-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgen_api_answer.py
179 lines (157 loc) · 6.1 KB
/
gen_api_answer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
"""Generate answers with GPT-4
Usage:
python3 gen_api_answer.py --model gpt-3.5-turbo
"""
import argparse
import concurrent.futures
import json
import os
import time
import shortuuid
import tqdm
from fastchat.llm_judge.common import ANTHROPIC_MODEL_LIST
from fastchat.llm_judge.common import chat_completion_anthropic
from fastchat.llm_judge.common import chat_completion_palm
from fastchat.llm_judge.common import load_questions
from fastchat.llm_judge.common import temperature_config
from fastchat.llm_judge.gen_model_answer import reorg_answer_file
from fastchat.model.model_adapter import get_conversation_template
import utils.common
from utils.api import ANTHROPIC_MODEL_LIST_NEW
from utils.api import anthropic_chat_completion_new
from utils.api import chat_completion_openai
from utils.dedup import drop_questions_already_processed_by_question_id
def get_answer(
question: dict,
model: str,
num_choices: int,
max_tokens: int,
answer_file: str,
disable_strict_injection_check=False,
):
assert (
args.force_temperature is not None and "required_temperature" in question.keys()
) == False
if args.force_temperature is not None:
temperature = args.force_temperature
elif "required_temperature" in question.keys():
temperature = question["required_temperature"]
elif question["category"] in temperature_config:
temperature = temperature_config[question["category"]]
else:
temperature = 0.7
choices = []
chat_state = None # for palm-2 model
for i in range(num_choices):
if model in ANTHROPIC_MODEL_LIST_NEW:
conv = get_conversation_template("claude-2")
else:
conv = get_conversation_template(model)
turns = []
for j in range(len(question["turns"])):
conv.append_message(conv.roles[0], question["turns"][j])
conv.append_message(conv.roles[1], None)
if model in ANTHROPIC_MODEL_LIST_NEW:
output = anthropic_chat_completion_new(
model, conv, temperature, max_tokens
)
elif model in ANTHROPIC_MODEL_LIST:
output = chat_completion_anthropic(model, conv, temperature, max_tokens)
elif model == "palm-2-chat-bison-001":
chat_state, output = chat_completion_palm(
chat_state, model, conv, temperature, max_tokens
)
else:
output = chat_completion_openai(model, conv, temperature, max_tokens)
if output:
stop_list = [conv.sep + conv.roles[0], conv.sep + conv.roles[1]]
for stop_str_original in stop_list:
for stop_str in [stop_str_original, stop_str_original.strip()]:
if output[-len(stop_str) :] == stop_str:
if disable_strict_injection_check:
output = output[: -len(stop_str)]
else:
output = ""
conv.update_last_message(output)
turns.append(output)
choices.append({"index": i, "turns": turns})
# Dump answers
ans = {
"question_id": question["question_id"],
"answer_id": shortuuid.uuid(),
"model_id": model,
"choices": choices,
"tstamp": time.time(),
}
os.makedirs(os.path.dirname(answer_file), exist_ok=True)
with open(answer_file, "a") as fout:
fout.write(json.dumps(ans) + "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--bench-name",
type=str,
default="pfmt_bench_fin_ja",
help="The name of the benchmark question set.",
)
parser.add_argument("--answer-file", type=str, help="The output answer file.")
parser.add_argument("--model", type=str, default="gpt-3.5-turbo")
parser.add_argument(
"--num-choices",
type=int,
default=1,
help="How many completion choices to generate.",
)
parser.add_argument(
"--force-temperature", type=float, help="Forcibly set a sampling temperature."
)
parser.add_argument(
"--max-tokens",
type=int,
default=4096,
help="The maximum number of new generated tokens.",
)
parser.add_argument(
"--question-begin",
type=int,
help="A debug option. The begin index of questions.",
)
parser.add_argument(
"--question-end", type=int, help="A debug option. The end index of questions."
)
parser.add_argument(
"--parallel", type=int, default=1, help="The number of concurrent API calls."
)
parser.add_argument(
"--disable-strict-injection-check",
action="store_true",
help="Disable strict injection check. If it is not set, the model output is ignored if it generate the next convesation inclusing conv template such as ### assistant:.",
)
parser.add_argument("--openai-api-base", type=str, default=None)
args = parser.parse_args()
question_file = f"data/{args.bench_name}/question.jsonl"
questions = load_questions(question_file, args.question_begin, args.question_end)
if args.answer_file:
answer_file = args.answer_file
else:
answer_file = f"data/{args.bench_name}/model_answer/{args.model.replace('/','_')}.jsonl"
print(f"Output to {answer_file}")
questions = drop_questions_already_processed_by_question_id(questions, answer_file)
with concurrent.futures.ThreadPoolExecutor(max_workers=args.parallel) as executor:
futures = []
for question in questions:
future = executor.submit(
get_answer,
question,
args.model,
args.num_choices,
args.max_tokens,
answer_file,
disable_strict_injection_check=args.disable_strict_injection_check,
)
futures.append(future)
for future in tqdm.tqdm(
concurrent.futures.as_completed(futures), total=len(futures)
):
future.result()
reorg_answer_file(answer_file)