-
Notifications
You must be signed in to change notification settings - Fork 424
/
train_classifaction.py
239 lines (189 loc) · 8.82 KB
/
train_classifaction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import numpy as np
from torch.utils.data import DataLoader, sampler
from tqdm import tqdm
from dataio.loader import get_dataset, get_dataset_path
from dataio.transformation import get_dataset_transformation
from utils.util import json_file_to_pyobj
from utils.visualiser import Visualiser
from utils.error_logger import ErrorLogger
from models.networks_other import adjust_learning_rate
from models import get_model
class StratifiedSampler(object):
"""Stratified Sampling
Provides equal representation of target classes in each batch
"""
def __init__(self, class_vector, batch_size):
"""
Arguments
---------
class_vector : torch tensor
a vector of class labels
batch_size : integer
batch_size
"""
self.class_vector = class_vector
self.batch_size = batch_size
self.num_iter = len(class_vector) // 52
self.n_class = 14
self.sample_n = 2
# create pool of each vectors
indices = {}
for i in range(self.n_class):
indices[i] = np.where(self.class_vector == i)[0]
self.indices = indices
self.background_index = np.argmax([ len(indices[i]) for i in range(self.n_class)])
def gen_sample_array(self):
# sample 2 from each class
sample_array = []
for i in range(self.num_iter):
arrs = []
for i in range(self.n_class):
n = self.sample_n
if i == self.background_index:
n = self.sample_n * (self.n_class-1)
arr = np.random.choice(self.indices[i], n)
arrs.append(arr)
sample_array.append(np.hstack(arrs))
return np.hstack(sample_array)
def __iter__(self):
return iter(self.gen_sample_array())
def __len__(self):
return len(self.class_vector)
# Not using anymore
def check_warm_start(epoch, model, train_opts):
if hasattr(train_opts, "warm_start_epoch"):
if epoch < train_opts.warm_start_epoch:
print('... warm_start: lr={}'.format(train_opts.warm_start_lr))
adjust_learning_rate(model.optimizers[0], train_opts.warm_start_lr)
elif epoch == train_opts.warm_start_epoch:
print('... warm_start ended: lr={}'.format(model.opts.lr_rate))
adjust_learning_rate(model.optimizers[0], model.opts.lr_rate)
def train(arguments):
# Parse input arguments
json_filename = arguments.config
network_debug = arguments.debug
# Load options
json_opts = json_file_to_pyobj(json_filename)
train_opts = json_opts.training
# Architecture type
arch_type = train_opts.arch_type
# Setup Dataset and Augmentation
ds_class = get_dataset(arch_type)
ds_path = get_dataset_path(arch_type, json_opts.data_path)
ds_transform = get_dataset_transformation(arch_type, opts=json_opts.augmentation)
# Setup the NN Model
model = get_model(json_opts.model)
if network_debug:
print('# of pars: ', model.get_number_parameters())
print('fp time: {0:.3f} sec\tbp time: {1:.3f} sec per sample'.format(*model.get_fp_bp_time()))
exit()
# Setup Data Loader
num_workers = train_opts.num_workers if hasattr(train_opts, 'num_workers') else 16
train_dataset = ds_class(ds_path, split='train', transform=ds_transform['train'], preload_data=train_opts.preloadData)
valid_dataset = ds_class(ds_path, split='val', transform=ds_transform['valid'], preload_data=train_opts.preloadData)
test_dataset = ds_class(ds_path, split='test', transform=ds_transform['valid'], preload_data=train_opts.preloadData)
# create sampler
if train_opts.sampler == 'stratified':
print('stratified sampler')
train_sampler = StratifiedSampler(train_dataset.labels, train_opts.batchSize)
batch_size = 52
elif train_opts.sampler == 'weighted2':
print('weighted sampler with background weight={}x'.format(train_opts.bgd_weight_multiplier))
# modify and increase background weight
weight = train_dataset.weight
bgd_weight = np.min(weight)
weight[abs(weight - bgd_weight) < 1e-8] = bgd_weight * train_opts.bgd_weight_multiplier
train_sampler = sampler.WeightedRandomSampler(weight, len(train_dataset.weight))
batch_size = train_opts.batchSize
else:
print('weighted sampler')
train_sampler = sampler.WeightedRandomSampler(train_dataset.weight, len(train_dataset.weight))
batch_size = train_opts.batchSize
# loader
train_loader = DataLoader(dataset=train_dataset, num_workers=num_workers,
batch_size=batch_size, sampler=train_sampler)
valid_loader = DataLoader(dataset=valid_dataset, num_workers=num_workers, batch_size=train_opts.batchSize, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, num_workers=num_workers, batch_size=train_opts.batchSize, shuffle=True)
# Visualisation Parameters
visualizer = Visualiser(json_opts.visualisation, save_dir=model.save_dir)
error_logger = ErrorLogger()
# Training Function
track_labels = np.arange(len(train_dataset.label_names))
model.set_labels(track_labels)
model.set_scheduler(train_opts)
if hasattr(model, 'update_state'):
model.update_state(0)
for epoch in range(model.which_epoch, train_opts.n_epochs):
print('(epoch: %d, total # iters: %d)' % (epoch, len(train_loader)))
# # # --- Start ---
# import matplotlib.pyplot as plt
# plt.ion()
# plt.figure()
# target_arr = np.zeros(14)
# # # --- End ---
# Training Iterations
for epoch_iter, (images, labels) in tqdm(enumerate(train_loader, 1), total=len(train_loader)):
# Make a training update
model.set_input(images, labels)
model.optimize_parameters()
if epoch == (train_opts.n_epochs-1):
import time
time.sleep(36000)
if train_opts.max_it == epoch_iter:
break
# # # --- visualise distribution ---
# for lab in labels.numpy():
# target_arr[lab] += 1
# plt.clf(); plt.bar(train_dataset.label_names, target_arr); plt.pause(0.01)
# # # --- End ---
# Visualise predictions
if epoch_iter <= 100:
visuals = model.get_current_visuals()
visualizer.display_current_results(visuals, epoch=epoch, save_result=False)
# Error visualisation
errors = model.get_current_errors()
error_logger.update(errors, split='train')
# Validation and Testing Iterations
pr_lbls = []
gt_lbls = []
for loader, split in zip([valid_loader, test_loader], ['validation', 'test']):
model.reset_results()
for epoch_iter, (images, labels) in tqdm(enumerate(loader, 1), total=len(loader)):
# Make a forward pass with the model
model.set_input(images, labels)
model.validate()
# Visualise predictions
visuals = model.get_current_visuals()
visualizer.display_current_results(visuals, epoch=epoch, save_result=False)
if train_opts.max_it == epoch_iter:
break
# Error visualisation
errors = model.get_accumulated_errors()
stats = model.get_classification_stats()
error_logger.update({**errors, **stats}, split=split)
# HACK save validation error
if split == 'validation':
valid_err = errors['CE']
# Update the plots
for split in ['train', 'validation', 'test']:
# exclude bckground
#track_labels = np.delete(track_labels, 3)
#show_labels = train_dataset.label_names[:3] + train_dataset.label_names[4:]
show_labels = train_dataset.label_names
visualizer.plot_current_errors(epoch, error_logger.get_errors(split), split_name=split, labels=show_labels)
visualizer.print_current_errors(epoch, error_logger.get_errors(split), split_name=split)
error_logger.reset()
# Save the model parameters
if epoch % train_opts.save_epoch_freq == 0:
model.save(epoch)
if hasattr(model, 'update_state'):
model.update_state(epoch)
# Update the model learning rate
model.update_learning_rate(metric=valid_err, epoch=epoch)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='CNN Classification Training Function')
parser.add_argument('-c', '--config', help='training config file', required=True)
parser.add_argument('-d', '--debug', help='returns number of parameters and bp/fp runtime', action='store_true')
args = parser.parse_args()
train(args)