-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
220 lines (179 loc) · 9.15 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<!-- Meta tags for social media banners, these should be filled in appropriatly as they are your "business card" -->
<!-- Replace the content tag with appropriate information -->
<meta name="description" content="DESCRIPTION META TAG">
<link rel="icon" type="image/png" href="static/images/icon.png">
<meta property="og:title" content="SOCIAL MEDIA TITLE TAG"/>
<meta property="og:description" content="SOCIAL MEDIA DESCRIPTION TAG TAG"/>
<meta property="og:url" content="URL OF THE WEBSITE"/>
<!-- Path to banner image, should be in the path listed below. Optimal dimenssions are 1200X630-->
<meta property="og:image" content="static/image/your_banner_image.png" />
<meta property="og:image:width" content="1200"/>
<meta property="og:image:height" content="630"/>
<meta name="twitter:title" content="TWITTER BANNER TITLE META TAG">
<meta name="twitter:description" content="TWITTER BANNER DESCRIPTION META TAG">
<!-- Path to banner image, should be in the path listed below. Optimal dimenssions are 1200X600-->
<meta name="twitter:image" content="static/images/your_twitter_banner_image.png">
<meta name="twitter:card" content="summary_large_image">
<!-- Keywords for your paper to be indexed by-->
<meta name="keywords" content="KEYWORDS SHOULD BE PLACED HERE">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>NeuSSL</title>
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="static/css/bulma.min.css">
<link rel="stylesheet" href="static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="static/css/bulma-slider.min.css">
<link rel="stylesheet" href="static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="static/css/index.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script src="https://documentcloud.adobe.com/view-sdk/main.js"></script>
<script defer src="static/js/fontawesome.all.min.js"></script>
<script src="static/js/bulma-carousel.min.js"></script>
<script src="static/js/bulma-slider.min.js"></script>
<script src="static/js/index.js"></script>
</head>
<body>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">Multi-View Neural Surface Reconstruction with Structured Light</h1>
<div class="is-size-5 publication-authors">
<!-- Paper authors -->
<span class="author-block">
<a href="https://sites.google.com/view/lichunyu/" target="_blank">Chunuy Li</a>,</span>
<span class="author-block">Taisuke Hashimoto,</span>
<span class="author-block">
<a href="https://scholar.google.com/citations?user=o3JW434AAAAJ" target="_blank">Eiichi Matsumoto</a>,
</span>
<span class="author-block">
<a href="https://hiroharu-kato.com/" target="_blank">Hiroharu Kato</a>,
</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block">Preferred Networks Inc. <a href="https://pfn3d.com/" target="_blank">PFN 3D Scan</a> <br>33rd British Machine Vision Conference 2022 (BMVC)</span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- Arxiv PDF link -->
<span class="link-block">
<a href="https://arxiv.org/pdf/2211.11971" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
</span>
<!-- ArXiv abstract Link -->
<span class="link-block">
<a href="https://arxiv.org/abs/2211.11971" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- Teaser video-->
<section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<video poster="" id="tree" autoplay controls muted loop height="100%">
<!-- Your video here -->
<source src="static/videos/banner_video.mp4"
type="video/mp4">
</video>
</div>
</div>
</section>
<!-- End teaser video -->
<!-- Paper abstract -->
<section class="section hero is-light">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
Three-dimensional (3D) object reconstruction based on differentiable rendering (DR) is an active research topic in computer vision. DR-based methods minimize the dif- ference between the rendered and target images by optimizing both the shape and ap- pearance and realizing a high visual reproductivity. However, most approaches perform poorly for textureless objects because of the geometrical ambiguity, which means that multiple shapes can have the same rendered result in such objects. To overcome this problem, we introduce active sensing with structured light (SL) into multi-view 3D object reconstruction based on DR to learn the unknown geometry and appearance of arbitrary scenes and camera poses. More specifically, our framework leverages the correspon- dences between pixels in different views calculated by structured light as an additional constraint in the DR-based optimization of implicit surface, color representations, and camera poses. Because camera poses can be optimized simultaneously, our method re- alizes high reconstruction accuracy in the textureless region and reduces efforts for cam- era pose calibration, which is required for conventional SL-based methods. Experiment results on both synthetic and real data demonstrate that our system outperforms conven- tional DR- and SL-based methods in a high-quality surface reconstruction, particularly for challenging objects with textureless or shiny surfaces.
</p>
</div>
</div>
</div>
</div>
</section>
<!-- End paper abstract -->
<!-- End image carousel -->
<!-- Video carousel -->
<!-- End video carousel -->
<!-- Paper poster -->
<section class="hero is-small is-light">
<div class="hero-body">
<div class="container">
<h2 class="title">Poster</h2>
<iframe src="static/pdfs/poster.pdf" width="100%" height="550">
</iframe>
</div>
</div>
</section>
<!--End paper poster -->
<!-- Paper PDF -->
<section class="hero is-small is-light">
<div class="hero-body">
<div class="container">
<h2 class="title">Paper</h2>
<iframe src="static/pdfs/paper.pdf" width="100%" height="550">
</iframe>
</div>
</div>
</section>
<!--End paper PDF -->
<!--BibTex citation -->
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@inproceedings{li2022multi,
title={Multi-View Neural Surface Reconstruction with Structured Light},
author={Li, Chunyu and Hashimoto, Taisuke and Matsumoto, Eiichi and Kato, Hiroharu},
booktitle={The 33rd British Machine Vision Conference (BMVC)},
year={2022}
}</code></pre>
</div>
</section>
<!--End BibTex citation -->
<!-- <footer class="footer">
<div class="container">
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This page was built using the <a href="https://github.com/eliahuhorwitz/Academic-project-page-template" target="_blank">Academic Project Page Template</a> which was adopted from the <a href="https://nerfies.github.io" target="_blank">Nerfies</a> project page.
You are free to borrow the of this website, we just ask that you link back to this page in the footer. <br> This website is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/" target="_blank">Creative
Commons Attribution-ShareAlike 4.0 International License</a>.
</p>
</div>
</div>
</div>
</div>
</footer> -->
<!-- Statcounter tracking code -->
<!-- You can add a tracker to track page visits by creating an account at statcounter.com -->
<!-- End of Statcounter Code -->
</body>
</html>