-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcalculate_stats.py
252 lines (207 loc) · 8.77 KB
/
calculate_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import json
from collections import defaultdict
import os
import pandas as pd
import numpy as np
import dateutil
import matplotlib
matplotlib.use('AGG')
import matplotlib.pyplot as plt
DATA_DIR= os.path.expanduser('~/data_citibike/')
LIMIT=False
example_stations_by_time = defaultdict(dict)
def pandas_process_file(
fname, field_name="availableDocks",
collection_dict=example_stations_by_time):
stats = json.loads(open(fname).read())
et = stats['executionTime']
for s in stats['stationBeanList']:
collection_dict[s['id']][et] = s[field_name]
return stats
def process_file_list(f_list, limit=False):
stations_by_time = defaultdict(dict)
if not limit:
limit = len(f_list)
count = 0
for fname in f_list[:limit]:
count += 1
#print count, limit
if fname.find('stations-') == -1:
continue
try:
pandas_process_file(fname, collection_dict=stations_by_time)
except Exception, e:
print e, fname
return stations_by_time
def process_directory(d_name, limit=False):
"""This function processes all files in a directory that start with stations- and
returns a dict of dicts suitable for pandas DataFrame ingestion"""
disregard, disregard2, station_files = os.walk(d_name).next()
return process_file_list(map(lambda x: os.path.join(d_name, x), station_files), limit)
def files_newer_than(start_time, dir_path):
t1 = dt.datetime.now()
fname_list = []
for fname in os.listdir(dir_path):
full_path = dir_path + fname
mtime = dt.datetime.fromtimestamp(os.stat(full_path).st_mtime)
if mtime > start_time:
fname_list.append(full_path)
return fname_list
def process_newer_files(start_time, dir_path, limit=False):
"""This function processes all files in a directory that start with stations- and
returns a dict of dicts suitable for pandas DataFrame ingestion"""
files = files_newer_than(start_time, dir_path)
return process_file_list(files, limit)
def upload_df(df):
from boto.s3.key import Key
import json, os
from boto.s3.connection import S3Connection
secret_key = json.loads(open(os.path.expanduser(
"~/.ec2/s3_credentials.json")).read())
conn = S3Connection(*secret_key.items()[0])
save_df(df)
bucket = conn.get_bucket("citibikedata.com")
k = Key(bucket)
k.key = 'store.comp.h5'
k.set_contents_from_filename('store.comp.h5')
k.set_acl('public-read')
def save_df(df, path='store.comp.h5'):
store = pd.HDFStore(path, complevel=9, complib='blosc')
store['df'] = df
store.flush()
store.close()
return df
def update_df(df):
import json, os
df2 = pd.DataFrame(process_newer_files(df.index[-1], DATA_DIR, LIMIT))
df2.index = df2.index.map(dateutil.parser.parse)
#df2.to_csv('most_recent.csv')
#df3 = pd.read_csv('most_recent.csv', index_col=0, parse_dates=[0])
df3 = df2.sort_index()
print "new_df has %r items" % df2.ix
complete_df = pd.concat([df, df2])
complete_df.sort()
upload_df(complete_df)
return complete_df
def process_raw_files():
raw_dict = process_directory(os.path.expanduser(DATA_DIR), LIMIT)
df = pd.DataFrame(raw_dict)
df.index = df.index.map(dateutil.parser.parse)
df = df.sort_index()
save_df(df)
return df
HFIVE = 'store.comp.h5'
def grab_existing(force=False):
import requests
if force or not os.path.exists(HFIVE):
r = requests.get("http://citibikedata.com/store.comp.h5")
if r.status_code == 200:
with open(HFIVE, 'wb') as f:
for chunk in r.iter_content(1024):
f.write(chunk)
store = pd.HDFStore(HFIVE)
else:
store = pd.HDFStore(HFIVE)
df = store['df']
store.close()
return df
def process_dataframe(input_df):
print "start process_dataframe", dt.datetime.now()
# we need to sort the dataframe so that rows are arranged chronologically
df = input_df.sort()
df = input_df.sort_index()
print "after sort", dt.datetime.now()
# diff_df is the change in station occupancy from time period to time period
diff_df = df.diff()
print "after diff", dt.datetime.now()
starting_trips = diff_df.where(diff_df < 0).fillna(0).abs()
#starting_summaries = starting_trips.sum(axis=1)
ending_trips = diff_df.where(diff_df > 0).fillna(0).abs()
#ending_summaries = ending_trips.sum(axis=1)
print "after trips_calcs", dt.datetime.now()
return StationSummaries(df, diff_df, starting_trips, ending_trips)
import datetime as dt
one_hour = dt.timedelta(0,1)
one_day = dt.timedelta(1)
one_week = dt.timedelta(7)
all_time = dt.timedelta(70000)
class StationSummaries(object):
def __init__(self, df, diff_df, starting_trips, ending_trips):
self.df, self.diff_df = df, diff_df
self.starting_trips, self.ending_trips = starting_trips, ending_trips
def produce_station_stats(self, station_id, now = False):
if not now:
now = dt.datetime.now()
start_col = self.starting_trips.get(station_id).abs()
hour_df = start_col[now - one_hour:now]
day_df = start_col[now - one_day:now]
week_df = start_col[now-one_week:now]
all_df = start_col[now-all_time:now]
summary_stats = dict(
starting = dict(
hour=hour_df.sum(),
day=day_df.sum(),
week=week_df.sum(),
all=all_df.sum()))
return summary_stats
def produce_station_plots(self, station_id, now = False):
if not now:
now = dt.datetime.now()
start_col = self.starting_trips[str(station_id)]
available_col = self.df[str(station_id)]
hour_df = start_col[now - one_hour:now]
day_df = start_col[now - one_day:now]
week_df = start_col[now-one_week:now]
all_df = start_col[now-all_time:now]
a_hour_df = available_col[now - one_hour:now]
a_day_df = available_col[now - one_day:now]
a_week_df = available_col[now-one_week:now]
a_all_df = available_col[now-all_time:now]
directory = "site_root/plots/%s" % str(station_id)
if not os.path.exists(directory):
os.makedirs(directory)
self.plot(hour_df, "site_root/plots/%s/hour.png" % str(station_id))
self.plot(day_df, "site_root/plots/%s/day.png" % str(station_id))
self.plot(week_df, "site_root/plots/%s/week.png" % str(station_id))
self.plot(all_df, "site_root/plots/%s/all.png" % str(station_id))
self.plot(a_hour_df, "site_root/plots/%s/avail_hour.png" % str(station_id))
self.plot(a_day_df, "site_root/plots/%s/avail_day.png" % str(station_id))
self.plot(a_week_df, "site_root/plots/%s/avail_week.png" % str(station_id))
self.plot(a_all_df, "site_root/plots/%s/avail_all.png" % str(station_id))
self.plot(hour_df.cumsum(), "site_root/plots/%s/hour_cumsum.png" % str(station_id))
self.plot(day_df.cumsum(), "site_root/plots/%s/day_cumsum.png" % str(station_id))
self.plot(week_df.cumsum(), "site_root/plots/%s/week_cumsum.png" % str(station_id))
self.plot(all_df.cumsum(), "site_root/plots/%s/all_cumsum.png" % str(station_id))
def produce_system_stats(self, now = False):
if not now:
now = dt.datetime.now()
time_dict = dict(hour=now - one_hour,
day=now-one_day, week=now-one_week, all=now-all_time)
stt = self.starting_trips[:now]
base_starts = dict([[label, stt[time:]] for label, time in time_dict.items()])
station_sums = dict([[label, base_starts[label].sum().abs()] for label, time in time_dict.items()])
abs_station_sums = dict([[k, v.abs()] for k,v in station_sums.items()])
[[k, v.sort(axis=1)] for k,v in abs_station_sums.items()]
popular_starting_stations = dict(
[[k, v.index.tolist()] for k,v in abs_station_sums.items()])
[[k, v.reverse()] for k,v in popular_starting_stations.items()]
popular_starting_stations2 = dict(
[[k, map(abs, map(int, v))] for k,v in popular_starting_stations.items()])
total_trips = dict(
[[label, base_starts[label].sum().abs().sum()] for label, time in time_dict.items()])
summary_stats = dict(
total_trips=total_trips,
popular_starting_stations=popular_starting_stations2)
return summary_stats
def plot(self, df, fname):
fig=plt.figure()
ax = fig.add_subplot(111)
ax.plot(df.index,df)
fig.autofmt_xdate()
fig.savefig(fname)
fig.clf()
if __name__ == "__main__":
ss = process_dataframe(grab_existing())
ss_dict = {}
print "generating_station_summaries"
print ss.produce_station_plots(363)