-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmotion_model_odometry.m
146 lines (127 loc) · 4.9 KB
/
motion_model_odometry.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
function p = motion_model_odometry( xt, ut, xt_d1, params )
%MOTION_MODEL Motion Model using Odometry for p(xt | ut, xt_d1)
% Probabilistic Robotics, Thrun et al., p 134
% inputs:
% xt = (x_prime y_prime theta_prime): hypothesized successor pose
% ut = (xbart_d1 xbart): motion information based on odometry
% xt_d1 = (x y theta): initial robot pose
% params = (a1 a2 a3 a4): noise parameters
% output:
% p: the probability of being at the hypothesized pose xt
%
% Information about ut = (xbart_d1 xbart):
% this is a relative advance from xbart_d1 to xbart. Basically a
% difference. (p. 133)
% xbart_d1 = (xbar ybar thetabar)
% xbart = (xbar_prime ybar_prime thetabar_prime)
%
% Information about params = (a1 a2 a3 a4):
% "robot-specific paramerters that specify the noise in robot motion"
% (p. 135 or p. 139). See Figure 5.8 in book for visualization of
% different params.
% -- Unpack values ---------------
% hypothesized pose (xt)
x_prime = xt(1);
y_prime = xt(2);
theta_prime = xt(3);
% odometry motion information (ut)
xbar = ut(1);
ybar = ut(2);
thetabar = ut(3);
xbar_prime = ut(4);
ybar_prime = ut(5);
thetabar_prime = ut(6);
% initial pose (xt_d1)
x = xt_d1(1);
y = xt_d1(2);
theta = xt_d1(3);
% noise params
a1 = params(1);
a2 = params(2);
a3 = params(3);
a4 = params(4);
% --------------------------------
% Convert degrees to radians
theta_prime = deg2rad(theta_prime);
thetabar = deg2rad(thetabar);
thetabar_prime = deg2rad(thetabar_prime);
theta = deg2rad(theta);
% Calculate the relative motion based on what our odometry told us
delta_rot1 = atan2(ybar_prime - ybar, xbar_prime - xbar);
delta_trans = sqrt((xbar - xbar_prime)^2 + (ybar - ybar_prime)^2);
delta_rot2 = thetabar_prime - thetabar - delta_rot1;
% Calculate what the relative motion would be if we were to end up at
% the hypothesized successor pose, xt
deltahat_rot1 = atan2(y_prime - y, x_prime - x);
deltahat_trans = sqrt((x - x_prime)^2 + (y - y_prime)^2);
deltahat_rot2 = theta_prime - theta - deltahat_rot1;
% Use the rotational and translational deltas to sample a PDF and get
% the correct posterior probability. This computes p(xt | ut, xt_d1).
% prob(a, b^2) is defined on p. 135, 122. It is a zero-mean gaussian
% with variance b^2, evaluated at a.
a = constrain(delta_rot1 - deltahat_rot1);
check(a);
bb = a1*(deltahat_rot1)^2 + a2*(deltahat_trans)^2;
p1 = prob(a, bb);
a = delta_trans - deltahat_trans;
bb = a3*(deltahat_trans)^2 + ...
a4*(deltahat_rot1)^2 + a4*(deltahat_rot2)^2;
p2 = prob(a, bb);
a = constrain(delta_rot2 - deltahat_rot2);
check(a);
bb = a1*(deltahat_rot2)^2 + a2*(deltahat_trans)^2;
p3 = prob(a, bb);
p = p1*p2*p3;
if isnan(p)
% Because of the architecture of this MATLAB script, if we get a
% NaN it is because we are hypothesizing that the robot is in the
% same place as when it started.
% We could say that this probability will be zero because in this
% setup, `grid_localization` is only run after a robot movement,
% but to be a little more robust, we give it a 1% chance of not
% moving even if there was a command. There has to be a better way
p = .01;
% The probability that I end up in the same spot as I started when
% the commanded ut is non-zero is low.
% the probability that I end up in the same spot as I started when
% the commanded ut is zero is high
dut = ut(4:6) - ut(1:3);
if any(dut)
% commanded ut was non-zero
p = 0.01;
else
p = 0.99;
end
end;
end
function p = prob(a, bb)
% It would probably be more efficient to redo the math (p. 137) & pass
% in only the std dev, b instead of the variance bb... but I didn't :)
% zero-mean, Gaussian distribution with variance bb
p = normpdf(a, 0, sqrt(bb));
end
function angle = constrain(angle)
%CONSTRAIN make the angle be between [-pi, pi].
% See Probabilistic Robotics, p. 135:
% "the implementer must observe that all angular differences must lie in
% [-pi, pi]."
%
% Code taken from: http://stackoverflow.com/a/2323034/2392520
% Note that MATLAB's (and Python's) mod() function automatically makes
% the angle positive, therefore, we comment this line out here.
%
% `angle` is expected in radians
% reduce the angle
angle = mod(angle, 2*pi);
% force it to be the positive remainder, so that 0 <= angle < 360
%angle = mod((angle + 2*pi), 2*pi);
if (angle > pi)
angle = angle - 2*pi;
end;
end
function check(a)
if (abs(a) > pi)
disp(a);
error('outside of pi');
end
end