-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_pso_report_10_var.py
70 lines (59 loc) · 2.17 KB
/
run_pso_report_10_var.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from utils.problem import Sphere, Rosenbrock, Rastrigin, Ackley
from utils.lab import ParticleSwarmOptimization
from utils.misc import rnd
import numpy as np
import logging
from tqdm import tqdm
CFGs = {
"pop_size": 32,
"n_dims": 2,
"problem": "ackley",
"max_n_gens": 50,
"max_n_evals": None,
"topology": "star",
"n_experiments": 1,
"export_gif": None,
"log_path": "logs/experiment_2_var.log",
}
BASE_RANDOM_SEED = 17520880
np.random.seed(BASE_RANDOM_SEED)
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
problem_map = {
"sphere": Sphere(),
"rosenbrock": Rosenbrock(),
"rastrigin": Rastrigin(),
"ackley": Ackley(),
}
if __name__ == "__main__":
with open(CFGs["log_path"], "a") as fp:
fp.write(f"[Experiment] CFGs: {CFGs}\n")
pop_sizes = [128, 256, 512, 1024, 2048]
stat_dict_mean = {f"{i}": {} for i in pop_sizes}
stat_dict_std = {f"{i}": {} for i in pop_sizes}
# Get problem
problem = problem_map[CFGs["problem"]]
for pop_size in pop_sizes:
for topology in tqdm(["star", "ring"]):
cognitive_losses = []
for problem_name in ["rastrigin", "rosenbrock"]:
problem = problem_map[problem_name]
for i in range(10):
PSO = ParticleSwarmOptimization(
pop_size=pop_size,
n_dims=10,
problem=problem,
topology=topology,
)
result_dict = PSO.run(max_n_gens=None, max_n_evals=10e6,)
cognitive_losses.append(result_dict["cognitive_loss_best"])
logger.info(f"Result: {result_dict}")
stat_dict_mean[f"{pop_size}"][f"{topology}"] = rnd(
np.mean(cognitive_losses)
)
stat_dict_std[f"{pop_size}"][f"{topology}"] = rnd(np.std(cognitive_losses))
logger.info(f"stat dict mean {stat_dict_mean}")
logger.info(f"stat dict std {stat_dict_std}")
with open("logs/report_10_var.log", "a") as fp:
fp.write(f"Mean: {stat_dict_mean}")
fp.write(f"Std: {stat_dict_std}")