forked from SSAGESLabs/PySAGES
-
Notifications
You must be signed in to change notification settings - Fork 0
/
alanine-dipeptide.py
131 lines (94 loc) · 3.77 KB
/
alanine-dipeptide.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/usr/bin/env python3
"""
SpectralABF simulation of Alanine Dipeptide in vacuum with OpenMM and PySAGES.
Example command to run the simulation `python3 alanine-dipeptide.py --time-steps 1000`
For other supported commandline parameters, check `python3 alanine-dipeptide.py --help`
"""
# %%
import argparse
import sys
import time
import matplotlib.pyplot as plt
import numpy
import pysages
from pysages.approxfun import compute_mesh
from pysages.colvars import DihedralAngle
from pysages.methods import SpectralABF
from pysages.utils import try_import
openmm = try_import("openmm", "simtk.openmm")
unit = try_import("openmm.unit", "simtk.unit")
app = try_import("openmm.app", "simtk.openmm.app")
# %%
pi = numpy.pi
kB = unit.BOLTZMANN_CONSTANT_kB * unit.AVOGADRO_CONSTANT_NA
kB = kB.value_in_unit(unit.kilojoules_per_mole / unit.kelvin)
T = 298.15 * unit.kelvin
dt = 2.0 * unit.femtoseconds
adp_pdb = "adp-vacuum.pdb"
# %%
def generate_simulation(pdb_filename=adp_pdb, T=T, dt=dt):
pdb = app.PDBFile(pdb_filename)
ff = app.ForceField("amber99sb.xml")
cutoff_distance = 1.0 * unit.nanometer
topology = pdb.topology
system = ff.createSystem(
topology, constraints=app.HBonds, nonbondedMethod=app.PME, nonbondedCutoff=cutoff_distance
)
# Set dispersion correction use.
forces = {}
for i in range(system.getNumForces()):
force = system.getForce(i)
forces[force.__class__.__name__] = force
forces["NonbondedForce"].setUseDispersionCorrection(True)
forces["NonbondedForce"].setEwaldErrorTolerance(1.0e-5)
positions = pdb.getPositions(asNumpy=True)
integrator = openmm.LangevinIntegrator(T, 1 / unit.picosecond, dt)
integrator.setRandomNumberSeed(42)
# platform = openmm.Platform.getPlatformByName(platform)
# simulation = app.Simulation(topology, system, integrator, platform)
simulation = app.Simulation(topology, system, integrator)
simulation.context.setPositions(positions)
simulation.minimizeEnergy()
return simulation
# %%
def get_args(argv):
available_args = [
("time-steps", "t", int, 5e5, "Number of simulation steps"),
]
parser = argparse.ArgumentParser(description="Example script to run Spectral ABF")
for name, short, T, val, doc in available_args:
parser.add_argument("--" + name, "-" + short, type=T, default=T(val), help=doc)
return parser.parse_args(argv)
# %%
def main(argv=[]):
args = get_args(argv)
cvs = [DihedralAngle([4, 6, 8, 14]), DihedralAngle([6, 8, 14, 16])]
grid = pysages.Grid(lower=(-pi, -pi), upper=(pi, pi), shape=(50, 50), periodic=True)
# Method
method = SpectralABF(cvs, grid)
tic = time.perf_counter()
run_result = pysages.run(method, generate_simulation, args.time_steps)
toc = time.perf_counter()
print(f"Completed the simulation in {toc - tic:0.4f} seconds.")
# Analysis: Calculate free energy
result = pysages.analyze(run_result)
fes_fn = result["fes_fn"]
# generate CV values on a grid to evaluate bias potential
plot_grid = pysages.Grid(lower=(-pi, -pi), upper=(pi, pi), shape=(64, 64), periodic=True)
xi = (compute_mesh(plot_grid) + 1) / 2 * plot_grid.size + plot_grid.lower
# Set min free energy to zero
A = fes_fn(xi)
A = A.reshape(plot_grid.shape)
# plot and save free energy to a PNG file
fig, ax = plt.subplots(dpi=120)
im = ax.imshow(A, interpolation="bicubic", origin="lower", extent=[-pi, pi, -pi, pi])
ax.contour(A, levels=12, linewidths=0.75, colors="k", extent=[-pi, pi, -pi, pi])
ax.set_xlabel(r"$\phi$")
ax.set_ylabel(r"$\psi$")
cbar = plt.colorbar(im)
cbar.ax.set_ylabel(r"$A~[kJ/mol]$", rotation=270, labelpad=20)
fig.savefig("adp-fe.png", dpi=fig.dpi)
return result
# %%
if __name__ == "__main__":
main(sys.argv[1:])