forked from Yuliang-Liu/Monkey
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblip2.py
59 lines (58 loc) · 2.45 KB
/
blip2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
from PIL import Image
from lavis.models import load_model_and_preprocess
from argparse import ArgumentParser
import os
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
import torchvision.utils as vutils
import json
def save_json(json_list,save_path):
with open(save_path, 'w') as file:
json.dump(json_list, file, indent=4)
def get_image_files(folder_path):
image_files = []
for root, dirs, files in os.walk(folder_path):
for file in files:
if file.endswith('.jpg') or file.endswith('.png'):
image_files.append(os.path.join(root, file))
return image_files
def _get_args():
parser = ArgumentParser()
parser.add_argument("--image_folder", type=str, default="./images")
parser.add_argument("--output_path", type=str, default="./outputs/blip2_cap.json")
parser.add_argument("--batch_size", type=int, default=2)
parser.add_argument("--device", type=str, default="cuda:0")
args = parser.parse_args()
return args
class lazydataset(Dataset):
def __init__(self, data_path, processor) -> None:
super(lazydataset).__init__()
self.image_paths = get_image_files(data_path)
self.processor = processor
def __len__(self):
return len(self.image_paths)
def __getitem__(self, i):
image_path = self.image_paths[i]
raw_image = Image.open(image_path).convert('RGB')
image = self.processor["eval"](raw_image)
return {'image':image, 'img_id': image_path.split('/')[-1]}
def collate_fn(batch):
image = [item['image'].squeeze(0) for item in batch]
image = torch.stack(image)
img_id = [item['img_id'] for item in batch]
return {'image':image, 'img_id':img_id}
if __name__=="__main__":
json_save = []
args = _get_args()
device = args.device
model, vis_processors, _ = load_model_and_preprocess(name="blip2_opt", model_type="pretrain_opt2.7b", is_eval=True, device=device)
dataset = lazydataset(data_path=args.image_folder, processor = vis_processors)
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=0, collate_fn=collate_fn)
for batch in tqdm(dataloader):
image = batch['image'].to(device)
captions = model.generate({"image": image})
img_id = batch['img_id']
for i in range(len(img_id)):
json_save.append({'img_id':img_id[i],'blip2_caption':captions[i]})
save_json(json_save, args.output_path)