-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMETADATA
676 lines (662 loc) · 22.1 KB
/
METADATA
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
# generate this sort of template with:
# ~/bin/mtcheck ece1254/ps3b/*.m | tee x ; # say
sub matlabMeta
{
my @matlab =
(
{
DATE => 'Dec 25, 2014',
path => 'util/saveHelper.m',
WHAT => qq(Choose how to plot, depending on the save'ing functions available.)
},
{
DATE => 'Nov 2, 2014',
path => 'ece1254/ps1/backSubst.m',
PROBLEMSET => 1,
WHAT => qq(BackSubst performs a back substitution returning x for the system U x = b, where U is upper triangular and has no zeros on the diagonal.)
},
{
DATE => 'Oct 11, 2014',
path => 'util/changeDebug.m',
WHAT => qq(Enable or disable trace.)
},
{
DATE => 'Oct 11, 2014',
path => 'util/changeTrace.m',
WHAT => qq(Enable or disable trace.)
},
{
DATE => 'Oct 11, 2014',
path => 'util/disableDebug.m',
WHAT => qq(Disable debug mode. This sets a global debug variable to zero so that calls to traceit don't print anything.)
},
{
DATE => 'Oct 11, 2014',
path => 'util/disableTrace.m',
WHAT => qq(Disable debug tracing.
Sets a global trace variable to zero so that calls to traceit don't print anything.
)
},
{
DATE => 'Oct 11, 2014',
path => 'util/enableDebug.m',
WHAT => qq(
enable debug mode.
Sets a global debug variable to non-zero so that calls to verify( ... ) don't print anything.)
},
{
DATE => 'Oct 11, 2014',
path => 'util/enableTrace.m',
WHAT => qq(Enable debug tracing.
Sets a global trace variable to non-zero so that calls to traceit( ... ) don't print anything.)
},
{
DATE => 'Oct 11, 2014',
path => 'ece1254/ps1/findMaxIndexOfColumnMatrix.m',
PROBLEMSET => 1,
WHAT => qq(Finds the index of the pivot element, the element with the biggest absolute value.)
},
{
DATE => 'Nov 2, 2014',
path => 'ece1254/ps1/forwardSubst.m',
PROBLEMSET => 1,
WHAT => qq(Performs a back substitution returning x for the system L x = b, where L is lower triangular and has no zeros on the diagonal.)
},
{
DATE => 'Oct 14, 2014',
path => 'ece1254/ps1/generateHeatNetlist.m',
PROBLEMSET => 1,
WHAT => qq(A small Matlab function that generates a netlist for the heat network in ps1 p3a.)
},
{
DATE => 'Oct 14, 2014',
path => 'ece1254/ps1/generateResistorGridNetlist.m',
PROBLEMSET => 1,
WHAT => qq(A small Matlab function that generates a netlist for a network made by:
N x N square grid of resistors of value R, where N is the number of...)
},
{
DATE => 'Oct 11, 2014',
path => 'util/isDebugEnabled.m',
WHAT => qq(Check if debug mode is enabled. If neither enableDebug nor disableDebug has been called, this
disable debug modes.)
},
{
DATE => 'Oct 14, 2014',
path => 'ece1254/ps1/NodalAnalysis.m',
PROBLEMSET => 1,
WHAT => qq(NodalAnalysis generates the MNA, modified nodal analysis, equations from a text file.)
},
{
DATE => 'Nov 2, 2014',
path => 'ece1254/ps1/noPivotLU.m',
PROBLEMSET => 1,
WHAT => qq(Performs a, not in place, LU factorization of the input matrix, producing the factors: M = L U,
where L and U are lower and upper triangular respectively.)
},
{
DATE => 'Oct 14, 2014',
path => 'ece1254/ps1/plotHeatQ.m',
PROBLEMSET => 1,
WHAT => qq(Plot the netlist results for ps1 p3b, and p3d.)
},
{
DATE => 'Oct 14, 2014',
path => 'ece1254/ps1/problem2driver.m',
PROBLEMSET => 1,
WHAT => qq(Driver for ps1 problem 2, part a and b.)
},
{
DATE => 'Oct 14, 2014',
path => 'ece1254/ps1/ps1d.m',
PROBLEMSET => 1,
WHAT => qq(Driver that calculates an LU factorization based solution for ps3.p1, and compares to the direct Matlab solution.)
},
{
DATE => 'Oct 11, 2014',
path => 'ece1254/ps1/tests/fit.m',
PROBLEMSET => 1,
WHAT => qq(Polynomial fitting experimental code.)
},
{
DATE => 'Oct 11, 2014',
path => 'ece1254/ps1/tests/verifyUpperTriangular.m',
PROBLEMSET => 1,
WHAT => qq(Unit tests for verifyUpperTriangular function.)
},
{
DATE => 'Oct 11, 2014',
path => 'ece1254/ps1/tests/withPivotLU.m',
PROBLEMSET => 1,
WHAT => qq(Unit tests for withPivotLU function.)
},
{
DATE => 'Oct 11, 2014',
path => 'util/traceit.m',
WHAT => qq(Trace a string, along with the name/line of the caller. This is done if enableTrace has been called, and disableTrace has not, then the value of the string will be printed following a 'debug: function:line: ' prefix.)
},
{
DATE => 'Oct 11, 2014',
path => 'ece1254/ps1/verifyUpperTriangular.m',
PROBLEMSET => 1,
WHAT => qq(Produces an error if the matrix U is not upper triangular within precision epsilon.)
},
{
DATE => 'Oct 14, 2014',
path => 'ece1254/ps1/withPivotLU.m',
PROBLEMSET => 1,
WHAT => qq(Performs a not in place LU factorization of the input matrix, producing the factors: M = L U, where L' = P L and U are lower and upper triangular respectively, and P is a permutation matrix.)
},
{
DATE => 'Nov 2, 2014',
path => 'ece1254/ps2a/compareBD.m',
PROBLEMSET => 1,
WHAT => qq(Compare the solutions for the transformed and original circuits of ps2 parts b and d.)
},
{
DATE => 'Oct 31, 2014',
path => 'ece1254/ps2a/conjgrad.m',
PROBLEMSET => 1,
WHAT => qq(A conjugate gradient implementation taken directly from 'Numerical Mathematics'.)
},
{
DATE => 'Nov 2, 2014',
path => 'ece1254/ps2a/conjugateGradientPainlessB2.m',
PROBLEMSET => 1,
WHAT => qq(A conjugate gradient implementation based on the pseudocode algorithm from Shewchuk's
"An Introduction to the Conjugate Gradient Method Without the Agonizing Pain" appendix B.2)
},
{
DATE => 'Oct 31, 2014',
path => 'ece1254/ps2a/conjugateGradientPainlessB3.m',
PROBLEMSET => 1,
WHAT => qq(A conjugate gradient implementation based on the pseudocode algorithm from Shewchuk's
"An Introduction to the Conjugate Gradient Method Without the Agonizing Pain" appendix B.3)
},
{
DATE => 'Nov 2, 2014',
path => 'ece1254/ps2a/conjugateGradientQuarteroniPrecond.m',
PROBLEMSET => 1,
WHAT => qq(A conjugate gradient implementation with preconditioning based on the algorithm from
the algorithm in Quarteroni, et al's "Numerical Mathematics".)
},
{
DATE => 'Nov 2, 2014',
path => 'ece1254/ps2a/generateNodalEquationsPartEH.m',
PROBLEMSET => 1,
WHAT => qq(Generate the modified nodal analysis equations G x = b, for the grid specified in ps2 problem 1 part a.)
},
{
DATE => 'Nov 2, 2014',
path => 'ece1254/ps2a/generateResistorGridNetlist.m',
PROBLEMSET => 1,
WHAT => qq(Generate a resistor grid network for the problem of ps2a. Relative to the network of the previous problem set, this one has a resistance from each node to ground, and also has a series resistance on the voltage source to ground. An option to use a Norton equivalent current source for the voltage source is also provided, which allows the MNA matrix to be symmetric, which in turn allows CG methods to be used to solve.)
},
{
DATE => 'Oct 29, 2014',
path => 'ece1254/ps2a/NodalAnalysis.m',
PROBLEMSET => 1,
WHAT => qq(Based on NodalAnalysis.m from ps1, but generalized to allow alphanumeric labels.)
},
{
DATE => 'Nov 2, 2014',
path => 'ece1254/ps2a/partEcollectTimings.m',
PROBLEMSET => 1,
WHAT => qq(Collect and plot timing info for all the different solution methods: CG, LU, ...)
},
{
DATE => 'Nov 2, 2014',
path => 'ece1254/ps2a/partH.m',
PROBLEMSET => 1,
WHAT => qq(Collect timing data for each of the part e solution methods with and without preconditioning, and optionally plotting the Gershgorin circles.)
},
{
DATE => 'Nov 2, 2014',
path => 'ece1254/ps2a/tests/lutest.m',
PROBLEMSET => 1,
WHAT => qq(Test driver to try Matlab builtin lu function.)
},
{
DATE => 'Nov 2, 2014',
path => 'ece1254/ps2a/tridiagonal.m',
PROBLEMSET => 1,
WHAT => qq(Extract just the tridiagonal subset of the matrix a, returning the result in sparse form.)
},
{
DATE => 'Nov 2, 2014',
path => 'ece1254/ps2a/usenetlistProblemBD.m',
PROBLEMSET => 1,
WHAT => qq(Solve the ps2a netlist with various methods.)
},
{
DATE => 'Nov 9, 2014',
path => 'ece1254/ps2b/countItersAndPlot.m',
PROBLEMSET => 1,
WHAT => qq(Count the Newton's method iterations required to solve the ps2b diffusion problem 2.)
},
{
DATE => 'Nov 3, 2014',
path => 'ece1254/ps2b/ddiode.m',
PROBLEMSET => 1,
WHAT => qq(Derivative of the diode Newton's method function for ps2b problem 1.)
},
{
DATE => 'Nov 3, 2014',
path => 'ece1254/ps2b/diode.m',
PROBLEMSET => 1,
WHAT => qq(The diode Newton's method function for ps2b problem 1.)
},
{
DATE => 'Nov 2, 2014',
path => 'ece1254/ps2b/dplot.m',
PROBLEMSET => 1,
WHAT => qq(Attempt to plot the diode function with Matlab. Gave up and plotted it with Mathematica instead.)
},
{
DATE => 'Nov 9, 2014',
path => 'ece1254/ps2b/newtonsDiffusion.m',
PROBLEMSET => 1,
WHAT => qq(Implementation of Newton's method with and without stepping and damping for problem 2 of ps2b.)
},
{
DATE => 'Nov 4, 2014',
path => 'ece1254/ps2b/newtonsDiode.m',
PROBLEMSET => 1,
WHAT => qq(Implementation of Newton's method with and without stepping for problem 1 of ps2b.)
},
{
DATE => 'Nov 5, 2014',
path => 'ece1254/ps2b/newtonsSquareroot.m',
PROBLEMSET => 1,
WHAT => qq(Reference implementation of Newton's method for a square root computation.)
},
{
DATE => 'Nov 9, 2014',
path => 'ece1254/ps2b/quadraticDifferences.m',
PROBLEMSET => 1,
WHAT => qq(Demonstrate quadratic convergence for the multivariable Newton's method of ps2b problem 2.)
},
{
DATE => 'Nov 19, 2014',
path => 'ece1254/ps3a/NodalAnalysis.m',
PROBLEMSET => 1,
WHAT => qq(Generate MNA equations for systems that also include inductors and capacitors.)
},
{
DATE => 'Nov 19, 2014',
path => 'ece1254/ps3a/tests/nat.m',
PROBLEMSET => 1,
WHAT => qq(Test cases for NodalAnalysis.m)
},
{
DATE => 'Nov 22, 2014',
path => 'ece1254/ps3a/generateNetlist.m',
PROBLEMSET => 1,
WHAT => qq(Generates the netlist for part b, and returns the table of RLC values and the numbers of these RLC segments for each level.)
},
{
DATE => 'Nov 22, 2014',
path => 'ece1254/ps3a/generateNetlistSegment.m',
PROBLEMSET => 1,
WHAT => qq(A helper function that generates a sequence of serially connected RLC segments for one branch of the clock distribution network.)
},
{
DATE => 'Nov 22, 2014',
path => 'ece1254/ps3a/generateNetlistSegmentForLevel.m',
PROBLEMSET => 1,
WHAT => qq(For a given level greater than 1, call generateNetlistSegment for each fork of the clock distribution network in this level.)
},
{
DATE => 'Nov 23, 2014',
path => 'ece1254/ps3a/tests/checkvclock.m',
PROBLEMSET => 1,
WHAT => qq(Test vclock function by plotting and visual verification.)
},
{
DATE => 'Nov 23, 2014',
path => 'ece1254/ps3a/vclock.m',
PROBLEMSET => 1,
WHAT => qq(Implement a function for the specified clock signal. This function is vectorized and uses vclk to calculate the voltage for a single, scalar, point in time.)
},
{
DATE => 'Nov 24, 2014',
path => 'ece1254/ps3a/calculateSolutionForTimestep.m',
PROBLEMSET => 1,
WHAT => qq(Calculate and cache the netlist file for the circuit and the associated MNA equations. Calculate the BE or TR discretized solution for a given timestep.)
},
{
DATE => 'Nov 25, 2014',
path => 'ece1254/ps3a/driver.m',
PROBLEMSET => 1,
WHAT => qq(High level driver for the plots. Calls plotSolutionIterations as appropriate to generate the figures for part c, d.)
},
{
DATE => 'Nov 25, 2014',
path => 'ece1254/ps3a/clk.m',
PROBLEMSET => 1,
WHAT => qq(Split out piecewise clock function for scalar value to allow for vectorized vclock implementation.)
},
{
DATE => 'Nov 25, 2014',
path => 'ece1254/ps3a/interpolate.m',
PROBLEMSET => 1,
WHAT => qq(Given a set of values v measured at all the points in [0, maxT] separated by timestep inputDeltaT: A set of interpolated values for v are computed using a different, presumably finer granularity, timestep size newDeltaT.)
},
{
DATE => 'Nov 25, 2014',
path => 'ece1254/ps3a/loglogExponential.m',
PROBLEMSET => 1,
WHAT => qq(Plot the order relationships measured for N vs error for BE and TR.)
},
{
DATE => 'Nov 27, 2014',
path => 'ece1254/ps3b/PlotFreqResp.m',
PROBLEMSET => 1,
WHAT => qq(Implements a Matlab routine PlotFreqResp(omegaSet,G,C,B,L) which takes in omegaSet, G,C, B, L as input and plots the system frequency response. Here omegaSet is a vector of frequencies in rad/s.)
},
{
DATE => 'Nov 27, 2014',
path => 'ece1254/ps3b/testPlotFreqResp.m',
PROBLEMSET => 1,
WHAT => qq(Simple test case for PlotFreqResp().)
},
{
DATE => 'Nov 29, 2014',
path => 'ece1254/ps3b/plotFreqPartC.m',
PROBLEMSET => 1,
WHAT => qq(Plot the N=500 frequency response for part c.)
},
{
DATE => 'Nov 29, 2014',
path => 'ece1254/ps3b/generateNetlist.m',
PROBLEMSET => 1,
WHAT => qq(Generate the netlist to use in the part c N=500 frequency response plot.)
},
{
DATE => 'Dec 1, 2014',
path => 'ece1254/ps3b/displayOutputErrorAndCpuTimes.m',
PROBLEMSET => 1,
WHAT => qq(Plot and save the time step output, error and CPU time plots.)
},
{
DATE => 'Dec 1, 2014',
path => 'ece1254/ps3b/calculateSolutionForTimestep.m',
PROBLEMSET => 1,
WHAT => qq(Implements TR or BE algorithms, based on ps3a time step solver. Also collects CPU measurements for the time required. The set of measured times and the solutions are cached for use in a variety of plots.)
},
{
DATE => 'Dec 1, 2014',
path => 'ece1254/ps3b/computeFreqResp.m',
PROBLEMSET => 1,
WHAT => qq(Compute the frequency response curve for use in PlotFreqResp().)
},
{
DATE => 'Nov 30, 2014',
path => 'ece1254/ps3b/sorteig.m',
PROBLEMSET => 1,
WHAT => qq(Get the eigenvalues and vectors for an input matrix, and sort them as desired. Apply the same sort to the columns of the eigenvector matrix.)
},
{
DATE => 'Nov 30, 2014',
path => 'ece1254/ps3b/testsorteig.m',
PROBLEMSET => 1,
WHAT => qq(Test code for sorteig().)
},
{
DATE => 'Dec 9, 2014',
path => 'ece1254/proj/FourierMatrix.m',
PROBLEMSET => 1,
WHAT => qq(Compute the fourier matrix for the discrete fourier transform and its inverse.),
},
{
DATE => 'Dec 9, 2014',
path => 'ece1254/proj/gnl.m',
PROBLEMSET => 1,
WHAT => qq(
Determines the nonlinear currents of the diodes in bdiodes
for the voltages contained in x. (Time domain)
bdiodes is a cell matrix containing the infromation describing the
location and parameters of all diodes in the circuit
x is the vector of all unknown quantities
Nh is the number of harmonics used in the analysis
Nm is the number of physical unknowns of the MNA.
),
SHORT => qq(Determines the nonlinear contribution to the currents.),
},
{
DATE => 'Dec 9, 2014',
path => 'ece1254/proj/Gprime.m',
PROBLEMSET => 1,
WHAT => qq(
Produces the nonlinear contribution to the Jacobian
required to solve a nonlinear circuit using Newton's Method
bdiodes is a cell matrix containing the infromation describing the
location and parameters of all diodes in the circuit
x is the vector of all unknown quantities
Nh is the number of harmonics used in the analysis
Nm is the number of physical unknowns of the MNA.
),
SHORT => qq(Produces the nonlinear contribution to the Jacobian
required to solve a nonlinear circuit using Newton's Method.),
},
{
DATE => 'Dec 9, 2014',
path => 'ece1254/proj/HBSolve.m',
PROBLEMSET => 1,
WHAT => qq(
This function uses the Harmonic Balance Method to solve the
steady state condtion of the circuit described in fileName for frequencies in the -N,N range.
Harmonic Balance equations of the form
f(V) = Y V - I -II(V),
are constructed from the supplied .netlist specification. The zeros of this function are sought, determining the
the DFT Fourier coefficent vector V that solves the system in the frequency domain.
The vectors containing the unknowns V,v of the circuit are returned (in the frequency and
time domain respectively), ordered as
described in HarmonicBalance.m. The cpu time required to solve the
circuit using Newton's Method is also returned.
),
SHORT => qq(Harmonic Balance workhorse.),
},
# dead code? :
#{
# DATE => 'Dec 9, 2014',
# path => 'ece1254/proj/deadcode/NewtonsMethod.m',
# WHAT => qq(Harmonic Balance Newton's method iterations.)
#},
{
DATE => 'Dec 9, 2014',
path => 'ece1254/proj/PlotWaveforms.m',
PROBLEMSET => 1,
WHAT => qq(Calls HBSolve() for a netlist file and caches the result. Then plots the results using a set of plot specifications.),
},
{
DATE => 'Dec 9, 2014',
path => 'ece1254/proj/TestSolver.m',
PROBLEMSET => 1,
WHAT => qq(
Calls the HBSolve function to solve the
circuit described in fileName using the Harmonic Balance method,
truncating the harmonics to N multiples of fundamental.
The circuit is solved for varying values of N and the cputime required
to solve and the maximum error between the solution and a solution of
``sufficiently large'' N is computed
),
SHORT => qq(Generates the cputime/error plot data.),
},
{
DATE => 'Dec 9, 2014',
path => 'ece1254/proj/DiodeCurrentAndJacobian.m',
PROBLEMSET => 1,
WHAT => qq(
Calculate the nonlinear current contributions of the diode
and its associated Jacobian.
)
},
#{
# DATE => 'Dec 9, 2014',
# path => 'ece1254/proj/DiodeExponentialDFT.m',
# WHAT => qq(
#Given a diode struct descriptor, generate the DFT
#calculation associated with a specific value of V for (1/F)exp( F V ).
#)
#},
#{
# DATE => 'Dec 9, 2014',
# path => 'ece1254/proj/DiodeExponentialJacobian.m',
# WHAT => qq(
#Given a diode struct descriptor, calculate the Jacobian for (1/F)exp( F V ).
#)
#},
{
DATE => 'Dec 9, 2014',
path => 'ece1254/proj/FourierMatrixComplex.m',
PROBLEMSET => 1,
WHAT => qq(
Determines the fourier matrix for the discrete fourier transform and its inverse.
)
},
{
DATE => 'Dec 9, 2014',
path => 'ece1254/proj/HarmonicBalance.m',
PROBLEMSET => 1,
WHAT => qq(
Generates the Harmonic balance modified nodal analysis (MNA) equations from the time domain MNA
representation.
Y V = B U = I + II, (1)
where II represents nonlinear contributions not returned directly as a matrix.
),
SHORT => qq(
Construct the Frequency domain equivalents of the linear portions of the network.
Consumes results from NodalAnalysis().)
},
#{
# DATE => 'Dec 9, 2014',
# path => 'ece1254/proj/NewtonsHarmonicBalance.m',
# WHAT => qq(
#Harmonic Balance equations of the form
#
# f(V) = Y V - I -II(V),
#
# are constructed from the supplied .netlist specification. The zeros of this function are sought, determining the
# the DFT Fourier coefficent vector V that solves the system in the frequency domain.
#)
#},
{
DATE => 'Dec 9, 2014',
path => 'ece1254/proj/NodalAnalysis.m',
PROBLEMSET => 1,
WHAT => qq(
Generates the modified nodal analysis (MNA) equations from a text file
This is based on NodalAnalysis.m from ps3a (which included RLC support), and has been generalized to add support
for non-DC sources and diodes.
This routine [G, C, B, angularVelocities, x] = NodalAnalysis(filename)
generates the modified nodal analysis (MNA) equations
G x(t) + C x'(t)= B u(t) + D n(t)
Here the column vector u(t) contains all sources, and x(t) is a vector of all the sources.
),
SHORT => qq(Parse the netlist file and return the time domain MNA equation matrices and an
encoding of any nonlinear elements.)
},
{
DATE => 'Dec 9, 2014',
path => 'ece1254/proj/testFourierMatrixComplex.m',
PROBLEMSET => 1,
WHAT => qq(
Verify FourierMatrixComplex( N ), produced with vectorized code, against dumb
programmatic loop construction method.
N is the number of Harmonics to be used.),
FILTERIF => '/proj',
},
#{
# DATE => 'Dec 9, 2014',
# path => 'ece1254/proj/testH.m',
# WHAT => qq(Ad-hoc test driver to call NewtonsHarmonicBalance() and display output)
#},
{
DATE => 'Dec 10, 2014',
path => 'ece1254/proj/makefigures.m',
PROBLEMSET => 1,
WHAT => qq(Driver for all the plots. Calls PlotWaveforms().),
FILTERIF => '/proj',
},
{
DATE => 'Dec 14, 2014',
path => 'ece1254/proj/DiodeNonVdependent.m',
PROBLEMSET => 1,
WHAT => qq(V independent portions of the nonlinear current and Jacobian calculations.)
},
{
DATE => 'Dec 26, 2014',
path => 'ece1254/ps2b/plotConvergence.m',
PROBLEMSET => 1,
WHAT => qq(Generate the convergence log log plots.)
},
{
DATE => 'Mar 25, 2015',
path => 'ece1229/ps4/p1plot.m',
WHAT => qq(Plot the ps4 p1 AF for one value of ad.)
},
{
DATE => 'Mar 25, 2015',
path => 'ece1229/ps4/p1plots.m',
WHAT => qq(Generate all the plots for p1 and save the plots to files for the report.)
},
{
DATE => 'Mar 25, 2015',
path => 'ece1229/ps4/p2.m',
WHAT => qq(Problem 2. Code to confirm the zeros numerically, and to plot the absolute array factor.)
},
{
DATE => 'Apr 13, 2015',
path => 'ece1229/ps5/phicap.m',
WHAT => qq(spherical polar phicap function)
},
{
DATE => 'Apr 13, 2015',
path => 'ece1229/ps5/rcap.m',
WHAT => qq(spherical polar rcap function)
},
{
DATE => 'Apr 13, 2015',
path => 'ece1229/ps5/thetacap.m',
WHAT => qq(spherical polar thetacap function)
},
{
DATE => 'Apr 13, 2015',
path => 'ece1229/ps5/vecE.m',
WHAT => qq(ps5 p1 compuation and plots)
},
#{
# DATE => 'Apr 13, 2015',
# path => 'ece1229/ps5/.junk/zf.m',
# WHAT => qq(standalone question posted to stackoverflow related to refining my zero-find method)
#},
#{
# DATE => 'Apr 13, 2015',
# path => 'ece1229/ps5/logpolar.m',
# WHAT => qq(This is a hacked version of matlab's built in POLAR function, with radial ticks changed to db scale.)
#},
{
DATE => 'Apr 13, 2015',
path => 'ece1229/ps5/logscale.m',
WHAT => qq(db values for an input array rescaled to fit in the 0,1 interval.)
},
{
DATE => 'Apr 14, 2015',
path => 'ece1229/ps5/pII.m',
WHAT => qq(Display the numeric substitutions, and compute the value of m for part h that has zero imaginary input impedance.)
},
{
DATE => 'Apr 14, 2015',
path => 'ece1229/ps5/calculateZinAndStuff.m',
WHAT => qq(Calculate Zin given a single value of m. Returns all the intermediate calculations in a structure for display purposes.)
},
{
DATE => 'Feb 4, 2016',
path => 'ece1236/smith/run.m',
WHAT => qq(run mathworks plotSmithChart() and save output to a file.)
},
) ; # @matlab
return @matlab ;
}
1 ;