-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmake_rader_figure.py
88 lines (78 loc) · 2.83 KB
/
make_rader_figure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import argparse
import glob
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
def make_leaderboard(args):
if args.model_list is None:
input_files = glob.glob(
f"data/{args.bench_name}/model_judgment/{args.judge_model}_single/*.jsonl"
)
else:
input_files = [
f"data/{args.bench_name}/model_judgment/{args.judge_model}_single/{ x.replace('/', '_')}.jsonl"
for x in args.model_list
]
question_file = f"data/{args.bench_name}/question.jsonl"
df_category = pd.read_json(question_file, lines=True)[["question_id", "category"]]
categories = list(df_category["category"].unique())
print(f"Input files: {input_files}")
df_all = pd.concat(
[pd.read_json(input_file, lines=True) for input_file in input_files]
)
df_all = df_all.merge(df_category)
df_all = df_all.drop_duplicates(subset=["model", "question_id", "turn"])
df = df_all[["model", "score", "turn", "category"]]
df = df[df["score"] != -1]
df_results = (
df.groupby(["model", "category"])
.mean()[["score"]]
.reset_index()
.pivot(index="model", columns="category", values="score")
)
df_results["overall"] = df_results.mean(axis=1)
df_results = df_results[["overall", *categories]].sort_values(
by="overall", ascending=False
)
df_results.columns.name = None
for model_name, _group in df.groupby("model"):
if len(_group) != len(df_category) * 2:
print(
f"Warning: {model_name} has {len(_group)} / {len(df_category) * 2} answers"
)
df_results.index = (
df_results.index.str.replace("_", "/", 1)
+ " ("
+ df_results["overall"].map(lambda x: f"{x:.2f}")
+ ")"
)
fig = px.line_polar(
df_results.stack()
.reset_index()
.rename(columns={0: "score", "level_0": "model", "level_1": "category"})
.query("category != 'overall'"),
r="score",
theta="category",
line_close=True,
category_orders={"category": categories},
color="model",
markers=True,
range_r=[0, 10],
color_discrete_sequence=px.colors.qualitative.Pastel,
)
fig.write_html(f"data/{args.bench_name}/task_rader_{args.judge_model}.html")
fig.write_image(f"data/{args.bench_name}/task_rader_{args.judge_model}.png")
fig.show()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--bench-name", type=str, default="pfmt_bench_fin_ja")
parser.add_argument(
"--model-list",
type=str,
nargs="+",
default=None,
help="A list of models to be evaluated",
)
parser.add_argument("--judge-model", type=str, default="gpt-4o-mini")
args = parser.parse_args()
make_leaderboard(args)