Skip to content

Latest commit

 

History

History
312 lines (243 loc) · 16.1 KB

README.md

File metadata and controls

312 lines (243 loc) · 16.1 KB

YoloDotNet v2.0

YoloDotNet is a C# .NET 8 implementation of Yolov8 & Yolov10 for real-time detection of objects in images and videos using ML.NET and ONNX runtime, with GPU acceleration using CUDA.

YoloDotNet supports the following:

  ✓   Classification   Categorize an image
  ✓   Object Detection   Detect multiple objects in a single image
  ✓   OBB Detection   OBB (Oriented Bounding Box)
  ✓   Segmentation   Separate detected objects using pixel masks
  ✓   Pose Estimation   Identifying location of specific keypoints in an image

Batteries not included ;)

Classification Object Detection OBB Detection Segmentation Pose Estimation
image from pexels.com image from pexels.com image from pexels.com image from pexels.com image from pexels.com

What's new in YoloDotNet v2.0?

YoloDotNet 2.0 is a Speed Demon release where the main focus has been on supercharging performance to bring you the fastest and most efficient version yet. With major code optimizations, a switch to SkiaSharp for lightning-fast image processing, and added support for Yolov10 as a little extra ;) this release is set to redefine your YoloDotNet experience:

  • Speed Demon Mode: YoloDotNet is now faster than ever!
  • Code Overhaul: Tinkered and tweaked under the hood for blazing-fast execution.
  • Swapped Image Libraries: Out with ImageSharp, in with SkiaSharp. The result? Crazy fast image processing!
  • Memory Efficiency: Brutally more memory efficient, making the most of your system's resources.
  • Optimized GC Performance Greatly reduced GC pressure resulting in a sweet performance boost (thanks to louislewis2).
  • Benchmarking Benchmarking project added for testing and evaluating performance (thanks to louislewis2).
  • Yolov10 Support: Now featuring support for Yolov10 object detection. Because why not have the latest and greatest? ;)

Performance Analysis

[!NOTE] YoloDotNet v2.0 Performance Analysis

Processor: Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz
Ram: 16GB
Graphics: NVIDIA GeForce RTX 3060 12GB
OS: Windows 10

Performance was tested using the Yolov8s models in onnx format and test-images provided in the YoloDotNet project.

Task v1.7 Mean (ms) v2.0 Mean (ms) Improvement (ms) Improvement (%)
ClassificationCpu 12.730 5.734 6.996 54.95%
ClassificationGpu 7.708 2.255 5.453 70.73%
ObjectDetectionCpu 147.487 113.954 33.533 22.74%
ObjectDetectionGpu 39.935 13.751 26.184 65.56%
SegmentationCpu 623.313 178.411 444.902 71.37%
SegmentationGpu 477.539 37.857 439.682 92.07%
PoseEstimationCpu 140.823 116.557 24.266 17.23%
PoseEstimationGpu 31.588 12.582 19.006 60.16%
ObbDetectionCpu 401.694 346.193 55.501 13.82%
ObbDetectionGpu 71.935 27.591 44.344 61.62%

Nuget

> dotnet add package YoloDotNet

Install CUDA (optional)

YoloDotNet with GPU-acceleration requires CUDA and cuDNN.

ℹ️ Before installing CUDA and cuDNN, make sure to verify the ONNX runtime's current compatibility with specific versions.

Export Yolov8 model to ONNX

All models must be Yolov8-models exported to ONNX format. How to export to ONNX format.

Verify your model

using YoloDotNet;

// Instantiate a new Yolo object with your ONNX-model
using var yolo = new Yolo(@"path\to\model.onnx");

Console.WriteLine(yolo.OnnxModel.ModelType); // Output modeltype...

Example - Image inference

using YoloDotNet;
using YoloDotNet.Enums;
using YoloDotNet.Models;
using YoloDotNet.Extensions;
using SkiaSharp;

// Instantiate a new Yolo object
using var yolo = new Yolo(new YoloOptions
{
    OnnxModel = @"path\to\model.onnx",      // Your Yolov8 or Yolov10 model in onnx format
    ModelType = ModelType.ObjectDetection,  // Model type
    Cuda = false,                           // Use CPU or CUDA for GPU accelerated inference. Default = true
    GpuId = 0                               // Select Gpu by id. Default = 0
    PrimeGpu = false,                       // Pre-allocate GPU before first. Default = false
});

// Load image
using var image = SKImage.FromEncodedData(@"path\to\image.jpg");

// Run inference and get the results
var results = yolo.RunObjectDetection(image, confidence: 0.25, iou: 0.7);

// Draw results
using var resultsImage = image.Draw(results);

// Save to file
resultsImage.Save(@"save\as\new_image.jpg", SKEncodedImageFormat.Jpeg, 80);

Example - Video inference

Important

Processing video requires FFmpeg and FFProbe

  • Download FFMPEG
  • Add FFmpeg and ffprobe to the Path-variable in your Environment Variables
using YoloDotNet;
using YoloDotNet.Enums;
using YoloDotNet.Models;

// Instantiate a new Yolo object
using var yolo = new Yolo(new YoloOptions
{
    OnnxModel = @"path\to\model.onnx",      // Your Yolov8 or Yolov10 model in onnx format
    ModelType = ModelType.ObjectDetection,  // Model type
    Cuda = false,                           // Use CPU or CUDA for GPU accelerated inference. Default = true
    GpuId = 0                               // Select Gpu by id. Default = 0
    PrimeGpu = false,                       // Pre-allocate GPU before first. Default = false
});

// Set video options
var options = new VideoOptions
{
    VideoFile = @"path\to\video.mp4",
    OutputDir = @"path\to\output\dir",
    //GenerateVideo = true,
    //DrawLabels = true,
    //FPS = 30,
    //Width = 640,  // Resize video...
    //Height = -2,  // -2 automatically calculate dimensions to keep proportions
    //Quality = 28,
    //DrawConfidence = true,
    //KeepAudio = true,
    //KeepFrames = false,
    //DrawSegment = DrawSegment.Default,
    //PoseOptions = MyPoseMarkerConfiguration // Your own pose marker configuration...
};

// Run inference on video
var results = yolo.RunObjectDetection(options, 0.25, 0.7);

// Do further processing with 'results'...

Custom KeyPoint configuration for Pose Estimation

Example on how to configure Keypoints for a Pose Estimation model

// Pass in a KeyPoint options parameter to the Draw() extension method. Ex:
image.Draw(poseEstimationResults, poseOptions);

Access ONNX metadata and labels

The internal ONNX metadata such as input & output parameters, version, author, description, date along with the labels can be accessed via the yolo.OnnxModel property.

Example:

using var yolo = new Yolo(@"path\to\model.onnx");

// ONNX metadata and labels resides inside yolo.OnnxModel
Console.WriteLine(yolo.OnnxModel);

Example:

// Instantiate a new object
using var yolo = new Yolo(@"path\to\model.onnx");

// Display metadata
foreach (var property in yolo.OnnxModel.GetType().GetProperties())
{
    var value = property.GetValue(yolo.OnnxModel);
    Console.WriteLine($"{property.Name,-20}{value!}");

    if (property.Name == nameof(yolo.OnnxModel.CustomMetaData))
        foreach (var data in (Dictionary<string, string>)value!)
            Console.WriteLine($"{"",-20}{data.Key,-20}{data.Value}");
}

// Get ONNX labels
var labels = yolo.OnnxModel.Labels;

Console.WriteLine();
Console.WriteLine($"Labels ({labels.Length}):");
Console.WriteLine(new string('-', 58));

// Display
for (var i = 0; i < labels.Length; i++)
    Console.WriteLine($"index: {i,-8} label: {labels[i].Name,20} color: {labels[i].Color}");

// Output:

// ModelType           ObjectDetection
// InputName           images
// OutputName          output0
// CustomMetaData      System.Collections.Generic.Dictionary`2[System.String,System.String]
//                     date                2023-11-07T13:33:33.565196
//                     description         Ultralytics YOLOv8n model trained on coco.yaml
//                     author              Ultralytics
//                     task                detect
//                     license             AGPL-3.0 https://ultralytics.com/license
//                     version             8.0.202
//                     stride              32
//                     batch               1
//                     imgsz               [640, 640]
//                     names               {0: 'person', 1: 'bicycle', 2: 'car' ... }
// ImageSize           Size [ Width=640, Height=640 ]
// Input               Input { BatchSize = 1, Channels = 3, Width = 640, Height = 640 }
// Output              ObjectDetectionShape { BatchSize = 1, Elements = 84, Channels = 8400 }
// Labels              YoloDotNet.Models.LabelModel[]
//
// Labels (80):
// ---------------------------------------------------------
// index: 0        label: person              color: #5d8aa8
// index: 1        label: bicycle             color: #f0f8ff
// index: 2        label: car                 color: #e32636
// index: 3        label: motorcycle          color: #efdecd
// ...

Donate

https://paypal.me/nickswardh

References & Acknowledgements

https://github.com/ultralytics/ultralytics

https://github.com/sstainba/Yolov8.Net

https://github.com/mentalstack/yolov5-net

Benchmarks

There are some benchmarks included in the project. To run them, you simply need to build the project and run the YoloDotNet.Benchmarks project. The solution must be set to Release mode to run the benchmarks.

There is a if DEBUG section in the benchmark project that will run the benchmarks in Debug mode, but it is not recommended as it will not give accurate results. This is however useful to debug and step through the code. Two examples have been left in place to show how to run the benchmarks in Debug mode, but have been commented out.

Because there is no persistant storage for benchmark results, the results below are in the form of starting point and ending point. If one makes changes to the benchmarks, you would move the ending point to the starting point and run the benchmarks again to see the improvements and those values would be the new ending point.

Benchmark results would be very much based on the hardware used. It is important to try run benchmarks on the same hardware for future comparisons. If different hardware is used, it is important to note the hardware used, as the results would be different, thus the starting point and ending point would need to be updated. Hopefully in future a single hardware configuration can be used for benchmarks, before updating documentation.

Simple Benchmarks

Simple benchmarks were modeled around the test project. The test project uses the same images and models as the benchmarks. The benchmarks are run on the same images and models as the test project. These benchmarks provide a good starting point to identify bottlenecks and areas for improvement.

The hardware these benchmarks used are detailed below, the graphics card used was a NVIDIA GeForce RTX 3060 12GB.

* Summary *

BenchmarkDotNet v0.13.12, Windows 10 (10.0.19045.4529/22H2/2022Update)
Intel Core i7-7700K CPU 4.20GHz (Kaby Lake), 1 CPU, 8 logical and 4 physical cores
.NET SDK 8.0.302
[Host] : .NET 8.0.6 (8.0.624.26715), X64 RyuJIT AVX2
DefaultJob : .NET 8.0.6 (8.0.624.26715), X64 RyuJIT AVX2

Starting Point, YoloDotNet v7.1

Method Mean Error StdDev Gen0 Gen1 Gen2 Allocated
ClassificationCpu 12.730 ms 0.2525 ms 0.2593 ms 1546.8750 125.0000 93.7500 6.4 MB
ClassificationGpu 7.708 ms 0.1509 ms 0.2796 ms 1546.8750 125.0000 93.7500 6.4 MB
ObjectDetectionCpu 147.487 ms 2.6940 ms 2.6459 ms 18666.6667 333.3333 333.3333 77.97 MB
ObjectDetectionGpu 39.935 ms 0.2201 ms 0.2059 ms 18846.1538 538.4615 461.5385 77.97 MB
SegmentationCpu 623.313 ms 12.0823 ms 13.4294 ms 187000.0000 7000.0000 1000.0000 763.48 MB
SegmentationGpu 477.539 ms 8.7532 ms 9.3658 ms 188000.0000 3000.0000 - 763.41 MB
PoseEstimationCpu 140.823 ms 2.6669 ms 2.4946 ms 12333.3333 333.3333 333.3333 53.26 MB
PoseEstimationGpu 31.588 ms 0.2031 ms 0.1900 ms 12812.5000 718.7500 625.0000 53.26 MB
ObbDetectionCpu 401.694 ms 6.6027 ms 9.4694 ms 35000.0000 1000.0000 1000.0000 147.65 MB
ObbDetectionGpu 71.935 ms 0.5656 ms 0.5291 ms 34428.5714 571.4286 428.5714 147.64 MB

Ending Point, YoloDotNet v2.0

Method Mean Error StdDev Gen0 Gen1 Gen2 Allocated
ClassificationCpu 5.734 ms 0.1100 ms 0.0859 ms 7.8125 - - 59.98 KB
ClassificationGpu 2.255 ms 0.0054 ms 0.0059 ms 11.7188 - - 59.98 KB
ObjectDetectionCpu 113.954 ms 1.3054 ms 1.0901 ms - - - 67.5 KB
ObjectDetectionGpu 13.751 ms 0.2164 ms 0.1918 ms 15.6250 - - 67.37 KB
SegmentationCpu 178.411 ms 2.7077 ms 2.5328 ms 1000.0000 333.3333 - 7453.61 KB
SegmentationGpu 37.857 ms 0.7501 ms 0.9212 ms 1214.2857 714.2857 214.2857 7418.45 KB
PoseEstimationCpu 116.557 ms 0.9387 ms 1.1528 ms - - - 39.71 KB
PoseEstimationGpu 12.582 ms 0.1421 ms 0.1187 ms - - - 39.57 KB
ObbDetectionCpu 346.193 ms 4.7002 ms 4.3965 ms - - - 16.48 KB
ObbDetectionGpu 27.591 ms 0.2080 ms 0.1844 ms - - - 15.78 KB