forked from tensorflow/tensorrt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
223 lines (165 loc) · 7 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
import os
import shutil
import sys
import numpy as np
import ujson as json
import tensorflow as tf
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
# Allow import of top level python files
import inspect
currentdir = os.path.dirname(
os.path.abspath(inspect.getfile(inspect.currentframe()))
)
benchmark_base_dir = os.path.dirname(currentdir)
sys.path.insert(0, benchmark_base_dir)
from benchmark_args import BaseCommandLineAPI
from benchmark_runner import BaseBenchmarkRunner
class CommandLineAPI(BaseCommandLineAPI):
def __init__(self):
super(CommandLineAPI, self).__init__()
self._parser.add_argument(
'--input_size',
type=int,
default=640,
help='Size of input images expected by the '
'model'
)
self._parser.add_argument(
'--annotation_path',
type=str,
help='Path that contains COCO annotations'
)
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #
# %%%%%%%%%%%%%%%%% IMPLEMENT MODEL-SPECIFIC FUNCTIONS HERE %%%%%%%%%%%%%%%%%% #
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #
class BenchmarkRunner(BaseBenchmarkRunner):
def get_dataset_batches(self):
"""Returns a list of batches of input samples.
Each batch should be in the form [x, y], where
x is a numpy array of the input samples for the batch, and
y is a numpy array of the expected model outputs for the batch
Returns:
- dataset: a TF Dataset object
- bypass_data_to_eval: any object type that will be passed unmodified to
`evaluate_result()`. If not necessary: `None`
Note: script arguments can be accessed using `self._args.attr`
"""
coco_api = COCO(annotation_file=self._args.annotation_path)
image_ids = coco_api.getImgIds()
image_paths = []
for image_id in image_ids:
coco_img = coco_api.imgs[image_id]
image_paths.append(
os.path.join(self._args.data_dir, coco_img['file_name'])
)
dataset = tf.data.Dataset.from_tensor_slices(image_paths)
def load_image_op(path):
image = tf.io.read_file(path)
image = tf.image.decode_jpeg(image, channels=3)
return tf.data.Dataset.from_tensor_slices([image])
dataset = dataset.interleave(
load_image_op,
cycle_length=tf.data.AUTOTUNE,
block_length=8,
num_parallel_calls=tf.data.AUTOTUNE
)
def preprocess_fn(image):
if self._args.input_size is not None:
image = tf.image.resize(
image, size=(self._args.input_size, self._args.input_size)
)
image = tf.cast(image, tf.uint8)
return image
dataset = dataset.map(
map_func=preprocess_fn,
num_parallel_calls=tf.data.AUTOTUNE,
)
dataset = dataset.batch(self._args.batch_size, drop_remainder=False)
dataset = dataset.prefetch(buffer_size=tf.data.AUTOTUNE)
return dataset, None
def preprocess_model_inputs(self, data_batch):
"""This function prepare the `data_batch` generated from the dataset.
Returns:
x: input of the model
y: data to be used for model evaluation
Note: script arguments can be accessed using `self._args.attr`
"""
return data_batch, np.array([])
def postprocess_model_outputs(self, predictions, expected):
"""Post process if needed the predictions and expected tensors. At the
minimum, this function transforms all TF Tensors into a numpy arrays.
Most models will not need to modify this function.
Note: script arguments can be accessed using `self._args.attr`
"""
predictions = {k: t.numpy() for k, t in predictions.items()}
return predictions, expected
def evaluate_model(self, predictions, expected, bypass_data_to_eval):
"""Evaluate result predictions for entire dataset.
This computes overall accuracy, mAP, etc. Returns the
metric value and a metric_units string naming the metric.
Note: script arguments can be accessed using `self._args.attr`
"""
coco_api = COCO(annotation_file=self._args.annotation_path)
image_ids = coco_api.getImgIds()
coco_detections = []
for i, image_id in enumerate(image_ids):
coco_img = coco_api.imgs[image_id]
image_width = coco_img['width']
image_height = coco_img['height']
for j in range(int(predictions['num_detections'][i])):
bbox = predictions['boxes'][i][j]
y1, x1, y2, x2 = list(bbox)
bbox_coco_fmt = [
x1 * image_width, # x0
y1 * image_height, # x1
(x2-x1) * image_width, # width
(y2-y1) * image_height, # height
]
coco_detection = {
'image_id': image_id,
'category_id': int(predictions['classes'][i][j]),
'bbox': [int(coord) for coord in bbox_coco_fmt],
'score': float(predictions['scores'][i][j])
}
coco_detections.append(coco_detection)
# write coco detections to file
tmp_dir = "/tmp/tmp_detection_results"
try:
shutil.rmtree(tmp_dir)
except FileNotFoundError:
pass
os.makedirs(tmp_dir)
coco_detections_path = os.path.join(tmp_dir, 'coco_detections.json')
with open(coco_detections_path, 'w') as f:
json.dump(coco_detections, f)
cocoDt = coco_api.loadRes(coco_detections_path)
shutil.rmtree(tmp_dir)
# compute coco metrics
eval = COCOeval(coco_api, cocoDt, 'bbox')
eval.params.imgIds = image_ids
eval.evaluate()
eval.accumulate()
eval.summarize()
return eval.stats[0] * 100, "mAP %"
if __name__ == '__main__':
cmdline_api = CommandLineAPI()
args = cmdline_api.parse_args()
runner = BenchmarkRunner(args)
runner.execute_benchmark()