_tidy: + solution_times = solution_times.stack().reset_index() + solution_times = solution_times.rename( + columns={solution_times.columns[2]: runtime_measure} + ) + return solution_times @@ -180,7 +192,7 @@ def _find_switch_points(solution_times): Args: solution_times (pandas.DataFrame): columns are the names of the algorithms, - the index are the problems. Values are performance measures. + the indexes are the problems. Values are performance measures. They can be either float, when normalize_runtime was True or int when the runtime_measure are not normalized function evaluations or datetime when the not normalized walltime is used. diff --git a/tests/benchmarking/test_benchmark_reports.py b/tests/benchmarking/test_benchmark_reports.py new file mode 100644 index 000000000..c5c206220 --- /dev/null +++ b/tests/benchmarking/test_benchmark_reports.py @@ -0,0 +1,221 @@ +import pytest +from itertools import product +import numpy as np + +from estimagic import ( + convergence_report, + rank_report, + traceback_report, +) +from estimagic import OptimizeResult +from estimagic import get_benchmark_problems + + +@pytest.fixture +def benchmark_example(): + all_problems = get_benchmark_problems("example") + problems = { + k: v + for k, v in all_problems.items() + if k in ["bard_good_start", "box_3d", "rosenbrock_good_start"] + } + _stop_after_10 = { + "stopping_max_criterion_evaluations": 10, + "stopping_max_iterations": 10, + } + optimizers = { + "lbfgsb": {"algorithm": "scipy_lbfgsb", "algo_options": _stop_after_10}, + "nm": {"algorithm": "scipy_neldermead", "algo_options": _stop_after_10}, + } + + results = { + ("bard_good_start", "lbfgsb"): { + "params_history": [ + [1.0, 1.0, 1.0], + [0.48286315298120086, 1.6129119244711858, 1.5974181569859445], + [0.09754340799557773, 1.7558262514618663, 1.7403560082627973], + ], + "criterion_history": np.array( + [ + 4.16816959e01, + 3.20813118e00, + 9.97263708e-03, + ] + ), + "time_history": [ + 0.0, + 0.0003762839987757616, + 0.0007037959985609632, + ], + "batches_history": [0, 1, 2], + "solution": OptimizeResult, # success + }, + ("box_3d", "lbfgsb"): { + "params_history": [ + [0.0, 10.0, 20.0], + [-0.6579976970071755, 10.014197643614924, 19.247113914560085], + [-3.2899884850358774, 10.070988218074623, 16.235569572800433], + ], + "criterion_history": np.array( + [ + 1.03115381e03, + 8.73640769e02, + 9.35093416e02, + ] + ), + "time_history": [ + 0.0, + 0.000555748996703187, + 0.0009771709992492106, + ], + "batches_history": [0, 1, 2], + "solution": OptimizeResult, # failed + }, + ("rosenbrock_good_start", "lbfgsb"): { + "params_history": [ + [-1.2, 1.0], + [0.0, 0.0], + ], + "criterion_history": np.array([1.795769e6, 1e3]), + "time_history": [ + 0.0, + 5.73799989069812e-04, + ], + "batches_history": [0, 1], + "solution": "lbfgsb traceback", # error + }, + ("bard_good_start", "nm"): { + "params_history": [ + [1.0, 1.0, 1.0], + [1.05, 1.0, 1.0], + [0.7999999999999998, 1.1999999999999993, 1.0499999999999994], + [0.08241056, 1.13303608, 2.34369519], + ], + "criterion_history": np.array( + [ + 41.68169586, + 43.90748158, + 23.92563745, + 0.00821487730657897, + ] + ), + "time_history": [ + 0.0, + 3.603900040616281e-05, + 0.0004506860022956971, + 0.00015319500016630627, + ], + "batches_history": [0, 1, 2, 4], + "solution": OptimizeResult, # success + }, + ("box_3d", "nm"): { + "params_history": [ + [0.0, 10.0, 20.0], + [0.025, 10.0, 20.0], + [0.0, 10.5, 20.0], + ], + "criterion_history": np.array( + [1031.15381061, 1031.17836473, 1030.15033678] + ), + "time_history": [ + 0.0, + 5.73799989069812e-05, + 0.00010679600018193014, + ], + "batches_history": [0, 1, 2], + "solution": "some traceback", # error + }, + ("rosenbrock_good_start", "nm"): { + "params_history": [ + [-1.2, 1.0], + [0.0, 0.0], + ], + "criterion_history": np.array([1.795769e6, 1e3]), + "time_history": [ + 0.0, + 5.73799989069812e-04, + ], + "batches_history": [0, 1], + "solution": "another traceback", # error + }, + } + + return problems, optimizers, results + + +# ==================================================================================== +# Convergence report +# ==================================================================================== + +keys = ["stopping_criterion"] +stopping_criterion = ["x_and_y", "x_or_y", "x", "y"] +x_precision = [1e-4, 1e-6] +y_precision = [1e-4, 1e-6] +CONVERGENCE_REPORT_OPTIONS = [ + dict(zip(keys, value)) + for value in product(stopping_criterion, x_precision, y_precision) +] + + +@pytest.mark.parametrize("options", CONVERGENCE_REPORT_OPTIONS) +def test_convergence_report(options, benchmark_example): + problems, optimizers, results = benchmark_example + + df = convergence_report(problems=problems, results=results, **options) + + expected_columns = list(optimizers.keys()) + ["dimensionality"] + assert df.shape == (len(problems), len(expected_columns)) + assert set(df.columns) == set(expected_columns) + + assert df["lbfgsb"].loc["box_3d"] == "failed" + assert df["nm"].loc["box_3d"] == "error" + + +# ==================================================================================== +# Rank report +# ==================================================================================== + +keys = ["runtime_measure", "stopping_criterion"] +runtime_measure = ["n_evaluations", "walltime", "n_batches"] +RANK_REPORT_OPTIONS = [ + dict(zip(keys, value)) for value in product(runtime_measure, stopping_criterion) +] + + +@pytest.mark.parametrize("options", RANK_REPORT_OPTIONS) +def test_rank_report(options, benchmark_example): + problems, optimizers, results = benchmark_example + + df = rank_report(problems=problems, results=results, **options) + + assert df.shape == (len(problems), len(optimizers) + 1) # +1 for dimensionality + assert set(df.columns) == set(optimizers.keys()) | {"dimensionality"} + + assert df["lbfgsb"].loc["box_3d"] == "failed" + assert df["nm"].loc["box_3d"] == "error" + + +# ==================================================================================== +# Traceback report +# ==================================================================================== + + +@pytest.mark.parametrize("return_type", ["text", "markdown", "dict", "dataframe"]) +def test_traceback_report(return_type, benchmark_example): + problems, optimizers, results = benchmark_example + n_failed_problems = 3 + + report = traceback_report( + problems=problems, results=results, return_type=return_type + ) + + if return_type in ["text", "dict"]: + assert len(report) == n_failed_problems + + elif return_type == "markdown": + for algorithm_name in optimizers: + assert algorithm_name in report + + elif return_type == "dataframe": + assert report.shape == (n_failed_problems, 2) + assert list(report.index.names) == ["algorithm", "problem"] diff --git a/tests/visualization/test_profile_plot.py b/tests/visualization/test_profile_plot.py index de9e9db55..2d3a7fabb 100644 --- a/tests/visualization/test_profile_plot.py +++ b/tests/visualization/test_profile_plot.py @@ -4,7 +4,7 @@ from estimagic import get_benchmark_problems from estimagic.benchmarking.run_benchmark import run_benchmark from estimagic.visualization.profile_plot import ( - _create_solution_times, + create_solution_times, _determine_alpha_grid, _find_switch_points, profile_plot, @@ -64,7 +64,7 @@ def test_create_solution_times_n_evaluations(): ) expected.columns.name = "algorithm" - res = _create_solution_times( + res = create_solution_times( df=df, runtime_measure="n_evaluations", converged_info=info ) pd.testing.assert_frame_equal(res, expected) @@ -102,9 +102,7 @@ def test_create_solution_times_n_batches(): ) expected.columns.name = "algorithm" - res = _create_solution_times( - df=df, runtime_measure="n_batches", converged_info=info - ) + res = create_solution_times(df=df, runtime_measure="n_batches", converged_info=info) pd.testing.assert_frame_equal(res, expected) @@ -140,7 +138,7 @@ def test_create_solution_times_walltime(): ) expected.columns.name = "algorithm" - res = _create_solution_times(df=df, runtime_measure="walltime", converged_info=info) + res = create_solution_times(df=df, runtime_measure="walltime", converged_info=info) pd.testing.assert_frame_equal(res, expected)