-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathload.py
178 lines (137 loc) · 6.79 KB
/
load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# BSD License
# For SentEval software
# Copyright (c) 2017-present, Facebook, Inc. All rights reserved.
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# * Neither the name Facebook nor the names of its contributors may be used to
# endorse or promote products derived from this software without specific
# prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
This module contains different functions to load the test datasets
of the SemEval's STS tasks from 2012 to 2016. This functions are based
on those found in the SentEval toolkit.
"""
import io
import os
import csv
import numpy as np
from utils import preprocess
def load_frequencies(path):
""" Loads the word frequencies """
frequencies = {}
with open(path) as tsv:
tsv_reader = csv.reader(tsv, delimiter="\t")
for row in tsv_reader:
frequencies[row[0]] = int(row[1])
return frequencies
def load_file_STS(path, datasets, preprocessing, verbose=False):
""" Loads a STS test file and preprocesses its sentences """
data = {}
for dataset in datasets:
# Load sentences pairs
sent1, sent2 = zip(*[l.split("\t") for l in
io.open(path + '/STS.input.%s.txt' % dataset,
encoding='utf8').read().splitlines()])
# Load Gold Standard files (similarity scores)
raw_scores = np.array([x for x in
io.open(path + '/STS.gs.%s.txt' % dataset,
encoding='utf8')
.read().splitlines()])
# Consider only pairs with a score
not_empty_idx = raw_scores != ''
gs_scores = [float(x) for x in raw_scores[not_empty_idx]]
# Preprocess sentences
if verbose:
print("Preprocessing -{}-".format(dataset))
sent1 = preprocess(sent1, **preprocessing)[not_empty_idx]
sent2 = preprocess(sent2, **preprocessing)[not_empty_idx]
if verbose:
print("-{}- preprocessed correctly".format(dataset))
# Sort data by length to minimize padding in batcher
sorted_data = sorted(zip(sent1, sent2, gs_scores),
key=lambda z: (len(z[0]), len(z[1]), z[2]))
sent1, sent2, gs_scores = map(list, zip(*sorted_data))
data[dataset] = (sent1, sent2, gs_scores)
return data
def load_SICK(path, preprocessing, verbose=False):
""" Loads the SICK train, dev and test files and preprocess its sentences """
if verbose:
print('\n\n***** Task: SICK-Relatedness*****\n')
sick_all = {}
sick_train = load_file_SICK(os.path.join(path, 'SICK_train.txt'), preprocessing)
sick_dev = load_file_SICK(os.path.join(path, 'SICK_trial.txt'), preprocessing)
sick_test = load_file_SICK(os.path.join(path, 'SICK_test_annotated.txt'), preprocessing)
sick_all['train'] = sick_train
sick_all['test'] = sick_test
sick_all['dev'] = sick_dev
return sick_all
def load_file_SICK(path, preprocessing):
""" Loads a SICK file and preprocess its sentences """
skip_first_line = True
sent1 = []
sent2 = []
sim = []
# Read file
with io.open(path, 'r', encoding='utf-8') as f:
for line in f:
if skip_first_line:
skip_first_line = False
else:
text = line.strip().split('\t')
sent1.append(text[1])
sent2.append(text[2])
sim.append(text[3])
sent1 = preprocess(sent1, **preprocessing)
sent2 = preprocess(sent2, **preprocessing)
sim = [float(s) for s in sim]
return (sent1, sent2, sim)
def load_sts_12(path, preprocessing, verbose=False):
""" Loads the SemEval-2012's Semantic Textual Similarity task"""
if verbose:
print('\n\n***** TASK: STS12 *****\n')
datasets = ['MSRpar', 'MSRvid', 'SMTeuroparl',
'surprise.OnWN', 'surprise.SMTnews']
return load_file_STS('{}/STS12-en-test'.format(path), datasets, preprocessing, verbose=verbose)
def load_sts_13(path, preprocessing, verbose=False):
""" Loads the SemEval-2013's Semantic Textual Similarity task"""
# STS13 here does not contain the "SMT" subtask due to LICENSE issue
if verbose:
print('\n\n***** TASK: STS13 (-SMT) ***\n')
datasets = ['FNWN', 'headlines', 'OnWN']
return load_file_STS('{}/STS13-en-test'.format(path), datasets, preprocessing, verbose=verbose)
def load_sts_14(path, preprocessing, verbose=False):
""" Loads the SemEval-2014's Semantic Textual Similarity task"""
if verbose:
print('\n\n***** TASK: STS14 *****\n')
datasets = ['deft-forum', 'deft-news', 'headlines',
'images', 'OnWN', 'tweet-news']
return load_file_STS('{}/STS14-en-test'.format(path), datasets, preprocessing, verbose=verbose)
def load_sts_15(path, preprocessing, verbose=False):
""" Loads the SemEval-2015's Semantic Textual Similarity task"""
if verbose:
print('\n\n***** TASK: STS15 *****\n')
datasets = ['answers-forums', 'answers-students',
'belief', 'headlines', 'images']
return load_file_STS('{}/STS15-en-test'.format(path), datasets, preprocessing, verbose=verbose)
def load_sts_16(path, preprocessing, verbose=False):
""" Loads the SemEval-2016's Semantic Textual Similarity task"""
if verbose:
print('\n\n***** TASK: STS16 *****\n')
datasets = ['answer-answer', 'headlines', 'plagiarism',
'postediting', 'question-question']
return load_file_STS('{}/STS16-en-test'.format(path), datasets, preprocessing, verbose=verbose)