-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
264 lines (220 loc) · 8.79 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import numpy as np
from ortools.sat.python import cp_model
from typing import List, Dict
FLOAT_APPROX_PRECISION = 100
def create_boolean_is_positive(model: cp_model.CpModel, var: cp_model.IntVar):
"""Create a bool variable such that
If var >= 0 then bool = 1
If var < 0 then bool = 0
"""
boolean_var = model.NewBoolVar(name=var.Name() + "_is_positive")
# Bool are casted to 0 if False and 1 if True, so you can do some operations with them
model.Add(var >= 0).OnlyEnforceIf(boolean_var)
model.Add(var < 0).OnlyEnforceIf(boolean_var.Not())
return boolean_var
def create_boolean_is_equal_to(
model: cp_model.CpModel, var: cp_model.IntVar, value: int
):
"""Create a bool variable such that
If var == value then bool = 1
Else then bool = 0
"""
boolean_var = model.NewBoolVar(name=f"{var.Name()}_is_equal_to_{value}")
model.Add(value == var).OnlyEnforceIf(boolean_var)
model.Add(value != var).OnlyEnforceIf(boolean_var.Not())
return boolean_var
def add_multiplication_constraint(
model: cp_model.CpModel,
target: cp_model.IntVar,
variables: List[cp_model.IntVar],
):
if len(variables) <= 2:
# If less than 2 variables, we can add a normal inequality constraint
model.AddMultiplicationEquality(target, variables)
return
else:
last_variable = variables.pop()
before_last_variable = variables.pop()
# Use their bounds to define domain of the intermediate variable
# You may need additional logic here to account for variable domain bounds
ub = max(
last_variable.Proto().domain[1] * before_last_variable.Proto().domain[1],
last_variable.Proto().domain[0] * before_last_variable.Proto().domain[1],
last_variable.Proto().domain[0] * before_last_variable.Proto().domain[0],
last_variable.Proto().domain[1] * before_last_variable.Proto().domain[0],
)
lb = min(
last_variable.Proto().domain[1] * before_last_variable.Proto().domain[1],
last_variable.Proto().domain[0] * before_last_variable.Proto().domain[1],
last_variable.Proto().domain[0] * before_last_variable.Proto().domain[0],
last_variable.Proto().domain[1] * before_last_variable.Proto().domain[0],
)
# Create an intermediate variable
intermediate = model.NewIntVar(
lb=lb, ub=ub, name=f"{before_last_variable.Name()}*{last_variable.Name()}"
)
model.AddMultiplicationEquality(
intermediate, [before_last_variable, last_variable]
)
# Recursion
add_multiplication_constraint(model, target, variables + [intermediate])
def create_polynom(
model: cp_model.CpModel,
var: cp_model.IntVar,
coefs: List[float],
float_precision=FLOAT_APPROX_PRECISION,
verbose=True,
):
"""This polynom takes as an input var a usual integer"""
degree = len(coefs)
# Approximate all coef values by mutliplying them by a big number and rounding them
coefs = [round(float_precision * coef) for coef in coefs]
polynom_value = 0
polynom_value_ub = 0
polynom_value_lb = 0
for deg in range(degree):
# Create the coefficient value
if deg == 0:
polynom_value += coefs[deg]
polynom_value_lb += coefs[deg]
polynom_value_ub += coefs[deg]
elif deg == 1:
polynom_value_lb += var.Proto().domain[0] * coefs[deg]
polynom_value_ub += var.Proto().domain[1] * coefs[deg]
polynom_value += coefs[deg] * var
else:
lb = var.Proto().domain[0] ** deg
ub = var.Proto().domain[1] ** deg
if (deg % 2) == 0:
if var.Proto().domain[0] < 0:
lb = -lb
if var.Proto().domain[1] < 0:
ub = -ub
lb = coefs[deg] * lb
ub = coefs[deg] * ub
polynom_value_lb += lb
polynom_value_ub += ub
target = model.NewIntVar(lb=lb, ub=ub, name=f"{var.Name()}**{deg}")
add_multiplication_constraint(model, target, [var] * deg)
polynom_value += coefs[deg] * target
if verbose:
print("Polynom", polynom_value)
polynom_var = model.NewIntVar(
polynom_value_lb, polynom_value_ub, name=f"{var.Name()}_polynom"
)
model.Add(polynom_var == polynom_value)
return polynom_var
def create_polynom_decimal(
model: cp_model.CpModel,
var: cp_model.IntVar,
coefs: List[float],
float_precision_var=FLOAT_APPROX_PRECISION,
float_precision_coef=FLOAT_APPROX_PRECISION,
verbose=True,
):
"""This polynom accepts as an input a decimal var upscaled by float_precision_var."""
degree = len(coefs)
# Approximate all coef values by mutliplying them by a big number and rounding them
coefs = [round(float_precision_coef * coef) for coef in coefs]
polynom_value = 0
polynom_value_ub = 0
polynom_value_lb = 0
for deg in range(degree):
# Create the coefficient value
if deg == 0:
polynom_value += coefs[deg] * float_precision_var
polynom_value_lb += coefs[deg] * float_precision_var
polynom_value_ub += coefs[deg] * float_precision_var
elif deg == 1:
polynom_value_lb += var.Proto().domain[0] * coefs[deg]
polynom_value_ub += var.Proto().domain[1] * coefs[deg]
polynom_value += coefs[deg] * var
else:
# Bounds logic
lb_no_coef = var.Proto().domain[0] ** deg
ub_no_coef = var.Proto().domain[1] ** deg
if (deg % 2) == 0:
if var.Proto().domain[0] < 0:
lb_no_coef = -lb_no_coef
if var.Proto().domain[1] < 0:
ub_no_coef = -ub_no_coef
lb = coefs[deg] * lb_no_coef
ub = coefs[deg] * ub_no_coef
polynom_value_lb += lb
polynom_value_ub += ub
# Compute (x**n)
target = model.NewIntVar(
lb=lb_no_coef, ub=ub_no_coef, name=f"{var.Name()}**{deg}"
)
add_multiplication_constraint(model, target, [var] * deg)
# Then compute (a * x**n)
target_times_coef = model.NewIntVar(
lb=lb, ub=ub, name=f"{coefs[deg]}*{var.Name()}**{deg}"
)
model.Add(target_times_coef == target * coefs[deg])
# Downscale (a * x**n) to the float_precision_var range
target_divided_by_approx = model.NewIntVar(
lb=lb,
ub=ub,
name=f"{coefs[deg]}*{var.Name()}**{deg} / ({float_precision_var**(deg-1)})",
)
model.AddDivisionEquality(
target_divided_by_approx,
target_times_coef,
float_precision_var ** (deg - 1),
)
polynom_value += target_divided_by_approx
if verbose:
print("Polynom", polynom_value)
polynom_var = model.NewIntVar(
polynom_value_lb, polynom_value_ub, name=f"{var.Name()}_polynom"
)
model.Add(polynom_var == polynom_value)
return polynom_var
def lookup_value_in_dict(
model: cp_model.CpModel,
key_var: cp_model.IntVar,
mapping: Dict[int, int],
mapping_name: str = "mapping",
):
"""Creates a new variable equals to mapping[key_var]
If the value is absent from the mapping, the value_var takes the value 0.
"""
value_var = model.NewIntVar(
min(mapping.values()), max(mapping.values()), f"{mapping_name}_{key_var.Name()}"
)
for mapping_key, mapping_value in mapping.items():
key_var_is_equal_to = create_boolean_is_equal_to(model, key_var, mapping_key)
model.Add(value_var == mapping_value).OnlyEnforceIf(key_var_is_equal_to)
return value_var
# TODO : Make this work with variable bounds
def exp_of_x(
model: cp_model.CpModel,
var: cp_model.IntVar,
float_precision_var=FLOAT_APPROX_PRECISION,
float_precision_image=FLOAT_APPROX_PRECISION,
):
lb = var.Proto().domain[0]
ub = var.Proto().domain[1]
x_to_exp_x = {
x: round(exp(x / float_precision_var) * float_precision_image)
for x in range(lb, ub + 1)
}
exp_of_var = lookup_value_in_dict(model, var, x_to_exp_x, mapping_name="exp")
return exp_of_var
def log_of_x(
model: cp_model.CpModel,
var: cp_model.IntVar,
float_precision_var=FLOAT_APPROX_PRECISION,
float_precision_image=FLOAT_APPROX_PRECISION,
):
# Log is only defined for x > 0
lb = max(var.Proto().domain[0], 1)
ub = max(var.Proto().domain[1], 1)
assert lb <= ub
x_to_log_x = {
x: round(log(x / float_precision_var) * float_precision_image)
for x in range(lb, ub + 1)
}
log_of_var = lookup_value_in_dict(model, var, x_to_log_x, mapping_name="log")
return log_of_var