-
Notifications
You must be signed in to change notification settings - Fork 4
/
run_bootstrapping.py
239 lines (194 loc) · 8.6 KB
/
run_bootstrapping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
"""
Create bootstrap estimates for given results and perform statistical significance testing.
"""
# STD
import argparse
import os
from collections import defaultdict
from typing import List
# EXT
from deepsig import multi_aso
import dill
import numpy as np
from src.eval import evaluate_confidences, get_target_function
from tqdm import tqdm
# CONST
METRICS = ["brier_score", "ece", "smece", "auroc"]
def compute_confidence_intervals_and_test_significance(
result_dirs: List[str],
num_bootstrap_samples: int,
decision_threshold: float = 0.35,
confidence_level: float = 0.95,
):
"""
Compute confidence intervals through a bootstrapping estimator and compute significance using the ASO test.
Lastly, print the results in a Latex-friendly formatting.
Parameters
----------
result_dirs: List[str]
List of directories in which to look for result dill files.
num_bootstrap_samples: int
Number of bootstrap samples used to compute confidence intervals.
decision_threshold: float
Decision threshold for significance testing. Default is 0.35.
confidence_level: float
Confidence level used for significance level. Default is 0.95.
"""
# Dictionary mapping from metric to method and its bootstrap samples
orig_results = defaultdict(lambda: defaultdict(lambda: defaultdict(float)))
bootstrap_results = defaultdict(lambda: defaultdict(lambda: defaultdict(list)))
all_methods = []
for result_dir in result_dirs:
for result_path in os.listdir(result_dir):
if not result_path.endswith(".dill"):
continue
with open(os.path.join(result_dir, result_path), "rb") as result_file:
results = dill.load(result_file)
# Determine the main of current method
if "baseline_name" in results["info"]:
method = results["info"]["baseline_name"]
else:
method = "auxiliary"
if results["info"]["use_binary_targets"]:
method += "_binary"
else:
method += "_clustering"
if results["info"]["num_steps_temperature_scaling"] > 0:
method += "_temp_scaling"
if results["info"]["use_isotonic_regression"]:
method += "_isotonic_regression"
method += "_" + "_".join(results["info"]["input_parts"])
all_methods.append(method)
for split_name, split_data in results["eval_data"].items():
all_confidences = np.array(split_data["all_confidences"])
all_correctness = np.array(split_data["all_correctness"])
if "all_targets" not in split_data:
target_function = get_target_function(
all_confidences, all_correctness
)
all_targets = target_function(all_confidences)
else:
all_targets = np.array(split_data["all_targets"])
num_points = len(all_targets)
# Add original results
for metric, res in evaluate_confidences(
split_name=split_name,
all_confidences=list(all_confidences),
all_targets=all_targets,
all_correctness=list(all_correctness),
).items():
orig_results[split_name][metric][method] = res
# Create bootstrap samples by sampling indices (with replacement)
for _ in tqdm(range(num_bootstrap_samples)):
# Make sure to use the same indices here, otherwise we would compare measurements from different
# datapoints.
indices = np.random.choice(range(num_points), size=num_points)
bootstrap_confidences = list(all_confidences[indices])
bootstrap_correctness = list(all_correctness[indices])
bootstrap_targets = list(all_targets[indices])
for metric, res in evaluate_confidences(
split_name=split_name,
all_confidences=bootstrap_confidences,
all_targets=bootstrap_targets,
all_correctness=bootstrap_correctness,
).items():
bootstrap_results[split_name][metric][method].append(res)
# Perform significance testing
# Mapping split -> metric -> method -> bool
is_significant = defaultdict(lambda: defaultdict(lambda: dict()))
for split_name, split_data in bootstrap_results.items():
for metric, metric_results in split_data.items():
metric_results = dict(metric_results)
# Make sure that higher = better
if "brier_score" in metric or "ece" in metric:
metric_results = {
method: 1 - np.array(method_scores)
for method, method_scores in metric_results.items()
}
eps_min = multi_aso(
dict(metric_results),
confidence_level=confidence_level,
num_bootstrap_iterations=100,
)
for i, method in enumerate(metric_results.keys()):
row = eps_min[i, :]
row = np.delete(row, i) # Delete the comparison of a method with itself
is_significant[split_name][metric][method] = np.all(
row < decision_threshold
)
# Identify the best scores
all_ranks = defaultdict(lambda: defaultdict(lambda: dict()))
for split_name, split_results in orig_results.items():
for metric, metric_results in split_results.items():
metric_results = {
method: 1 - np.array(method_scores)
if "brier_score" in metric or "ece" in metric
else np.array(method_scores)
for method, method_scores in metric_results.items()
}
methods, ranks, scores = zip(
*list(
sorted(
zip(
metric_results.keys(),
range(1, len(metric_results) + 1),
metric_results.values(),
),
key=lambda tpl: tpl[2],
)
)
)
# Identify maximum score(s)
max_score = round(np.max(scores), 2)
for method, score in zip(methods, scores):
if np.round(score, 2) == max_score:
all_ranks[split_name][metric][method] = 1
else:
all_ranks[split_name][metric][method] = 100
# Compute and print results
for split_name, split_data in bootstrap_results.items():
print(f"##### {split_name} #####\n")
for method in all_methods:
method_str = f"{method} "
for metric in METRICS:
orig_val = f"{orig_results[split_name][f'{split_name}_{metric}'][method]:.2f}".lstrip(
"0"
)
rank = all_ranks[split_name][f"{split_name}_{metric}"][method]
if rank == 1:
orig_val = "\mathbf{" + orig_val + "}"
if is_significant[split_name][f"{split_name}_{metric}"][method]:
orig_val = "\\" + "underline{" + orig_val + "}"
data = np.array(
bootstrap_results[split_name][f"{split_name}_{metric}"][method]
)
# Bootstrap estimator for standard deviation
std = float(
np.sqrt(
np.sum((data - np.mean(data)) ** 2)
/ (num_bootstrap_samples - 1)
+ 1e-8
)
)
std_dev = f"{std:.2f}".lstrip("0")
method_str += (
f"& ${orig_val}" + "{\scriptstyle\ \pm" + f"{std_dev}" + "}$"
)
print(method_str)
print("\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--result-dirs", type=str, nargs="+", help="Dirs with _results.dill files."
)
parser.add_argument(
"--num-bootstrap-samples",
type=int,
nargs="+",
help="Paths to result files.",
default=100,
)
args = parser.parse_args()
compute_confidence_intervals_and_test_significance(
result_dirs=args.result_dirs, num_bootstrap_samples=args.num_bootstrap_samples
)