-
Notifications
You must be signed in to change notification settings - Fork 424
/
visualise_attention.py
executable file
·192 lines (156 loc) · 7.71 KB
/
visualise_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from torch.utils.data import DataLoader
from dataio.loader import get_dataset, get_dataset_path
from dataio.transformation import get_dataset_transformation
from utils.util import json_file_to_pyobj
from utils.visualiser import Visualiser
from models import get_model
import os, time
# import matplotlib
# matplotlib.use('Agg')
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import math, numpy
import numpy as np
from scipy.misc import imresize
from skimage.transform import resize
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None, title=''):
plt.ion()
filters = units.shape[2]
n_columns = round(math.sqrt(filters))
n_rows = math.ceil(filters / n_columns) + 1
fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3))
fig.clf()
for i in range(filters):
ax1 = plt.subplot(n_rows, n_columns, i+1)
plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap)
plt.axis('on')
ax1.set_xticklabels([])
ax1.set_yticklabels([])
plt.colorbar()
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
plt.suptitle(title)
def plotNNFilterOverlay(input_im, units, figure_id, interp='bilinear',
colormap=cm.jet, colormap_lim=None, title='', alpha=0.8):
plt.ion()
filters = units.shape[2]
fig = plt.figure(figure_id, figsize=(5,5))
fig.clf()
for i in range(filters):
plt.imshow(input_im[:,:,0], interpolation=interp, cmap='gray')
plt.imshow(units[:,:,i], interpolation=interp, cmap=colormap, alpha=alpha)
plt.axis('off')
plt.colorbar()
plt.title(title, fontsize='small')
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
# plt.savefig('{}/{}.png'.format(dir_name,time.time()))
## Load options
PAUSE = .01
#config_name = 'config_sononet_attention_fs8_v6.json'
#config_name = 'config_sononet_attention_fs8_v8.json'
#config_name = 'config_sononet_attention_fs8_v9.json'
#config_name = 'config_sononet_attention_fs8_v10.json'
#config_name = 'config_sononet_attention_fs8_v11.json'
#config_name = 'config_sononet_attention_fs8_v13.json'
#config_name = 'config_sononet_attention_fs8_v14.json'
#config_name = 'config_sononet_attention_fs8_v15.json'
#config_name = 'config_sononet_attention_fs8_v16.json'
#config_name = 'config_sononet_grid_attention_fs8_v1.json'
config_name = 'config_sononet_grid_attention_fs8_deepsup_v1.json'
config_name = 'config_sononet_grid_attention_fs8_deepsup_v2.json'
config_name = 'config_sononet_grid_attention_fs8_deepsup_v3.json'
config_name = 'config_sononet_grid_attention_fs8_deepsup_v4.json'
# config_name = 'config_sononet_grid_att_fs8_avg.json'
config_name = 'config_sononet_grid_att_fs8_avg_v2.json'
# config_name = 'config_sononet_grid_att_fs8_avg_v3.json'
#config_name = 'config_sononet_grid_att_fs8_avg_v4.json'
#config_name = 'config_sononet_grid_att_fs8_avg_v5.json'
#config_name = 'config_sononet_grid_att_fs8_avg_v5.json'
#config_name = 'config_sononet_grid_att_fs8_avg_v6.json'
#config_name = 'config_sononet_grid_att_fs8_avg_v7.json'
#config_name = 'config_sononet_grid_att_fs8_avg_v8.json'
#config_name = 'config_sononet_grid_att_fs8_avg_v9.json'
#config_name = 'config_sononet_grid_att_fs8_avg_v10.json'
#config_name = 'config_sononet_grid_att_fs8_avg_v11.json'
#config_name = 'config_sononet_grid_att_fs8_avg_v12.json'
config_name = 'config_sononet_grid_att_fs8_avg_v12_scratch.json'
config_name = 'config_sononet_grid_att_fs4_avg_v12.json'
#config_name = 'config_sononet_grid_attention_fs8_v3.json'
json_opts = json_file_to_pyobj('/vol/bitbucket/js3611/projects/transfer_learning/ultrasound/configs_2/{}'.format(config_name))
train_opts = json_opts.training
dir_name = os.path.join('visualisation_debug', config_name)
if not os.path.isdir(dir_name):
os.makedirs(dir_name)
os.makedirs(os.path.join(dir_name,'pos'))
os.makedirs(os.path.join(dir_name,'neg'))
# Setup the NN Model
model = get_model(json_opts.model)
if hasattr(model.net, 'classification_mode'):
model.net.classification_mode = 'attention'
if hasattr(model.net, 'deep_supervised'):
model.net.deep_supervised = False
# Setup Dataset and Augmentation
dataset_class = get_dataset(train_opts.arch_type)
dataset_path = get_dataset_path(train_opts.arch_type, json_opts.data_path)
dataset_transform = get_dataset_transformation(train_opts.arch_type, opts=json_opts.augmentation)
# Setup Data Loader
dataset = dataset_class(dataset_path, split='train', transform=dataset_transform['valid'])
data_loader = DataLoader(dataset=dataset, num_workers=1, batch_size=1, shuffle=True)
# test
for iteration, data in enumerate(data_loader, 1):
model.set_input(data[0], data[1])
cls = dataset.label_names[int(data[1])]
model.validate()
pred_class = model.pred[1]
pred_cls = dataset.label_names[int(pred_class)]
#########################################################
# Display the input image and Down_sample the input image
input_img = model.input[0,0].cpu().numpy()
#input_img = numpy.expand_dims(imresize(input_img, (fmap_size[0], fmap_size[1]), interp='bilinear'), axis=2)
input_img = numpy.expand_dims(input_img, axis=2)
# plotNNFilter(input_img, figure_id=0, colormap="gray")
plotNNFilterOverlay(input_img, numpy.zeros_like(input_img), figure_id=0, interp='bilinear',
colormap=cm.jet, title='[GT:{}|P:{}]'.format(cls, pred_cls),alpha=0)
chance = np.random.random() < 0.01 if cls == "BACKGROUND" else 1
if cls != pred_cls:
plt.savefig('{}/neg/{:03d}.png'.format(dir_name,iteration))
elif cls == pred_cls and chance:
plt.savefig('{}/pos/{:03d}.png'.format(dir_name,iteration))
#########################################################
# Compatibility Scores overlay with input
attentions = []
for i in [1,2]:
fmap = model.get_feature_maps('compatibility_score%d'%i, upscale=False)
if not fmap:
continue
# Output of the attention block
fmap_0 = fmap[0].squeeze().permute(1,2,0).cpu().numpy()
fmap_size = fmap_0.shape
# Attention coefficient (b x c x w x h x s)
attention = fmap[1].squeeze().cpu().numpy()
attention = attention[:, :]
#attention = numpy.expand_dims(resize(attention, (fmap_size[0], fmap_size[1]), mode='constant', preserve_range=True), axis=2)
attention = numpy.expand_dims(resize(attention, (input_img.shape[0], input_img.shape[1]), mode='constant', preserve_range=True), axis=2)
# this one is useless
#plotNNFilter(fmap_0, figure_id=i+3, interp='bilinear', colormap=cm.jet, title='compat. feature %d' %i)
plotNNFilterOverlay(input_img, attention, figure_id=i, interp='bilinear', colormap=cm.jet, title='[GT:{}|P:{}] compat. {}'.format(cls,pred_cls,i), alpha=0.5)
attentions.append(attention)
#plotNNFilterOverlay(input_img, attentions[0], figure_id=4, interp='bilinear', colormap=cm.jet, title='[GT:{}|P:{}] compat. (all)'.format(cls, pred_cls), alpha=0.5)
plotNNFilterOverlay(input_img, numpy.mean(attentions,0), figure_id=4, interp='bilinear', colormap=cm.jet, title='[GT:{}|P:{}] compat. (all)'.format(cls, pred_cls), alpha=0.5)
if cls != pred_cls:
plt.savefig('{}/neg/{:03d}_hm.png'.format(dir_name,iteration))
elif cls == pred_cls and chance:
plt.savefig('{}/pos/{:03d}_hm.png'.format(dir_name,iteration))
# Linear embedding g(x)
# (b, c, h, w)
#gx = fmap[2].squeeze().permute(1,2,0).cpu().numpy()
#plotNNFilter(gx, figure_id=3, interp='nearest', colormap=cm.jet)
plt.show()
plt.pause(PAUSE)
model.destructor()
#if iteration == 1: break