forked from NVlabs/Deep_Object_Pose
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference.py
254 lines (212 loc) · 7.78 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#!/usr/bin/env python
import argparse
import cv2
import numpy as np
from PIL import Image
import os
import simplejson as json
import sys
import yaml
sys.path.append("../common/")
from cuboid import Cuboid3d
from cuboid_pnp_solver import CuboidPNPSolver
from detector import ModelData, ObjectDetector
from utils import loadimages_inference, loadweights, Draw
class DopeNode(object):
"""ROS node that listens to image topic, runs DOPE, and publishes DOPE results"""
def __init__(
self,
config, # config yaml loaded eg dict
weight, # path to weight
class_name,
):
self.input_is_rectified = config["input_is_rectified"]
self.downscale_height = config["downscale_height"]
self.config_detect = lambda: None
self.config_detect.mask_edges = 1
self.config_detect.mask_faces = 1
self.config_detect.vertex = 1
self.config_detect.threshold = 0.5
self.config_detect.softmax = 1000
self.config_detect.thresh_angle = config["thresh_angle"]
self.config_detect.thresh_map = config["thresh_map"]
self.config_detect.sigma = config["sigma"]
self.config_detect.thresh_points = config["thresh_points"]
# load network model, create PNP solver
self.model = ModelData(
name=class_name,
net_path=weight,
)
self.model.load_net_model()
print("Model Loaded")
try:
self.draw_color = tuple(config["draw_colors"][class_name])
except:
self.draw_color = (0, 255, 0)
self.dimension = tuple(config["dimensions"][class_name])
self.class_id = config["class_ids"][class_name]
self.pnp_solver = CuboidPNPSolver(
class_name, cuboid3d=Cuboid3d(config["dimensions"][class_name])
)
self.class_name = class_name
print("Ctrl-C to stop")
def image_callback(
self,
img,
camera_info,
img_name, # this is the name of the img file to save, it needs the .png at the end
output_folder, # folder where to put the output
weight,
):
# Update camera matrix and distortion coefficients
if self.input_is_rectified:
P = np.matrix(
camera_info["projection_matrix"]["data"], dtype="float64"
).copy()
P.resize((3, 4))
camera_matrix = P[:, :3]
dist_coeffs = np.zeros((4, 1))
else:
# TODO
camera_matrix = np.matrix(camera_info.K, dtype="float64")
camera_matrix.resize((3, 3))
dist_coeffs = np.matrix(camera_info.D, dtype="float64")
dist_coeffs.resize((len(camera_info.D), 1))
# Downscale image if necessary
height, width, _ = img.shape
scaling_factor = float(self.downscale_height) / height
if scaling_factor < 1.0:
camera_matrix[:2] *= scaling_factor
img = cv2.resize(
img, (int(scaling_factor * width), int(scaling_factor * height))
)
self.pnp_solver.set_camera_intrinsic_matrix(camera_matrix)
self.pnp_solver.set_dist_coeffs(dist_coeffs)
# Copy and draw image
img_copy = img.copy()
im = Image.fromarray(img_copy)
draw = Draw(im)
# dictionary for the final output
dict_out = {"camera_data": {}, "objects": []}
# Detect object
results, _ = ObjectDetector.detect_object_in_image(
self.model.net, self.pnp_solver, img, self.config_detect
)
# Publish pose and overlay cube on image
for _, result in enumerate(results):
if result["location"] is None:
continue
loc = result["location"]
ori = result["quaternion"]
dict_out["objects"].append(
{
"class": self.class_name,
"location": np.array(loc).tolist(),
"quaternion_xyzw": np.array(ori).tolist(),
"projected_cuboid": np.array(result["projected_points"]).tolist(),
}
)
# Draw the cube
if None not in result["projected_points"]:
points2d = []
for pair in result["projected_points"]:
points2d.append(tuple(pair))
draw.draw_cube(points2d, self.draw_color)
# create directory to save image if it does not exist
img_name_base = img_name.split("/")[-1]
output_path = os.path.join(
output_folder,
weight.split("/")[-1].replace(".pth", ""),
*img_name.split("/")[:-1],
)
if not os.path.isdir(output_path):
os.makedirs(output_path, exist_ok=True)
im.save(os.path.join(output_path, img_name_base))
json_path = os.path.join(
output_path, ".".join(img_name_base.split(".")[:-1]) + ".json"
)
# save the json files
with open(json_path, "w") as fp:
json.dump(dict_out, fp, indent=2)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--outf",
default="output",
help="Where to store the output images and inference results.",
)
parser.add_argument(
"--data",
required=True,
help="folder for data images to load.",
)
parser.add_argument(
"--config",
default="../config/config_pose.yaml",
help="Path to inference config file",
)
parser.add_argument(
"--camera",
default="../config/camera_info.yaml",
help="Path to camera info file",
)
parser.add_argument(
"--weights",
"--weight",
"-w",
required=True,
help="Path to weights or folder containing weights. If path is to a folder, then script will run inference with all of the weights in the folder. This could take a while if the set of test images is large.",
)
parser.add_argument(
"--exts",
nargs="+",
type=str,
default=["png"],
help="Extensions for images to use. Can have multiple entries seperated by space. e.g. png jpg",
)
parser.add_argument(
"--object",
required=True,
help="Name of class to run detections on.",
)
opt = parser.parse_args()
# load the configs
with open(opt.config) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
with open(opt.camera) as f:
camera_info = yaml.load(f, Loader=yaml.FullLoader)
os.makedirs(opt.outf, exist_ok=True)
# Load model weights
weights = loadweights(opt.weights)
if len(weights) < 1:
print(
"No weights found at specified directory. Please check --weights flag and try again."
)
exit()
else:
print(f"Found {len(weights)} weights. ")
# Load inference images
imgs, imgsname = loadimages_inference(opt.data, extensions=opt.exts)
if len(imgs) == 0 or len(imgsname) == 0:
print(
"No input images found at specified path and extensions. Please check --data and --exts flags and try again."
)
exit()
for w_i, weight in enumerate(weights):
dope_node = DopeNode(config, weight, opt.object)
for i in range(len(imgs)):
print(
f"({w_i + 1} of {len(weights)}) frame {i + 1} of {len(imgs)}: {imgsname[i]}"
)
img_name = imgsname[i]
frame = cv2.imread(imgs[i])
frame = frame[..., ::-1].copy()
# call the inference node
dope_node.image_callback(
img=frame,
camera_info=camera_info,
img_name=img_name,
output_folder=opt.outf,
weight=weight,
)
print("------")