-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathrun_on_medicago.R
executable file
·107 lines (94 loc) · 4.86 KB
/
run_on_medicago.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#!/usr/bin/env Rscript
library(optparse)
invocation <- commandArgs()
usage <- "\
\
Does a local PCA analysis on the Medicago truncatula hapmap data (see medicago_data_setup.html for details). \
To run an analysis on windows of 1000 SNPs, for instance: \
Rscript run_on_medicago.R -t snp -s 1000 \
while to run it on windows of 1000 bps: \
Rscript run_on_medicago.R -t bp -s 1000 \
\
Do
Rscript run_on_medicago.R -h\
for options.\
\
"
option_list <- list(
# input/output
make_option( c("-t","--type"), type="character", help="Window by SNP or by bp?"),
make_option( c("-s","--size"), type="integer", help="Size of the window, in units of type."),
make_option( c("-k","--npc"), type="integer", default=2L, help="Number of principal components to compute for each window. [default: %default]"),
make_option( c("-w","--weightfile"), type="character", help="File name containing weights to apply to PCA."),
make_option( c("-m","--nmds"), type="integer", default=2L, help="Number of principal coordinates (MDS variables) to compute. [default: %default]"),
make_option( c("-o","--outdir"), type="character", help="Directory to save results to. [default: lostruct/results_type_%type_size_%size_jobid_%jobid/]"),
make_option( c("-j","--jobid"), type="character", default=formatC(1e6*runif(1),width=6,format="d",flag="0"), help="Unique job id. [default random]")
)
opt <- parse_args(OptionParser(option_list=option_list,description=usage))
if (is.null(opt$outdir)) { opt$outdir <- file.path("lostruct_results",
sprintf( "type_%s_size_%d_weights_%s_jobid_%s",
opt$type,
opt$size,
if (is.null(opt$weightfile)) { "none" } else { gsub("[.].*","",basename(opt$weightfile)) },
opt$jobid ) ) }
if (is.null(opt$type) || is.null(opt$size)) { stop(usage) }
opt$start.time <- Sys.time()
opt$run.dir <- normalizePath(".")
print(opt) # this will go in the logfile
# weights
if (is.null(opt$weightfile)) {
opt$weights <- 1
} else {
opt$weights <- read.table(opt$weightfile,sep='\t',header=TRUE)$weight
}
dir.create( opt$outdir, showWarnings=FALSE, recursive=TRUE )
cat( jsonlite::toJSON( opt, pretty=TRUE ), file=file.path( opt$outdir, "config.json" ) )
# setup
library(lostruct)
# VCF files
chroms <- paste0("chr",1:8)
bcf.files <- file.path( "data", paste0(chroms,"-filtered-set-2014Apr15.bcf") )
names(bcf.files) <- chroms
all.pcas <- numeric(0) # will be a numeric matrix of eigen values/vectors
all.lengths <- numeric(0) # will be a numeric vector of numbers of windows per chromosome
all.regions <- data.frame() # will be a data.frame of the chromsome, start, stop for each window
# local PCA, by chromosome
for (bcf.file in bcf.files) {
pca.file <- file.path( opt$outdir, sprintf(gsub(".bcf",".pca.csv",basename(bcf.file))) )
regions.file <- file.path( opt$outdir, sprintf(gsub(".bcf",".regions.csv",basename(bcf.file))) )
if (file.exists(pca.file)) {
warning(paste("File",pca.file,"already exists! Not recomputing."))
pca.stuff <- as.matrix( data.table::fread(pca.file,header=TRUE) )
these.regions <- data.table::fread(regions.file,header=TRUE)
} else {
cat("Finding PCs for", bcf.file, "and writing out to", pca.file, "and", regions.file, "\n")
win.fn <- vcf_windower(bcf.file, size=opt$size, type=tolower(opt$type) )
these.regions <- region(win.fn)()
system.time(
pca.stuff <- eigen_windows( win.fn, k=opt$npc, w=opt$weights )
)
write.csv( pca.stuff, file=pca.file, row.names=FALSE )
write.csv( these.regions, file=regions.file, row.names=FALSE )
}
all.pcas <- rbind( all.pcas, pca.stuff )
all.lengths <- c(all.lengths, nrow(pca.stuff))
all.regions <- rbind( all.regions, these.regions )
}
names(all.lengths) <- chroms
rm(pca.stuff)
# distance matrix
cat("Done finding PCs, computing distances.\n")
system.time( pc.distmat <- pc_dist( all.pcas, npc=opt$npc ) )
# MDS on the resulting distance matrix
mds.file <- file.path( opt$outdir, "mds_coords.csv" )
cat("Done computing distances, running MDS and writing results to", mds.file, "\n")
na.inds <- is.na( all.pcas[,1] ) # there may be windows with missing data
mds.coords <- cbind( data.frame(
chrom=rep(chroms,all.lengths),
window=unlist(lapply(all.lengths,seq_len)) ),
cmdscale( pc.distmat[!na.inds,!na.inds], k=opt$nmds )[ ifelse( na.inds, NA, cumsum(!na.inds) ), ]
)
colnames(mds.coords)[-(1:2)] <- paste0("MDS",seq_len(opt$nmds))
write.csv( mds.coords, mds.file, row.names=FALSE )
cat("All done!")
Sys.time()