From d5481cbe1bf9f02036cd054f1e09f93266b56d07 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Tue, 9 Jul 2019 15:29:42 +0200 Subject: [PATCH] adding tests to examples - updating summary module - coverage update --- .coveragerc | 3 + .gitignore | 1 + examples/run_glue.py | 124 ++++++++++---------- examples/test_examples.py | 25 ++-- examples/tests_samples/.gitignore | 5 + examples/tests_samples/MRPC/dev.tsv | 7 ++ examples/tests_samples/MRPC/train.tsv | 7 ++ pytorch_transformers/modeling_bert.py | 1 - pytorch_transformers/modeling_gpt2.py | 7 +- pytorch_transformers/modeling_openai.py | 9 +- pytorch_transformers/modeling_transfo_xl.py | 1 - pytorch_transformers/modeling_utils.py | 25 ++-- pytorch_transformers/modeling_xlm.py | 19 ++- pytorch_transformers/modeling_xlnet.py | 7 +- pytorch_transformers/tokenization_bert.py | 2 - pytorch_transformers/tokenization_utils.py | 6 +- pytorch_transformers/tokenization_xlm.py | 6 +- 17 files changed, 139 insertions(+), 116 deletions(-) create mode 100644 examples/tests_samples/.gitignore create mode 100644 examples/tests_samples/MRPC/dev.tsv create mode 100644 examples/tests_samples/MRPC/train.tsv diff --git a/.coveragerc b/.coveragerc index 9b8c40ecf153d6..e0d5674aa0e9e9 100644 --- a/.coveragerc +++ b/.coveragerc @@ -1,5 +1,8 @@ [run] source=pytorch_transformers +omit = + # skip convertion scripts from testing for now + */convert_* [report] exclude_lines = pragma: no cover diff --git a/.gitignore b/.gitignore index 05129fc40276a6..6bbe32df6c875f 100644 --- a/.gitignore +++ b/.gitignore @@ -126,4 +126,5 @@ models proc_data # examples +runs examples/runs \ No newline at end of file diff --git a/examples/run_glue.py b/examples/run_glue.py index 59583ed712c8e4..62d655ecc98fbe 100644 --- a/examples/run_glue.py +++ b/examples/run_glue.py @@ -60,25 +60,14 @@ 'xlm': XLMTokenizer, } -def train(args, train_features, model): +def train(args, train_dataset, model): """ Train the model """ if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() - # Convert in tensors and build dataloader - all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long) - all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long) - all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long) - if args.output_mode == "classification": - all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long) - elif args.output_mode == "regression": - all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.float) - args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps - - train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) - train_sampler = RandomSampler(train_data) if args.local_rank == -1 else DistributedSampler(train_data) - train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) + train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) + train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs @@ -109,19 +98,24 @@ def train(args, train_features, model): # Train! logger.info("***** Running training *****") - logger.info(" Num examples = %d", len(train_features)) + logger.info(" Num examples = %d", len(train_dataset)) + logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Batch size = %d", args.train_batch_size) - logger.info(" Num steps = %d", num_train_optimization_steps) + logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) + logger.info(" Total optimization steps = %d", num_train_optimization_steps) global_step = 0 tr_loss = 0 model.train() + optimizer.zero_grad() for _ in trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]): for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])): batch = tuple(t.to(args.device) for t in batch) - input_ids, input_mask, segment_ids, label_ids = batch - - ouputs = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids) + inputs = {'input_ids': batch[0], + 'attention_mask': batch[1], + 'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, + 'labels': batch[3]} + ouputs = model(**inputs) loss = ouputs[0] if args.n_gpu > 1: @@ -150,30 +144,20 @@ def train(args, train_features, model): return global_step, tr_loss / global_step -def evalutate(args, eval_task, eval_output_dir, eval_features, model): +def evalutate(args, eval_task, eval_output_dir, dataset, model): """ Evaluate the model """ if os.path.exists(eval_output_dir) and os.listdir(eval_output_dir) and args.do_train and not args.overwrite_output_dir: raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(eval_output_dir)) if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) - # Convert in tensors and build dataloader - all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) - all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) - all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) - if args.output_mode == "classification": - all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long) - elif args.output_mode == "regression": - all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.float) - - eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) # Note that DistributedSampler samples randomly - eval_sampler = SequentialSampler(eval_data) if args.local_rank == -1 else DistributedSampler(eval_data) - eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) + eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset) + eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # Eval! logger.info("***** Running evaluation *****") - logger.info(" Num examples = %d", len(eval_features)) + logger.info(" Num examples = %d", len(dataset)) logger.info(" Batch size = %d", args.eval_batch_size) model.eval() eval_loss = 0 @@ -214,36 +198,47 @@ def evalutate(args, eval_task, eval_output_dir, eval_features, model): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) + return result -def load_and_cache_examples(args, task, tokenizer, eval=False): - processor = processors[task]() - output_mode = output_modes[task] - label_list = processor.get_labels() - # Load and cache data +def load_and_cache_examples(args, task, tokenizer, evaluate=False): processor = processors[task]() - examples = processor.get_dev_examples(args.data_dir) - cached_features_file = os.path.join(args.data_dir, '{}_{}_{}_{}'.format( - 'dev' if eval else 'train', + output_mode = output_modes[task] + # Load data features from cache or dataset file + cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format( + 'dev' if evaluate else 'train', list(filter(None, args.model_name.split('/'))).pop(), str(args.max_seq_length), str(task))) - if os.path.exists(cached_features_file): logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: - features = convert_examples_to_features(examples, label_list, args.max_seq_length, tokenizer, output_mode) + logger.info("Creating features from dataset file at %s", args.data_dir) + label_list = processor.get_labels() + examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir) features = convert_examples_to_features(examples, label_list, args.max_seq_length, tokenizer, output_mode, - cls_token_at_end=bool(args.model_type not in ['bert', 'xlm']), + cls_token_at_end=bool(args.model_type in ['xlnet']), # xlnet has a cls token at the end cls_token=tokenizer.cls_token, - sep_token=tokenizer.sep_token, cls_token_segment_id=2, - pad_on_left=True, pad_token_segment_id=4) - if args.local_rank == -1 or torch.distributed.get_rank() == 0: + sep_token=tokenizer.sep_token, + cls_token_segment_id=2 if args.model_type in ['xlnet'] else 1, + pad_on_left=bool(args.model_type in ['xlnet']), # pad on the left for xlnet + pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0) + if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) - return features + # Convert to Tensors and build dataset + all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) + all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) + all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) + if output_mode == "classification": + all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long) + elif output_mode == "regression": + all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.float) + + dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) + return dataset def main(): @@ -350,10 +345,10 @@ def main(): torch.distributed.barrier() args.model_type = args.model_name.lower().split('-')[0] - args.tokenizer_class = TOKENIZER_CLASSES[args.model_type] - args.model_class = MODEL_CLASSES[args.model_type] - tokenizer = args.tokenizer_class.from_pretrained(args.model_name, do_lower_case=args.do_lower_case) - model = args.model_class.from_pretrained(args.model_name, num_labels=num_labels) + tokenizer_class = TOKENIZER_CLASSES[args.model_type] + model_class = MODEL_CLASSES[args.model_type] + tokenizer = tokenizer_class.from_pretrained(args.model_name, do_lower_case=args.do_lower_case) + model = model_class.from_pretrained(args.model_name, num_labels=num_labels) if args.local_rank == 0: torch.distributed.barrier() @@ -372,23 +367,30 @@ def main(): # Training if args.do_train: - train_features = load_and_cache_examples(args, args.task_name, tokenizer, eval=False) - global_step, tr_loss = train(args, train_features, model) + train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False) + global_step, tr_loss = train(args, train_dataset, model) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): - # Save a trained model, configuration and tokenizer + # Create output directory if needed + if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir: + raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir)) + if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: + os.makedirs(args.output_dir) + + # Save a trained model, configuration and tokenizer using `save_pretrained()`. + # They can then be reloaded using `from_pretrained()` model.save_pretrained(args.output_dir) - tokenizer.save_vocabulary(args.output_dir) + tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, 'training_args.bin')) # Load a trained model and vocabulary that you have fine-tuned - model = args.model_class.from_pretrained(args.output_dir) - tokenizer = args.tokenizer_class.from_pretrained(args.output_dir) + model = model_class.from_pretrained(args.output_dir) + tokenizer = tokenizer_class.from_pretrained(args.output_dir) model.to(args.device) # Evaluation @@ -398,9 +400,11 @@ def main(): eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,) for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs): - eval_features = load_and_cache_examples(args, eval_task, tokenizer, eval=True) + eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True) + + result = evalutate(args, eval_task, eval_output_dir, eval_dataset, model) - evalutate(args, eval_task, eval_output_dir, eval_features, model) + return result if __name__ == "__main__": diff --git a/examples/test_examples.py b/examples/test_examples.py index fada43dae2c7cc..8284858a121c3b 100644 --- a/examples/test_examples.py +++ b/examples/test_examples.py @@ -19,6 +19,7 @@ import sys import unittest import argparse +import logging try: # python 3.4+ can use builtin unittest.mock instead of mock package @@ -26,7 +27,11 @@ except ImportError: from mock import patch -import run_bert_squad as rbs +import run_glue + +logging.basicConfig(level=logging.DEBUG) + +logger = logging.getLogger() def get_setup_file(): parser = argparse.ArgumentParser() @@ -36,12 +41,18 @@ def get_setup_file(): class ExamplesTests(unittest.TestCase): - def test_run_squad(self): - testargs = ["prog", "-f", "/home/test/setup.py"] - with patch.object(sys, 'argv', testargs): - setup = get_setup_file() - assert setup == "/home/test/setup.py" - # rbs.main() + def test_run_glue(self): + stream_handler = logging.StreamHandler(sys.stdout) + logger.addHandler(stream_handler) + + testargs = ["run_glue.py", "--data_dir=./examples/tests_samples/MRPC/", + "--task_name=mrpc", "--do_train", "--do_eval", "--output_dir=./examples/tests_samples/temp_dir", + "--train_batch_size=4", "--eval_batch_size=2", "--num_train_epochs=2.0", "--overwrite_output_dir"] + model_name = "--model_name=xlnet-large-cased" + with patch.object(sys, 'argv', testargs + [model_name]): + result = run_glue.main() + for value in result.values(): + self.assertGreaterEqual(value, 0.75) if __name__ == "__main__": diff --git a/examples/tests_samples/.gitignore b/examples/tests_samples/.gitignore new file mode 100644 index 00000000000000..1ac75205228491 --- /dev/null +++ b/examples/tests_samples/.gitignore @@ -0,0 +1,5 @@ +*.* +cache* +temp* +!*.tsv +!.gitignore \ No newline at end of file diff --git a/examples/tests_samples/MRPC/dev.tsv b/examples/tests_samples/MRPC/dev.tsv new file mode 100644 index 00000000000000..5b814856c63f44 --- /dev/null +++ b/examples/tests_samples/MRPC/dev.tsv @@ -0,0 +1,7 @@ +Quality #1 ID #2 ID #1 String #2 String +1 1355540 1355592 He said the foodservice pie business doesn 't fit the company 's long-term growth strategy . " The foodservice pie business does not fit our long-term growth strategy . +0 2029631 2029565 Magnarelli said Racicot hated the Iraqi regime and looked forward to using his long years of training in the war . His wife said he was " 100 percent behind George Bush " and looked forward to using his years of training in the war . +0 487993 487952 The dollar was at 116.92 yen against the yen , flat on the session , and at 1.2891 against the Swiss franc , also flat . The dollar was at 116.78 yen JPY = , virtually flat on the session , and at 1.2871 against the Swiss franc CHF = , down 0.1 percent . +1 1989515 1989458 The AFL-CIO is waiting until October to decide if it will endorse a candidate . The AFL-CIO announced Wednesday that it will decide in October whether to endorse a candidate before the primaries . +0 1783137 1782659 No dates have been set for the civil or the criminal trial . No dates have been set for the criminal or civil cases , but Shanley has pleaded not guilty . +1 3039165 3039036 Wal-Mart said it would check all of its million-plus domestic workers to ensure they were legally employed . It has also said it would review all of its domestic employees more than 1 million to ensure they have legal status . diff --git a/examples/tests_samples/MRPC/train.tsv b/examples/tests_samples/MRPC/train.tsv new file mode 100644 index 00000000000000..5b814856c63f44 --- /dev/null +++ b/examples/tests_samples/MRPC/train.tsv @@ -0,0 +1,7 @@ +Quality #1 ID #2 ID #1 String #2 String +1 1355540 1355592 He said the foodservice pie business doesn 't fit the company 's long-term growth strategy . " The foodservice pie business does not fit our long-term growth strategy . +0 2029631 2029565 Magnarelli said Racicot hated the Iraqi regime and looked forward to using his long years of training in the war . His wife said he was " 100 percent behind George Bush " and looked forward to using his years of training in the war . +0 487993 487952 The dollar was at 116.92 yen against the yen , flat on the session , and at 1.2891 against the Swiss franc , also flat . The dollar was at 116.78 yen JPY = , virtually flat on the session , and at 1.2871 against the Swiss franc CHF = , down 0.1 percent . +1 1989515 1989458 The AFL-CIO is waiting until October to decide if it will endorse a candidate . The AFL-CIO announced Wednesday that it will decide in October whether to endorse a candidate before the primaries . +0 1783137 1782659 No dates have been set for the civil or the criminal trial . No dates have been set for the criminal or civil cases , but Shanley has pleaded not guilty . +1 3039165 3039036 Wal-Mart said it would check all of its million-plus domestic workers to ensure they were legally employed . It has also said it would review all of its domestic employees more than 1 million to ensure they have legal status . diff --git a/pytorch_transformers/modeling_bert.py b/pytorch_transformers/modeling_bert.py index 0dd72b29696720..ea9502d2efd329 100644 --- a/pytorch_transformers/modeling_bert.py +++ b/pytorch_transformers/modeling_bert.py @@ -28,7 +28,6 @@ from torch import nn from torch.nn import CrossEntropyLoss, MSELoss -from .file_utils import cached_path from .modeling_utils import WEIGHTS_NAME, CONFIG_NAME, PretrainedConfig, PreTrainedModel, prune_linear_layer logger = logging.getLogger(__name__) diff --git a/pytorch_transformers/modeling_gpt2.py b/pytorch_transformers/modeling_gpt2.py index 9340ce84895eac..7fefbefeaef286 100644 --- a/pytorch_transformers/modeling_gpt2.py +++ b/pytorch_transformers/modeling_gpt2.py @@ -30,7 +30,6 @@ from torch.nn import CrossEntropyLoss from torch.nn.parameter import Parameter -from .file_utils import cached_path from .modeling_utils import (Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel, prune_conv1d_layer, SequenceSummary) from .modeling_bert import BertLayerNorm as LayerNorm @@ -122,9 +121,8 @@ def __init__( predict_special_tokens=True, summary_type='token_ids', summary_use_proj=True, - summary_num_classes=1, summary_activation=None, - summary_dropout=0.1, + summary_first_dropout=0.1, **kwargs ): """Constructs GPT2Config. @@ -172,9 +170,8 @@ def __init__( self.predict_special_tokens = predict_special_tokens self.summary_type = summary_type self.summary_use_proj = summary_use_proj - self.summary_num_classes = summary_num_classes self.summary_activation = summary_activation - self.summary_dropout = summary_dropout + self.summary_first_dropout = summary_first_dropout else: raise ValueError( "First argument must be either a vocabulary size (int)" diff --git a/pytorch_transformers/modeling_openai.py b/pytorch_transformers/modeling_openai.py index 4a3ff732f6c463..c99df420356e85 100644 --- a/pytorch_transformers/modeling_openai.py +++ b/pytorch_transformers/modeling_openai.py @@ -30,9 +30,8 @@ from torch.nn import CrossEntropyLoss from torch.nn.parameter import Parameter -from .file_utils import cached_path from .modeling_utils import (Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, - PreTrainedModel, prune_conv1d_layer, SequenceSummary) + PreTrainedModel, prune_conv1d_layer, SequenceSummary) from .modeling_bert import BertLayerNorm as LayerNorm logger = logging.getLogger(__name__) @@ -150,9 +149,8 @@ def __init__( predict_special_tokens=True, summary_type='token_ids', summary_use_proj=True, - summary_num_classes=1, summary_activation=None, - summary_dropout=0.1, + summary_first_dropout=0.1, **kwargs ): """Constructs OpenAIGPTConfig. @@ -203,9 +201,8 @@ def __init__( self.predict_special_tokens = predict_special_tokens self.summary_type = summary_type self.summary_use_proj = summary_use_proj - self.summary_num_classes = summary_num_classes self.summary_activation = summary_activation - self.summary_dropout = summary_dropout + self.summary_first_dropout = summary_first_dropout else: raise ValueError( "First argument must be either a vocabulary size (int)" diff --git a/pytorch_transformers/modeling_transfo_xl.py b/pytorch_transformers/modeling_transfo_xl.py index 35a1b635f91276..0c5d127d62d263 100644 --- a/pytorch_transformers/modeling_transfo_xl.py +++ b/pytorch_transformers/modeling_transfo_xl.py @@ -36,7 +36,6 @@ from .modeling_bert import BertLayerNorm as LayerNorm from .modeling_transfo_xl_utilities import ProjectedAdaptiveLogSoftmax, sample_logits -from .file_utils import cached_path from .modeling_utils import CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel logger = logging.getLogger(__name__) diff --git a/pytorch_transformers/modeling_utils.py b/pytorch_transformers/modeling_utils.py index b9be1a3813323d..36b506da3b3a38 100644 --- a/pytorch_transformers/modeling_utils.py +++ b/pytorch_transformers/modeling_utils.py @@ -25,7 +25,7 @@ import torch from torch import nn -from torch.nn import CrossEntropyLoss, MSELoss, functional as F +from torch.nn import CrossEntropyLoss, functional as F from .file_utils import cached_path @@ -514,10 +514,10 @@ class SequenceSummary(nn.Module): - 'token_ids' => supply a Tensor of classification token indices (GPT/GPT-2) - 'attn' => Not implemented now, use multi-head attention summary_use_proj: Add a projection after the vector extraction - summary_num_classes: If > 0: the projection outputs to n classes (otherwise to hidden_size) - summary_activation: - 'tanh' => add a tanh activation to the output - None => no activation + summary_proj_to_labels: If True, the projection outputs to config.num_labels classes (otherwise to hidden_size). Default: False. + summary_activation: 'tanh' => add a tanh activation to the output, Other => no activation. Default + summary_first_dropout: Add a dropout before the projection and activation + summary_last_dropout: Add a dropout after the projection and activation """ def __init__(self, config): super(SequenceSummary, self).__init__() @@ -531,8 +531,8 @@ def __init__(self, config): self.summary = nn.Identity() if hasattr(config, 'summary_use_proj') and config.summary_use_proj: - if hasattr(config, 'summary_num_classes') and config.summary_num_classes > 0: - num_classes = config.summary_num_classes + if hasattr(config, 'summary_proj_to_labels') and config.summary_proj_to_labels and config.num_labels > 0: + num_classes = config.num_labels else: num_classes = config.hidden_size self.summary = nn.Linear(config.hidden_size, num_classes) @@ -541,7 +541,13 @@ def __init__(self, config): if hasattr(config, 'summary_activation') and config.summary_activation == 'tanh': self.activation = nn.Tanh() - self.dropout = nn.Dropout(config.summary_dropout) + self.first_dropout = nn.Identity() + if hasattr(config, 'summary_first_dropout') and config.summary_first_dropout > 0: + self.first_dropout = nn.Dropout(config.summary_first_dropout) + + self.last_dropout = nn.Identity() + if hasattr(config, 'summary_last_dropout') and config.summary_last_dropout > 0: + self.last_dropout = nn.Dropout(config.summary_last_dropout) def forward(self, hidden_states, token_ids=None): """ hidden_states: float Tensor in shape [bsz, seq_len, hidden_size], the hidden-states of the last layer. @@ -567,9 +573,10 @@ def forward(self, hidden_states, token_ids=None): elif self.summary_type == 'attn': raise NotImplementedError + output = self.first_dropout(output) output = self.summary(output) output = self.activation(output) - output = self.dropout(output) + output = self.last_dropout(output) return output diff --git a/pytorch_transformers/modeling_xlm.py b/pytorch_transformers/modeling_xlm.py index c7ea294dbd4195..65db9e71591347 100644 --- a/pytorch_transformers/modeling_xlm.py +++ b/pytorch_transformers/modeling_xlm.py @@ -14,18 +14,14 @@ # limitations under the License. """ PyTorch XLM model. """ -from __future__ import (absolute_import, division, print_function, - unicode_literals) from __future__ import absolute_import, division, print_function, unicode_literals import json import logging import math -import os import sys from io import open -import math import itertools import numpy as np @@ -34,9 +30,8 @@ from torch.nn import functional as F from torch.nn import CrossEntropyLoss, MSELoss -from .file_utils import cached_path -from .modeling_utils import (CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel, - prune_linear_layer, SequenceSummary, SQuADHead) +from .modeling_utils import (PretrainedConfig, PreTrainedModel, + prune_linear_layer, SequenceSummary, SQuADHead) logger = logging.getLogger(__name__) @@ -79,10 +74,11 @@ def __init__(self, finetuning_task=None, num_labels=2, - summary_type='last', + summary_type='first', summary_use_proj=True, - summary_activation='tanh', - summary_dropout=0.1, + summary_activation=None, + summary_proj_to_labels=True, + summary_first_dropout=0.1, start_n_top=5, end_n_top=5, **kwargs): @@ -164,7 +160,8 @@ def __init__(self, self.summary_type = summary_type self.summary_use_proj = summary_use_proj self.summary_activation = summary_activation - self.summary_dropout = summary_dropout + self.summary_proj_to_labels = summary_proj_to_labels + self.summary_first_dropout = summary_first_dropout self.start_n_top = start_n_top self.end_n_top = end_n_top else: diff --git a/pytorch_transformers/modeling_xlnet.py b/pytorch_transformers/modeling_xlnet.py index 628dbe74508637..e0b3fb066164c6 100644 --- a/pytorch_transformers/modeling_xlnet.py +++ b/pytorch_transformers/modeling_xlnet.py @@ -31,9 +31,8 @@ from torch.nn import functional as F from torch.nn import CrossEntropyLoss, MSELoss -from .file_utils import cached_path from .modeling_utils import (CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel, - SequenceSummary, PoolerAnswerClass, PoolerEndLogits, PoolerStartLogits) + SequenceSummary, PoolerAnswerClass, PoolerEndLogits, PoolerStartLogits) logger = logging.getLogger(__name__) @@ -227,7 +226,7 @@ def __init__(self, summary_type='last', summary_use_proj=True, summary_activation='tanh', - summary_dropout=0.1, + summary_last_dropout=0.1, start_n_top=5, end_n_top=5, **kwargs): @@ -314,7 +313,7 @@ def __init__(self, self.summary_type = summary_type self.summary_use_proj = summary_use_proj self.summary_activation = summary_activation - self.summary_dropout = summary_dropout + self.summary_last_dropout = summary_last_dropout self.start_n_top = start_n_top self.end_n_top = end_n_top else: diff --git a/pytorch_transformers/tokenization_bert.py b/pytorch_transformers/tokenization_bert.py index 3e14673f4645c4..1235d6f3cf82bf 100644 --- a/pytorch_transformers/tokenization_bert.py +++ b/pytorch_transformers/tokenization_bert.py @@ -113,8 +113,6 @@ def __init__(self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never raise ValueError( "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained " "model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file)) - if never_split is None: - never_split = self.all_special_tokens self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict( [(ids, tok) for tok, ids in self.vocab.items()]) diff --git a/pytorch_transformers/tokenization_utils.py b/pytorch_transformers/tokenization_utils.py index 60081893c8f67d..a84b8d6f44c037 100644 --- a/pytorch_transformers/tokenization_utils.py +++ b/pytorch_transformers/tokenization_utils.py @@ -142,11 +142,7 @@ def __init__(self, max_len=None, **kwargs): self.added_tokens_decoder = {} for key, value in kwargs.items(): - if key not in self.SPECIAL_TOKENS_ATTRIBUTES: - raise ValueError( - "PreTrainedTokenizer.__init__() argument {} should be in {}".format( - key, ', '.join(self.SPECIAL_TOKENS_ATTRIBUTES))) - else: + if key in self.SPECIAL_TOKENS_ATTRIBUTES: setattr(self, key, value) diff --git a/pytorch_transformers/tokenization_xlm.py b/pytorch_transformers/tokenization_xlm.py index 8a11a84f8c69cc..885145582941fa 100644 --- a/pytorch_transformers/tokenization_xlm.py +++ b/pytorch_transformers/tokenization_xlm.py @@ -20,13 +20,9 @@ import logging import os import re -import sys from io import open -from tqdm import tqdm - -from .file_utils import cached_path -from .tokenization_utils import PreTrainedTokenizer, clean_up_tokenization +from .tokenization_utils import PreTrainedTokenizer from .tokenization_bert import BasicTokenizer logger = logging.getLogger(__name__)