-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_pso.py
57 lines (46 loc) · 1.42 KB
/
run_pso.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from utils.problem import Sphere, Rosenbrock, Rastrigin, Ackley
from utils.lab import ParticleSwarmOptimization
import numpy as np
import logging
CFGs = {
"pop_size": 32,
"n_dims": 2,
"problem": "ackley",
"max_n_gens": 50,
"max_n_evals": None,
"topology": "star",
"n_experiments": 1,
"export_gif": None,
"log_path": "logs/experiment_2_var.log",
}
BASE_RANDOM_SEED = 17520880
np.random.seed(BASE_RANDOM_SEED)
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
problem_map = {
"sphere": Sphere(),
"rosenbrock": Rosenbrock(),
"rastrigin": Rastrigin(),
"ackley": Ackley(),
}
if __name__ == "__main__":
with open(CFGs["log_path"], "a") as fp:
fp.write(f"[Experiment] CFGs: {CFGs}\n")
# Get problem
problem = problem_map[CFGs["problem"]]
for i in range(CFGs["n_experiments"]):
PSO = ParticleSwarmOptimization(
pop_size=CFGs["pop_size"],
n_dims=CFGs["n_dims"],
problem=problem,
topology=CFGs["topology"]
)
result_dict = PSO.run(
max_n_gens=CFGs["max_n_gens"],
max_n_evals=CFGs["max_n_evals"],
export_gif=CFGs["export_gif"]
)
with open(CFGs["log_path"], "a") as fp:
idx_str = str(i + 1).zfill(2)
fp.write(f"Run #{idx_str}: {result_dict}\n")
logger.info(f"Result: {result_dict}")