forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
shadowmapping.cpp
598 lines (511 loc) · 25.9 KB
/
shadowmapping.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
/*
* Vulkan Example - Shadow mapping for directional light sources
*
* Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
class VulkanExample : public VulkanExampleBase
{
public:
bool displayShadowMap = false;
bool filterPCF = true;
// Keep depth range as small as possible
// for better shadow map precision
float zNear = 1.0f;
float zFar = 96.0f;
// Depth bias (and slope) are used to avoid shadowing artifacts
// Constant depth bias factor (always applied)
float depthBiasConstant = 1.25f;
// Slope depth bias factor, applied depending on polygon's slope
float depthBiasSlope = 1.75f;
glm::vec3 lightPos = glm::vec3();
float lightFOV = 45.0f;
std::vector<vkglTF::Model> scenes;
std::vector<std::string> sceneNames;
int32_t sceneIndex = 0;
struct UniformDataScene {
glm::mat4 projection;
glm::mat4 view;
glm::mat4 model;
glm::mat4 depthBiasMVP;
glm::vec4 lightPos;
// Used for depth map visualization
float zNear;
float zFar;
} uniformDataScene;
struct UniformDataOffscreen {
glm::mat4 depthMVP;
} uniformDataOffscreen;
struct {
vks::Buffer scene;
vks::Buffer offscreen;
} uniformBuffers;
struct {
VkPipeline offscreen{ VK_NULL_HANDLE };
VkPipeline sceneShadow{ VK_NULL_HANDLE };
// Pipeline with percentage close filtering (PCF) of the shadow map
VkPipeline sceneShadowPCF{ VK_NULL_HANDLE };
VkPipeline debug{ VK_NULL_HANDLE };
} pipelines;
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
struct {
VkDescriptorSet offscreen{ VK_NULL_HANDLE };
VkDescriptorSet scene{ VK_NULL_HANDLE };
VkDescriptorSet debug{ VK_NULL_HANDLE };
} descriptorSets;
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
// Framebuffer for offscreen rendering
struct FrameBufferAttachment {
VkImage image;
VkDeviceMemory mem;
VkImageView view;
};
struct OffscreenPass {
int32_t width, height;
VkFramebuffer frameBuffer;
FrameBufferAttachment depth;
VkRenderPass renderPass;
VkSampler depthSampler;
VkDescriptorImageInfo descriptor;
} offscreenPass{};
// 16 bits of depth is enough for such a small scene
const VkFormat offscreenDepthFormat{ VK_FORMAT_D16_UNORM };
// Shadow map dimension
#if defined(__ANDROID__)
// Use a smaller size on Android for performance reasons
const uint32_t shadowMapize{ 1024 };
#else
const uint32_t shadowMapize{ 2048 };
#endif
VulkanExample() : VulkanExampleBase()
{
title = "Projected shadow mapping";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -12.5f));
camera.setRotation(glm::vec3(-25.0f, -390.0f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 1.0f, 256.0f);
timerSpeed *= 0.5f;
}
~VulkanExample()
{
if (device) {
// Frame buffer
vkDestroySampler(device, offscreenPass.depthSampler, nullptr);
// Depth attachment
vkDestroyImageView(device, offscreenPass.depth.view, nullptr);
vkDestroyImage(device, offscreenPass.depth.image, nullptr);
vkFreeMemory(device, offscreenPass.depth.mem, nullptr);
vkDestroyFramebuffer(device, offscreenPass.frameBuffer, nullptr);
vkDestroyRenderPass(device, offscreenPass.renderPass, nullptr);
vkDestroyPipeline(device, pipelines.debug, nullptr);
vkDestroyPipeline(device, pipelines.offscreen, nullptr);
vkDestroyPipeline(device, pipelines.sceneShadow, nullptr);
vkDestroyPipeline(device, pipelines.sceneShadowPCF, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
// Uniform buffers
uniformBuffers.offscreen.destroy();
uniformBuffers.scene.destroy();
}
}
// Set up a separate render pass for the offscreen frame buffer
// This is necessary as the offscreen frame buffer attachments use formats different to those from the example render pass
void prepareOffscreenRenderpass()
{
VkAttachmentDescription attachmentDescription{};
attachmentDescription.format = offscreenDepthFormat;
attachmentDescription.samples = VK_SAMPLE_COUNT_1_BIT;
attachmentDescription.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; // Clear depth at beginning of the render pass
attachmentDescription.storeOp = VK_ATTACHMENT_STORE_OP_STORE; // We will read from depth, so it's important to store the depth attachment results
attachmentDescription.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachmentDescription.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachmentDescription.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; // We don't care about initial layout of the attachment
attachmentDescription.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL;// Attachment will be transitioned to shader read at render pass end
VkAttachmentReference depthReference = {};
depthReference.attachment = 0;
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; // Attachment will be used as depth/stencil during render pass
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 0; // No color attachments
subpass.pDepthStencilAttachment = &depthReference; // Reference to our depth attachment
// Use subpass dependencies for layout transitions
std::array<VkSubpassDependency, 2> dependencies;
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
VkRenderPassCreateInfo renderPassCreateInfo = vks::initializers::renderPassCreateInfo();
renderPassCreateInfo.attachmentCount = 1;
renderPassCreateInfo.pAttachments = &attachmentDescription;
renderPassCreateInfo.subpassCount = 1;
renderPassCreateInfo.pSubpasses = &subpass;
renderPassCreateInfo.dependencyCount = static_cast<uint32_t>(dependencies.size());
renderPassCreateInfo.pDependencies = dependencies.data();
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCreateInfo, nullptr, &offscreenPass.renderPass));
}
// Setup the offscreen framebuffer for rendering the scene from light's point-of-view to
// The depth attachment of this framebuffer will then be used to sample from in the fragment shader of the shadowing pass
void prepareOffscreenFramebuffer()
{
offscreenPass.width = shadowMapize;
offscreenPass.height = shadowMapize;
// For shadow mapping we only need a depth attachment
VkImageCreateInfo image = vks::initializers::imageCreateInfo();
image.imageType = VK_IMAGE_TYPE_2D;
image.extent.width = offscreenPass.width;
image.extent.height = offscreenPass.height;
image.extent.depth = 1;
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
image.format = offscreenDepthFormat; // Depth stencil attachment
image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; // We will sample directly from the depth attachment for the shadow mapping
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &offscreenPass.depth.image));
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, offscreenPass.depth.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreenPass.depth.mem));
VK_CHECK_RESULT(vkBindImageMemory(device, offscreenPass.depth.image, offscreenPass.depth.mem, 0));
VkImageViewCreateInfo depthStencilView = vks::initializers::imageViewCreateInfo();
depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D;
depthStencilView.format = offscreenDepthFormat;
depthStencilView.subresourceRange = {};
depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
depthStencilView.subresourceRange.baseMipLevel = 0;
depthStencilView.subresourceRange.levelCount = 1;
depthStencilView.subresourceRange.baseArrayLayer = 0;
depthStencilView.subresourceRange.layerCount = 1;
depthStencilView.image = offscreenPass.depth.image;
VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilView, nullptr, &offscreenPass.depth.view));
// Create sampler to sample from to depth attachment
// Used to sample in the fragment shader for shadowed rendering
VkFilter shadowmap_filter = vks::tools::formatIsFilterable(physicalDevice, offscreenDepthFormat, VK_IMAGE_TILING_OPTIMAL) ? VK_FILTER_LINEAR : VK_FILTER_NEAREST;
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
sampler.magFilter = shadowmap_filter;
sampler.minFilter = shadowmap_filter;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 1.0f;
sampler.minLod = 0.0f;
sampler.maxLod = 1.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &offscreenPass.depthSampler));
prepareOffscreenRenderpass();
// Create frame buffer
VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo();
fbufCreateInfo.renderPass = offscreenPass.renderPass;
fbufCreateInfo.attachmentCount = 1;
fbufCreateInfo.pAttachments = &offscreenPass.depth.view;
fbufCreateInfo.width = offscreenPass.width;
fbufCreateInfo.height = offscreenPass.height;
fbufCreateInfo.layers = 1;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreenPass.frameBuffer));
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
VkViewport viewport;
VkRect2D scissor;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
/*
First render pass: Generate shadow map by rendering the scene from light's POV
*/
{
clearValues[0].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = offscreenPass.renderPass;
renderPassBeginInfo.framebuffer = offscreenPass.frameBuffer;
renderPassBeginInfo.renderArea.extent.width = offscreenPass.width;
renderPassBeginInfo.renderArea.extent.height = offscreenPass.height;
renderPassBeginInfo.clearValueCount = 1;
renderPassBeginInfo.pClearValues = clearValues;
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
viewport = vks::initializers::viewport((float)offscreenPass.width, (float)offscreenPass.height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
scissor = vks::initializers::rect2D(offscreenPass.width, offscreenPass.height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
// Set depth bias (aka "Polygon offset")
// Required to avoid shadow mapping artifacts
vkCmdSetDepthBias(
drawCmdBuffers[i],
depthBiasConstant,
0.0f,
depthBiasSlope);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.offscreen, 0, nullptr);
scenes[sceneIndex].draw(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
}
/*
Note: Explicit synchronization is not required between the render pass, as this is done implicit via sub pass dependencies
*/
/*
Second pass: Scene rendering with applied shadow map
*/
{
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.framebuffer = frameBuffers[i];
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
// Visualize shadow map
if (displayShadowMap) {
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.debug, 0, nullptr);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.debug);
vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0);
} else {
// Render the shadows scene
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.scene, 0, nullptr);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, (filterPCF) ? pipelines.sceneShadowPCF : pipelines.sceneShadow);
scenes[sceneIndex].draw(drawCmdBuffers[i]);
}
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
}
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
scenes.resize(2);
scenes[0].loadFromFile(getAssetPath() + "models/vulkanscene_shadow.gltf", vulkanDevice, queue, glTFLoadingFlags);
scenes[1].loadFromFile(getAssetPath() + "models/samplescene.gltf", vulkanDevice, queue, glTFLoadingFlags);
sceneNames = {"Vulkan scene", "Teapots and pillars" };
}
void setupDescriptors()
{
// Pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 3)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 3);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0),
// Binding 1 : Fragment shader image sampler (shadow map)
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
// Sets
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
// Image descriptor for the shadow map attachment
VkDescriptorImageInfo shadowMapDescriptor =
vks::initializers::descriptorImageInfo(
offscreenPass.depthSampler,
offscreenPass.depth.view,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL);
// Debug display
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.debug));
writeDescriptorSets = {
// Binding 0 : Parameters uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.debug, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor),
// Binding 1 : Fragment shader texture sampler
vks::initializers::writeDescriptorSet(descriptorSets.debug, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &shadowMapDescriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
// Offscreen shadow map generation
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.offscreen));
writeDescriptorSets = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.offscreen, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.offscreen.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
// Scene rendering with shadow map applied
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene));
writeDescriptorSets = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor),
// Binding 1 : Fragment shader shadow sampler
vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &shadowMapDescriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
// Layout
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
// Pipelines
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCI.pRasterizationState = &rasterizationStateCI;
pipelineCI.pColorBlendState = &colorBlendStateCI;
pipelineCI.pMultisampleState = &multisampleStateCI;
pipelineCI.pViewportState = &viewportStateCI;
pipelineCI.pDepthStencilState = &depthStencilStateCI;
pipelineCI.pDynamicState = &dynamicStateCI;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
// Shadow mapping debug quad display
rasterizationStateCI.cullMode = VK_CULL_MODE_NONE;
shaderStages[0] = loadShader(getShadersPath() + "shadowmapping/quad.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "shadowmapping/quad.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Empty vertex input state
VkPipelineVertexInputStateCreateInfo emptyInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
pipelineCI.pVertexInputState = &emptyInputState;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.debug));
// Scene rendering with shadows applied
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({vkglTF::VertexComponent::Position, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Color, vkglTF::VertexComponent::Normal});
rasterizationStateCI.cullMode = VK_CULL_MODE_BACK_BIT;
shaderStages[0] = loadShader(getShadersPath() + "shadowmapping/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "shadowmapping/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Use specialization constants to select between horizontal and vertical blur
uint32_t enablePCF = 0;
VkSpecializationMapEntry specializationMapEntry = vks::initializers::specializationMapEntry(0, 0, sizeof(uint32_t));
VkSpecializationInfo specializationInfo = vks::initializers::specializationInfo(1, &specializationMapEntry, sizeof(uint32_t), &enablePCF);
shaderStages[1].pSpecializationInfo = &specializationInfo;
// No filtering
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.sceneShadow));
// PCF filtering
enablePCF = 1;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.sceneShadowPCF));
// Offscreen pipeline (vertex shader only)
shaderStages[0] = loadShader(getShadersPath() + "shadowmapping/offscreen.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
pipelineCI.stageCount = 1;
// No blend attachment states (no color attachments used)
colorBlendStateCI.attachmentCount = 0;
// Disable culling, so all faces contribute to shadows
rasterizationStateCI.cullMode = VK_CULL_MODE_NONE;
depthStencilStateCI.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
// Enable depth bias
rasterizationStateCI.depthBiasEnable = VK_TRUE;
// Add depth bias to dynamic state, so we can change it at runtime
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_DEPTH_BIAS);
dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
pipelineCI.renderPass = offscreenPass.renderPass;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.offscreen));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Offscreen vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.offscreen, sizeof(UniformDataOffscreen)));
// Scene vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.scene, sizeof(UniformDataScene)));
// Map persistent
VK_CHECK_RESULT(uniformBuffers.offscreen.map());
VK_CHECK_RESULT(uniformBuffers.scene.map());
updateLight();
updateUniformBufferOffscreen();
updateUniformBuffers();
}
void updateLight()
{
// Animate the light source
lightPos.x = cos(glm::radians(timer * 360.0f)) * 40.0f;
lightPos.y = -50.0f + sin(glm::radians(timer * 360.0f)) * 20.0f;
lightPos.z = 25.0f + sin(glm::radians(timer * 360.0f)) * 5.0f;
}
void updateUniformBuffers()
{
uniformDataScene.projection = camera.matrices.perspective;
uniformDataScene.view = camera.matrices.view;
uniformDataScene.model = glm::mat4(1.0f);
uniformDataScene.lightPos = glm::vec4(lightPos, 1.0f);
uniformDataScene.depthBiasMVP = uniformDataOffscreen.depthMVP;
uniformDataScene.zNear = zNear;
uniformDataScene.zFar = zFar;
memcpy(uniformBuffers.scene.mapped, &uniformDataScene, sizeof(uniformDataScene));
}
void updateUniformBufferOffscreen()
{
// Matrix from light's point of view
glm::mat4 depthProjectionMatrix = glm::perspective(glm::radians(lightFOV), 1.0f, zNear, zFar);
glm::mat4 depthViewMatrix = glm::lookAt(lightPos, glm::vec3(0.0f), glm::vec3(0, 1, 0));
glm::mat4 depthModelMatrix = glm::mat4(1.0f);
uniformDataOffscreen.depthMVP = depthProjectionMatrix * depthViewMatrix * depthModelMatrix;
memcpy(uniformBuffers.offscreen.mapped, &uniformDataOffscreen, sizeof(uniformDataOffscreen));
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareOffscreenFramebuffer();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
virtual void render()
{
if (!prepared)
return;
if (!paused || camera.updated) {
updateLight();
updateUniformBufferOffscreen();
updateUniformBuffers();
}
draw();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->comboBox("Scenes", &sceneIndex, sceneNames)) {
buildCommandBuffers();
}
if (overlay->checkBox("Display shadow render target", &displayShadowMap)) {
buildCommandBuffers();
}
if (overlay->checkBox("PCF filtering", &filterPCF)) {
buildCommandBuffers();
}
}
}
};
VULKAN_EXAMPLE_MAIN()