-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnltk2graph.py
350 lines (322 loc) · 13.2 KB
/
nltk2graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# -*- coding: utf-8 -*-
#
# Copyright 2017 Pascual Martinez-Gomez
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
from nltk.sem.logic import *
from logic_parser import lexpr
import networkx as nx
# class DAG(nx.DiGraph):
# def __init__(self):
# super(DAG, self).__init__()
# self.node_id_gen = (i for i in range(1000000))
#
# @staticmethod
# def from_formula(formula):
node_id_gen = (i for i in range(1000000))
def formula_to_graph(formula, normalize=False):
"""
Transforms a higher-order formula into a graph, following the paper:
https://arxiv.org/pdf/1709.09994.pdf
"""
global node_id_gen
node_id_gen = (i for i in range(1000000))
tree = formula_to_tree(formula)
dag = merge_leaf_nodes(tree)
dag_renamed = rename_nodes(dag)
if normalize is True:
dag_renamed = normalize_graph(dag_renamed)
return dag_renamed
def make_empty_graph():
return nx.DiGraph()
def guess_head_node(graph):
if 'head_node' in graph.graph:
return graph.graph['head_node']
else:
assert sum(not list(graph.predecessors(n) for n in graph.nodes())) == 1
for n in graph.nodes():
if not list(graph.predecessors(n)):
return n
raise(AttributeError(
'Failed to find head node for graph {0}'.format(graph.graph)))
def make_rooted_graph(graph):
"""
Create a new root node if it is not already present.
"""
head_node = guess_head_node(graph)
# For large graphs, this is very inefficient.
# We should keep track of the next unassigned node ID.
root_id = max(graph.nodes()) + 1
graph.graph['head_node'] = root_id
graph.add_node(root_id, label='root', type='root')
graph.add_edge(root_id, head_node)
return graph
def is_quantifier_node(graph, node_id):
"""
Returns True if the node in the graph is a quantifier node.
At the moment, we check whether the label of the node_id
is 'all' or 'exists', but in the near future we will check
whether the type of the node is 'quantifier'.
"""
return graph.node[node_id]['label'] in ['all', 'exists']
def find_predecessor_not_quant(graph, node_id):
predecessors = [node_id]
visited = set()
while predecessors:
node_id = predecessors.pop()
if node_id in visited:
continue
if get_label(graph, node_id, 'type') != 'quantifier':
return node_id
visited.add(node_id)
new_predecessors = list(reversed(list(graph.predecessors(node_id))))
predecessors = new_predecessors + predecessors
raise(ValueError('Predecessor Not Quantifier not found!'))
def get_term_node_from_quant(graph, quant_node):
assert get_label(graph, quant_node, 'type') == 'quantifier'
successors = graph.successors(quant_node)
for s in successors:
if graph.adj[quant_node][s].get('type', None) != 'var_bind':
return s
raise(ValueError('Term successor not found for quantifier.'))
def arrange_quantifiers(graph):
"""
Collapse all quantifier instances into nodes attached
to the root.
"""
head_node = guess_head_node(graph)
quant_nodes = [n for n in graph.nodes() if is_quantifier_node(graph, n)]
for qn in quant_nodes:
# from pudb import set_trace; set_trace()
pred_not_quant = find_predecessor_not_quant(graph, qn)
term_node = get_term_node_from_quant(graph, qn)
graph.add_edge(pred_not_quant, term_node)
graph.remove_edge(qn, term_node)
for pred in list(graph.predecessors(qn)):
graph.remove_edge(pred, qn)
graph.add_edge(head_node, qn)
q_dict = defaultdict(list)
for qn in quant_nodes:
q_dict[get_label(graph, qn)].append(qn)
for qn_type, nodes in q_dict.items():
if len(nodes) > 1:
master_quant_node = nodes[0]
for qn in nodes[1:]:
graph = nx.contracted_nodes(graph, master_quant_node, qn)
return graph
def remove_constants(graph, constants=None):
if constants is None:
constants = ['TrueP']
for node in list(graph.nodes()):
if get_label(graph, node) in constants:
for pred in list(graph.predecessors(node)):
graph.remove_edge(pred, node)
graph.remove_node(node)
return graph
def remove_useless_binary_ops(graph):
"""
Remove binary operators that only have one child (argument).
This situations may occur after removing constants. E.g.:
(P(x) & TrueP) -> (P(x) & ).
"""
op_nodes = [
n for n in graph.nodes() \
if get_label(graph, n, 'type') == 'op' \
and get_label(graph, n, 'label') != 'not']
for op_node in op_nodes:
num_succs = len(list(graph.successors(op_node)))
if num_succs == 0:
graph.remove_node(op_node)
if num_succs == 1:
parent_nodes = list(graph.predecessors(op_node))
assert len(parent_nodes) == 1
child_nodes = list(graph.successors(op_node))
graph.add_edge(parent_nodes[0], child_nodes[0])
graph.remove_node(op_node)
return graph
def normalize_graph(graph):
"""
This normalization step creates a root node (if not already present),
attaches to this root node all quantifiers (forall, exists) that are
declared at the beginning of the formula, and all
terms of these quantifiers start from the root node.
Quantifiers that are in other parts of the graph are collapsed into
the root quantifiers, but their terms are connected to the parents
of these quantifiers.
`constants` is a list of constants that will be removed from the graph.
"""
# 1. Create root node.
graph = make_rooted_graph(graph)
# 2. Collapse quantifiers into the root.
graph = arrange_quantifiers(graph)
# 3. Remove constants.
graph = remove_constants(graph)
# 4. Remove binary operators with only one argument.
graph = remove_useless_binary_ops(graph)
return graph
def merge_graphs_to(graph, graphs):
head_node = graph.graph['head_node']
for i, g in enumerate(graphs):
graph = nx.union(graph, g)
graph.add_edge(head_node, g.graph['head_node'], arg=i)
graph.graph['head_node'] = head_node
return graph
def formula_to_tree(expr):
if isinstance(expr, str):
expr = lexpr(expr)
expr_str = str(expr)
G = nx.DiGraph()
if isinstance(expr, ConstantExpression) or \
isinstance(expr, AbstractVariableExpression) or \
isinstance(expr, Variable):
G.graph['head_node'] = next(node_id_gen)
type_str = 'constant' if isinstance(expr, ConstantExpression) else 'variable'
G.add_node(G.graph['head_node'], label=expr_str, type=type_str)
elif isinstance(expr, BinaryExpression):
G.graph['head_node'] = next(node_id_gen)
G.add_node(G.graph['head_node'], label=expr.getOp(), type='op')
graphs = map(formula_to_tree, [expr.first, expr.second])
G = merge_graphs_to(G, graphs)
elif isinstance(expr, ApplicationExpression):
func, args = expr.uncurry()
G = formula_to_tree(func)
args_graphs = map(formula_to_tree, args)
G = merge_graphs_to(G, args_graphs)
elif isinstance(expr, NegatedExpression):
G.graph['head_node'] = next(node_id_gen)
G.add_node(G.graph['head_node'], label='not', type='op')
graphs = map(formula_to_tree, [expr.term])
G = merge_graphs_to(G, graphs)
elif isinstance(expr, VariableBinderExpression):
quant = '<quant_unk>'
if isinstance(expr, QuantifiedExpression):
quant = expr.getQuantifier()
type = 'quantifier'
elif isinstance(expr, LambdaExpression):
quant = 'lambda'
type = 'binder'
G.graph['head_node'] = next(node_id_gen)
G.add_node(G.graph['head_node'], label=quant, type=type)
var_node_id = next(node_id_gen)
G.add_node(var_node_id, label=str(expr.variable), type='variable')
G.add_edge(G.graph['head_node'], var_node_id, type='var_bind')
graphs = map(formula_to_tree, [expr.term])
G = merge_graphs_to(G, graphs)
return G
def get_label_(graph, node_id, label='label', default=None):
return graph.nodes[node_id].get(label, default)
def get_node_token(graph, node_id):
token = get_label(graph, node_id, ['surf', 'label'], '<unk>')
if get_label(graph, node_id, 'type') != 'constant':
token = '<{0}>'.format(token)
return token
def get_label(graph, node_id, label='label', default=None):
if isinstance(label, str):
return graph.nodes[node_id].get(label, default)
elif isinstance(label, list):
for l in label:
if l in graph.nodes[node_id]:
return graph.nodes[node_id][l]
return default
quantifiers = Tokens.QUANTS
def find_its_quantifier(graph, node, label, quant_scope):
if (node, label) in quant_scope:
return node
preds = list(graph.pred[node])
quants = [find_its_quantifier(graph, pred, label, quant_scope) for pred in preds]
if not quants or all(q is False for q in quants):
return False
return max([q for q in quants if q is not False])
def get_scoped_nodes(graph, head_node=None, quant_active=None, quant_scope=None):
"""
Returns a dictionary where:
keys are tuples (scope_node_id, expression) and
values are lists of tuples (node ID, node_type)s within the scope and with
the same expression.
node_type is one of {'leaf', 'internal'}.
"""
if quant_scope is None:
quant_scope = {}
label = get_label(graph, head_node)
if label in quantifiers:
quant_active = head_node
elif quant_active in graph.pred[head_node] and not graph.succ[head_node]:
# Case: a variable directly attached to its quantifier.
min_sibling_id = min(list(graph.succ[list(graph.pred[head_node])[0]].keys()))
assert not graph.succ[min_sibling_id], 'Expected node {0} to be a leaf'.format(head_node)
quant_scope[(quant_active, label)] = [(head_node, 'leaf')]
else:
# Case: a variable quantified in an outer scope.
node_quantifier = find_its_quantifier(graph, head_node, label, quant_scope)
if node_quantifier is not False:
node_type = 'leaf' if not graph.succ[head_node] else 'internal'
quant_scope[(node_quantifier, label)].append((head_node, node_type))
for child_node_id in graph.succ[head_node]:
get_scoped_nodes(graph, child_node_id, quant_active, quant_scope)
return quant_scope
def merge_leaf_nodes(graph, head_node=None, quant_active=None, quant_scope=None):
"""
Traverses the graph, merging those nodes
with the same label within the same quantificaton scope.
"""
if head_node is None:
head_node = graph.graph['head_node']
# Get nodes and their scope information.
scoped_nodes = get_scoped_nodes(graph, head_node)
for (quant_node, expr), nodes_to_merge in scoped_nodes.items():
if len(nodes_to_merge) > 1:
master_node, node_type = nodes_to_merge[0]
assert node_type == 'leaf'
for node, node_type in nodes_to_merge[1:]:
# Merge leaves within the same scope:
if node_type == 'leaf':
graph = nx.contracted_nodes(graph, master_node, node)
# Add edges from quantifier to internal function names:
elif node_type == 'internal':
graph.add_edge(quant_node, node)
graph.graph['head_node'] = head_node
return graph
def make_label(expr, node_type):
"""
Make a graph label to replace named variable values and variable functions.
If it is a variable function (node_type = 'internal'), the label is '<var_func>'.
If it is a variable value (node_type = 'leaf'), the label is:
<var_ev> if the variable name starts with 'e' (event).
<var_en> otherwise (entity).
"""
label = '<var_en>'
if node_type == 'internal':
label = '<var_func>'
else:
if expr.startswith('e'):
label = '<var_ev>'
if expr[0].isupper():
label = '<var_func>'
return label
def rename_nodes(graph, head_node=None, quant_active=None, quant_scope=None):
"""
Traverses the graph, renaming those nodes that are either
variable values or variable functions.
"""
if head_node is None:
head_node = graph.graph['head_node']
# Get nodes and their scope information.
scoped_nodes = get_scoped_nodes(graph, head_node)
for nodes_to_relabel in scoped_nodes.values():
for node, node_type in nodes_to_relabel:
new_label = make_label(
get_label(graph, node),
node_type)
nx.set_node_attributes(graph, {node : new_label}, 'label')
return graph