forked from distsup/DistSup
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
67 lines (54 loc) · 2.03 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# -*- coding: utf8 -*-
# Copyright 2019 JSALT2019 Distant Supervision Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''
Load and apply a pretrained model and run its evalaution function.
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import logging
import time
import torch
from distsup import checkpoints
from distsup import configuration
def get_parser():
parser = checkpoints.get_common_model_loading_argparser()
parser.add_argument("--subset", help="Which subset to use", default="dev")
return parser
def main():
logging.basicConfig(level=logging.INFO)
parser = get_parser()
args = parser.parse_args()
config, model = checkpoints.get_config_and_model_from_argparse_args(args)
dataset = config['Datasets'][args.subset]
def iter_batches(dataset):
tic = 0
for batch_i, batch in enumerate(dataset):
if time.time() - tic > 30:
num_examples = len(next(iter(batch.values())))
print('Processing batch {}/{} ({} elements)'.format(
batch_i, len(dataset), num_examples))
tic = time.time()
if configuration.Globals.cuda:
batch = model.batch_to_device(batch, 'cuda')
yield batch
results = model.evaluate(iter_batches(dataset))
print(results)
if __name__ == "__main__":
sys.stderr.write("%s %s\n" % (os.path.basename(__file__), sys.argv))
with torch.no_grad():
main()