-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsha1cdblock_generic.go
268 lines (227 loc) · 7.24 KB
/
sha1cdblock_generic.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Originally from: https://github.com/go/blob/master/src/crypto/sha1/sha1block.go
// It has been modified to support collision detection.
package sha1cd
import (
"fmt"
"math/bits"
shared "github.com/pjbgf/sha1cd/internal"
"github.com/pjbgf/sha1cd/ubc"
)
// blockGeneric is a portable, pure Go version of the SHA-1 block step.
// It's used by sha1block_generic.go and tests.
func blockGeneric(dig *digest, p []byte) {
var w [16]uint32
// cs stores the pre-step compression state for only the steps required for the
// collision detection, which are 0, 58 and 65.
// Refer to ubc/const.go for more details.
cs := [shared.PreStepState][shared.WordBuffers]uint32{}
h0, h1, h2, h3, h4 := dig.h[0], dig.h[1], dig.h[2], dig.h[3], dig.h[4]
for len(p) >= shared.Chunk {
m1 := [shared.Rounds]uint32{}
hi := 1
// Collision attacks are thwarted by hashing a detected near-collision block 3 times.
// Think of it as extending SHA-1 from 80-steps to 240-steps for such blocks:
// The best collision attacks against SHA-1 have complexity about 2^60,
// thus for 240-steps an immediate lower-bound for the best cryptanalytic attacks would be 2^180.
// An attacker would be better off using a generic birthday search of complexity 2^80.
rehash:
a, b, c, d, e := h0, h1, h2, h3, h4
// Each of the four 20-iteration rounds
// differs only in the computation of f and
// the choice of K (K0, K1, etc).
i := 0
// Store pre-step compression state for the collision detection.
cs[0] = [shared.WordBuffers]uint32{a, b, c, d, e}
for ; i < 16; i++ {
// load step
j := i * 4
w[i] = uint32(p[j])<<24 | uint32(p[j+1])<<16 | uint32(p[j+2])<<8 | uint32(p[j+3])
f := b&c | (^b)&d
t := bits.RotateLeft32(a, 5) + f + e + w[i&0xf] + shared.K0
a, b, c, d, e = t, a, bits.RotateLeft32(b, 30), c, d
// Store compression state for the collision detection.
m1[i] = w[i&0xf]
}
for ; i < 20; i++ {
tmp := w[(i-3)&0xf] ^ w[(i-8)&0xf] ^ w[(i-14)&0xf] ^ w[(i)&0xf]
w[i&0xf] = tmp<<1 | tmp>>(32-1)
f := b&c | (^b)&d
t := bits.RotateLeft32(a, 5) + f + e + w[i&0xf] + shared.K0
a, b, c, d, e = t, a, bits.RotateLeft32(b, 30), c, d
// Store compression state for the collision detection.
m1[i] = w[i&0xf]
}
for ; i < 40; i++ {
tmp := w[(i-3)&0xf] ^ w[(i-8)&0xf] ^ w[(i-14)&0xf] ^ w[(i)&0xf]
w[i&0xf] = tmp<<1 | tmp>>(32-1)
f := b ^ c ^ d
t := bits.RotateLeft32(a, 5) + f + e + w[i&0xf] + shared.K1
a, b, c, d, e = t, a, bits.RotateLeft32(b, 30), c, d
// Store compression state for the collision detection.
m1[i] = w[i&0xf]
}
for ; i < 60; i++ {
if i == 58 {
// Store pre-step compression state for the collision detection.
cs[1] = [shared.WordBuffers]uint32{a, b, c, d, e}
}
tmp := w[(i-3)&0xf] ^ w[(i-8)&0xf] ^ w[(i-14)&0xf] ^ w[(i)&0xf]
w[i&0xf] = tmp<<1 | tmp>>(32-1)
f := ((b | c) & d) | (b & c)
t := bits.RotateLeft32(a, 5) + f + e + w[i&0xf] + shared.K2
a, b, c, d, e = t, a, bits.RotateLeft32(b, 30), c, d
// Store compression state for the collision detection.
m1[i] = w[i&0xf]
}
for ; i < 80; i++ {
if i == 65 {
// Store pre-step compression state for the collision detection.
cs[2] = [shared.WordBuffers]uint32{a, b, c, d, e}
}
tmp := w[(i-3)&0xf] ^ w[(i-8)&0xf] ^ w[(i-14)&0xf] ^ w[(i)&0xf]
w[i&0xf] = tmp<<1 | tmp>>(32-1)
f := b ^ c ^ d
t := bits.RotateLeft32(a, 5) + f + e + w[i&0xf] + shared.K3
a, b, c, d, e = t, a, bits.RotateLeft32(b, 30), c, d
// Store compression state for the collision detection.
m1[i] = w[i&0xf]
}
h0 += a
h1 += b
h2 += c
h3 += d
h4 += e
if hi == 2 {
hi++
goto rehash
}
if hi == 1 {
col := checkCollision(m1, cs, [shared.WordBuffers]uint32{h0, h1, h2, h3, h4})
if col {
dig.col = true
hi++
goto rehash
}
}
p = p[shared.Chunk:]
}
dig.h[0], dig.h[1], dig.h[2], dig.h[3], dig.h[4] = h0, h1, h2, h3, h4
}
func checkCollision(
m1 [shared.Rounds]uint32,
cs [shared.PreStepState][shared.WordBuffers]uint32,
state [shared.WordBuffers]uint32) bool {
if mask := ubc.CalculateDvMask(m1); mask != 0 {
dvs := ubc.SHA1_dvs()
for i := 0; dvs[i].DvType != 0; i++ {
if (mask & ((uint32)(1) << uint32(dvs[i].MaskB))) != 0 {
var csState [shared.WordBuffers]uint32
switch dvs[i].TestT {
case 58:
csState = cs[1]
case 65:
csState = cs[2]
case 0:
csState = cs[0]
default:
panic(fmt.Sprintf("dvs data is trying to use a testT that isn't available: %d", dvs[i].TestT))
}
col := hasCollided(
dvs[i].TestT, // testT is the step number
// m2 is a secondary message created XORing with
// ubc's DM prior to the SHA recompression step.
m1, dvs[i].Dm,
csState,
state)
if col {
return true
}
}
}
}
return false
}
func hasCollided(step uint32, m1, dm [shared.Rounds]uint32,
state [shared.WordBuffers]uint32, h [shared.WordBuffers]uint32) bool {
// Intermediary Hash Value.
ihv := [shared.WordBuffers]uint32{}
a, b, c, d, e := state[0], state[1], state[2], state[3], state[4]
// Walk backwards from current step to undo previous compression.
// The existing collision detection does not have dvs higher than 65,
// start value of i accordingly.
for i := uint32(64); i >= 60; i-- {
a, b, c, d, e = b, c, d, e, a
if step > i {
b = bits.RotateLeft32(b, -30)
f := b ^ c ^ d
e -= bits.RotateLeft32(a, 5) + f + shared.K3 + (m1[i] ^ dm[i]) // m2 = m1 ^ dm.
}
}
for i := uint32(59); i >= 40; i-- {
a, b, c, d, e = b, c, d, e, a
if step > i {
b = bits.RotateLeft32(b, -30)
f := ((b | c) & d) | (b & c)
e -= bits.RotateLeft32(a, 5) + f + shared.K2 + (m1[i] ^ dm[i])
}
}
for i := uint32(39); i >= 20; i-- {
a, b, c, d, e = b, c, d, e, a
if step > i {
b = bits.RotateLeft32(b, -30)
f := b ^ c ^ d
e -= bits.RotateLeft32(a, 5) + f + shared.K1 + (m1[i] ^ dm[i])
}
}
for i := uint32(20); i > 0; i-- {
j := i - 1
a, b, c, d, e = b, c, d, e, a
if step > j {
b = bits.RotateLeft32(b, -30) // undo the rotate left
f := b&c | (^b)&d
// subtract from e
e -= bits.RotateLeft32(a, 5) + f + shared.K0 + (m1[j] ^ dm[j])
}
}
ihv[0] = a
ihv[1] = b
ihv[2] = c
ihv[3] = d
ihv[4] = e
a = state[0]
b = state[1]
c = state[2]
d = state[3]
e = state[4]
// Recompress blocks based on the current step.
// The existing collision detection does not have dvs below 58, so they have been removed
// from the source code. If new dvs are added which target rounds below 40, that logic
// will need to be readded here.
for i := uint32(40); i < 60; i++ {
if step <= i {
f := ((b | c) & d) | (b & c)
t := bits.RotateLeft32(a, 5) + f + e + shared.K2 + (m1[i] ^ dm[i])
a, b, c, d, e = t, a, bits.RotateLeft32(b, 30), c, d
}
}
for i := uint32(60); i < 80; i++ {
if step <= i {
f := b ^ c ^ d
t := bits.RotateLeft32(a, 5) + f + e + shared.K3 + (m1[i] ^ dm[i])
a, b, c, d, e = t, a, bits.RotateLeft32(b, 30), c, d
}
}
ihv[0] += a
ihv[1] += b
ihv[2] += c
ihv[3] += d
ihv[4] += e
if ((ihv[0] ^ h[0]) | (ihv[1] ^ h[1]) |
(ihv[2] ^ h[2]) | (ihv[3] ^ h[3]) | (ihv[4] ^ h[4])) == 0 {
return true
}
return false
}