forked from fundamentalvision/BEVFormer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisual.py
477 lines (415 loc) · 21.8 KB
/
visual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
# Based on https://github.com/nutonomy/nuscenes-devkit
# ---------------------------------------------
# Modified by Zhiqi Li
# ---------------------------------------------
import mmcv
from nuscenes.nuscenes import NuScenes
from PIL import Image
from nuscenes.utils.geometry_utils import view_points, box_in_image, BoxVisibility, transform_matrix
from typing import Tuple, List, Iterable
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from matplotlib import rcParams
from matplotlib.axes import Axes
from pyquaternion import Quaternion
from PIL import Image
from matplotlib import rcParams
from matplotlib.axes import Axes
from pyquaternion import Quaternion
from tqdm import tqdm
from nuscenes.utils.data_classes import LidarPointCloud, RadarPointCloud, Box
from nuscenes.utils.geometry_utils import view_points, box_in_image, BoxVisibility, transform_matrix
from nuscenes.eval.common.data_classes import EvalBoxes, EvalBox
from nuscenes.eval.detection.data_classes import DetectionBox
from nuscenes.eval.detection.utils import category_to_detection_name
from nuscenes.eval.detection.render import visualize_sample
cams = ['CAM_FRONT',
'CAM_FRONT_RIGHT',
'CAM_BACK_RIGHT',
'CAM_BACK',
'CAM_BACK_LEFT',
'CAM_FRONT_LEFT']
import numpy as np
import matplotlib.pyplot as plt
from nuscenes.utils.data_classes import LidarPointCloud, RadarPointCloud, Box
from PIL import Image
from matplotlib import rcParams
def render_annotation(
anntoken: str,
margin: float = 10,
view: np.ndarray = np.eye(4),
box_vis_level: BoxVisibility = BoxVisibility.ANY,
out_path: str = 'render.png',
extra_info: bool = False) -> None:
"""
Render selected annotation.
:param anntoken: Sample_annotation token.
:param margin: How many meters in each direction to include in LIDAR view.
:param view: LIDAR view point.
:param box_vis_level: If sample_data is an image, this sets required visibility for boxes.
:param out_path: Optional path to save the rendered figure to disk.
:param extra_info: Whether to render extra information below camera view.
"""
ann_record = nusc.get('sample_annotation', anntoken)
sample_record = nusc.get('sample', ann_record['sample_token'])
assert 'LIDAR_TOP' in sample_record['data'].keys(), 'Error: No LIDAR_TOP in data, unable to render.'
# Figure out which camera the object is fully visible in (this may return nothing).
boxes, cam = [], []
cams = [key for key in sample_record['data'].keys() if 'CAM' in key]
all_bboxes = []
select_cams = []
for cam in cams:
_, boxes, _ = nusc.get_sample_data(sample_record['data'][cam], box_vis_level=box_vis_level,
selected_anntokens=[anntoken])
if len(boxes) > 0:
all_bboxes.append(boxes)
select_cams.append(cam)
# We found an image that matches. Let's abort.
# assert len(boxes) > 0, 'Error: Could not find image where annotation is visible. ' \
# 'Try using e.g. BoxVisibility.ANY.'
# assert len(boxes) < 2, 'Error: Found multiple annotations. Something is wrong!'
num_cam = len(all_bboxes)
fig, axes = plt.subplots(1, num_cam + 1, figsize=(18, 9))
select_cams = [sample_record['data'][cam] for cam in select_cams]
print('bbox in cams:', select_cams)
# Plot LIDAR view.
lidar = sample_record['data']['LIDAR_TOP']
data_path, boxes, camera_intrinsic = nusc.get_sample_data(lidar, selected_anntokens=[anntoken])
LidarPointCloud.from_file(data_path).render_height(axes[0], view=view)
for box in boxes:
c = np.array(get_color(box.name)) / 255.0
box.render(axes[0], view=view, colors=(c, c, c))
corners = view_points(boxes[0].corners(), view, False)[:2, :]
axes[0].set_xlim([np.min(corners[0, :]) - margin, np.max(corners[0, :]) + margin])
axes[0].set_ylim([np.min(corners[1, :]) - margin, np.max(corners[1, :]) + margin])
axes[0].axis('off')
axes[0].set_aspect('equal')
# Plot CAMERA view.
for i in range(1, num_cam + 1):
cam = select_cams[i - 1]
data_path, boxes, camera_intrinsic = nusc.get_sample_data(cam, selected_anntokens=[anntoken])
im = Image.open(data_path)
axes[i].imshow(im)
axes[i].set_title(nusc.get('sample_data', cam)['channel'])
axes[i].axis('off')
axes[i].set_aspect('equal')
for box in boxes:
c = np.array(get_color(box.name)) / 255.0
box.render(axes[i], view=camera_intrinsic, normalize=True, colors=(c, c, c))
# Print extra information about the annotation below the camera view.
axes[i].set_xlim(0, im.size[0])
axes[i].set_ylim(im.size[1], 0)
if extra_info:
rcParams['font.family'] = 'monospace'
w, l, h = ann_record['size']
category = ann_record['category_name']
lidar_points = ann_record['num_lidar_pts']
radar_points = ann_record['num_radar_pts']
sample_data_record = nusc.get('sample_data', sample_record['data']['LIDAR_TOP'])
pose_record = nusc.get('ego_pose', sample_data_record['ego_pose_token'])
dist = np.linalg.norm(np.array(pose_record['translation']) - np.array(ann_record['translation']))
information = ' \n'.join(['category: {}'.format(category),
'',
'# lidar points: {0:>4}'.format(lidar_points),
'# radar points: {0:>4}'.format(radar_points),
'',
'distance: {:>7.3f}m'.format(dist),
'',
'width: {:>7.3f}m'.format(w),
'length: {:>7.3f}m'.format(l),
'height: {:>7.3f}m'.format(h)])
plt.annotate(information, (0, 0), (0, -20), xycoords='axes fraction', textcoords='offset points', va='top')
if out_path is not None:
plt.savefig(out_path)
def get_sample_data(sample_data_token: str,
box_vis_level: BoxVisibility = BoxVisibility.ANY,
selected_anntokens=None,
use_flat_vehicle_coordinates: bool = False):
"""
Returns the data path as well as all annotations related to that sample_data.
Note that the boxes are transformed into the current sensor's coordinate frame.
:param sample_data_token: Sample_data token.
:param box_vis_level: If sample_data is an image, this sets required visibility for boxes.
:param selected_anntokens: If provided only return the selected annotation.
:param use_flat_vehicle_coordinates: Instead of the current sensor's coordinate frame, use ego frame which is
aligned to z-plane in the world.
:return: (data_path, boxes, camera_intrinsic <np.array: 3, 3>)
"""
# Retrieve sensor & pose records
sd_record = nusc.get('sample_data', sample_data_token)
cs_record = nusc.get('calibrated_sensor', sd_record['calibrated_sensor_token'])
sensor_record = nusc.get('sensor', cs_record['sensor_token'])
pose_record = nusc.get('ego_pose', sd_record['ego_pose_token'])
data_path = nusc.get_sample_data_path(sample_data_token)
if sensor_record['modality'] == 'camera':
cam_intrinsic = np.array(cs_record['camera_intrinsic'])
imsize = (sd_record['width'], sd_record['height'])
else:
cam_intrinsic = None
imsize = None
# Retrieve all sample annotations and map to sensor coordinate system.
if selected_anntokens is not None:
boxes = list(map(nusc.get_box, selected_anntokens))
else:
boxes = nusc.get_boxes(sample_data_token)
# Make list of Box objects including coord system transforms.
box_list = []
for box in boxes:
if use_flat_vehicle_coordinates:
# Move box to ego vehicle coord system parallel to world z plane.
yaw = Quaternion(pose_record['rotation']).yaw_pitch_roll[0]
box.translate(-np.array(pose_record['translation']))
box.rotate(Quaternion(scalar=np.cos(yaw / 2), vector=[0, 0, np.sin(yaw / 2)]).inverse)
else:
# Move box to ego vehicle coord system.
box.translate(-np.array(pose_record['translation']))
box.rotate(Quaternion(pose_record['rotation']).inverse)
# Move box to sensor coord system.
box.translate(-np.array(cs_record['translation']))
box.rotate(Quaternion(cs_record['rotation']).inverse)
if sensor_record['modality'] == 'camera' and not \
box_in_image(box, cam_intrinsic, imsize, vis_level=box_vis_level):
continue
box_list.append(box)
return data_path, box_list, cam_intrinsic
def get_predicted_data(sample_data_token: str,
box_vis_level: BoxVisibility = BoxVisibility.ANY,
selected_anntokens=None,
use_flat_vehicle_coordinates: bool = False,
pred_anns=None
):
"""
Returns the data path as well as all annotations related to that sample_data.
Note that the boxes are transformed into the current sensor's coordinate frame.
:param sample_data_token: Sample_data token.
:param box_vis_level: If sample_data is an image, this sets required visibility for boxes.
:param selected_anntokens: If provided only return the selected annotation.
:param use_flat_vehicle_coordinates: Instead of the current sensor's coordinate frame, use ego frame which is
aligned to z-plane in the world.
:return: (data_path, boxes, camera_intrinsic <np.array: 3, 3>)
"""
# Retrieve sensor & pose records
sd_record = nusc.get('sample_data', sample_data_token)
cs_record = nusc.get('calibrated_sensor', sd_record['calibrated_sensor_token'])
sensor_record = nusc.get('sensor', cs_record['sensor_token'])
pose_record = nusc.get('ego_pose', sd_record['ego_pose_token'])
data_path = nusc.get_sample_data_path(sample_data_token)
if sensor_record['modality'] == 'camera':
cam_intrinsic = np.array(cs_record['camera_intrinsic'])
imsize = (sd_record['width'], sd_record['height'])
else:
cam_intrinsic = None
imsize = None
# Retrieve all sample annotations and map to sensor coordinate system.
# if selected_anntokens is not None:
# boxes = list(map(nusc.get_box, selected_anntokens))
# else:
# boxes = nusc.get_boxes(sample_data_token)
boxes = pred_anns
# Make list of Box objects including coord system transforms.
box_list = []
for box in boxes:
if use_flat_vehicle_coordinates:
# Move box to ego vehicle coord system parallel to world z plane.
yaw = Quaternion(pose_record['rotation']).yaw_pitch_roll[0]
box.translate(-np.array(pose_record['translation']))
box.rotate(Quaternion(scalar=np.cos(yaw / 2), vector=[0, 0, np.sin(yaw / 2)]).inverse)
else:
# Move box to ego vehicle coord system.
box.translate(-np.array(pose_record['translation']))
box.rotate(Quaternion(pose_record['rotation']).inverse)
# Move box to sensor coord system.
box.translate(-np.array(cs_record['translation']))
box.rotate(Quaternion(cs_record['rotation']).inverse)
if sensor_record['modality'] == 'camera' and not \
box_in_image(box, cam_intrinsic, imsize, vis_level=box_vis_level):
continue
box_list.append(box)
return data_path, box_list, cam_intrinsic
def lidiar_render(sample_token, data,out_path=None):
bbox_gt_list = []
bbox_pred_list = []
anns = nusc.get('sample', sample_token)['anns']
for ann in anns:
content = nusc.get('sample_annotation', ann)
try:
bbox_gt_list.append(DetectionBox(
sample_token=content['sample_token'],
translation=tuple(content['translation']),
size=tuple(content['size']),
rotation=tuple(content['rotation']),
velocity=nusc.box_velocity(content['token'])[:2],
ego_translation=(0.0, 0.0, 0.0) if 'ego_translation' not in content
else tuple(content['ego_translation']),
num_pts=-1 if 'num_pts' not in content else int(content['num_pts']),
detection_name=category_to_detection_name(content['category_name']),
detection_score=-1.0 if 'detection_score' not in content else float(content['detection_score']),
attribute_name=''))
except:
pass
bbox_anns = data['results'][sample_token]
for content in bbox_anns:
bbox_pred_list.append(DetectionBox(
sample_token=content['sample_token'],
translation=tuple(content['translation']),
size=tuple(content['size']),
rotation=tuple(content['rotation']),
velocity=tuple(content['velocity']),
ego_translation=(0.0, 0.0, 0.0) if 'ego_translation' not in content
else tuple(content['ego_translation']),
num_pts=-1 if 'num_pts' not in content else int(content['num_pts']),
detection_name=content['detection_name'],
detection_score=-1.0 if 'detection_score' not in content else float(content['detection_score']),
attribute_name=content['attribute_name']))
gt_annotations = EvalBoxes()
pred_annotations = EvalBoxes()
gt_annotations.add_boxes(sample_token, bbox_gt_list)
pred_annotations.add_boxes(sample_token, bbox_pred_list)
print('green is ground truth')
print('blue is the predited result')
visualize_sample(nusc, sample_token, gt_annotations, pred_annotations, savepath=out_path+'_bev')
def get_color(category_name: str):
"""
Provides the default colors based on the category names.
This method works for the general nuScenes categories, as well as the nuScenes detection categories.
"""
a = ['noise', 'animal', 'human.pedestrian.adult', 'human.pedestrian.child', 'human.pedestrian.construction_worker',
'human.pedestrian.personal_mobility', 'human.pedestrian.police_officer', 'human.pedestrian.stroller',
'human.pedestrian.wheelchair', 'movable_object.barrier', 'movable_object.debris',
'movable_object.pushable_pullable', 'movable_object.trafficcone', 'static_object.bicycle_rack', 'vehicle.bicycle',
'vehicle.bus.bendy', 'vehicle.bus.rigid', 'vehicle.car', 'vehicle.construction', 'vehicle.emergency.ambulance',
'vehicle.emergency.police', 'vehicle.motorcycle', 'vehicle.trailer', 'vehicle.truck', 'flat.driveable_surface',
'flat.other', 'flat.sidewalk', 'flat.terrain', 'static.manmade', 'static.other', 'static.vegetation',
'vehicle.ego']
class_names = [
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
]
#print(category_name)
if category_name == 'bicycle':
return nusc.colormap['vehicle.bicycle']
elif category_name == 'construction_vehicle':
return nusc.colormap['vehicle.construction']
elif category_name == 'traffic_cone':
return nusc.colormap['movable_object.trafficcone']
for key in nusc.colormap.keys():
if category_name in key:
return nusc.colormap[key]
return [0, 0, 0]
def render_sample_data(
sample_toekn: str,
with_anns: bool = True,
box_vis_level: BoxVisibility = BoxVisibility.ANY,
axes_limit: float = 40,
ax=None,
nsweeps: int = 1,
out_path: str = None,
underlay_map: bool = True,
use_flat_vehicle_coordinates: bool = True,
show_lidarseg: bool = False,
show_lidarseg_legend: bool = False,
filter_lidarseg_labels=None,
lidarseg_preds_bin_path: str = None,
verbose: bool = True,
show_panoptic: bool = False,
pred_data=None,
) -> None:
"""
Render sample data onto axis.
:param sample_data_token: Sample_data token.
:param with_anns: Whether to draw box annotations.
:param box_vis_level: If sample_data is an image, this sets required visibility for boxes.
:param axes_limit: Axes limit for lidar and radar (measured in meters).
:param ax: Axes onto which to render.
:param nsweeps: Number of sweeps for lidar and radar.
:param out_path: Optional path to save the rendered figure to disk.
:param underlay_map: When set to true, lidar data is plotted onto the map. This can be slow.
:param use_flat_vehicle_coordinates: Instead of the current sensor's coordinate frame, use ego frame which is
aligned to z-plane in the world. Note: Previously this method did not use flat vehicle coordinates, which
can lead to small errors when the vertical axis of the global frame and lidar are not aligned. The new
setting is more correct and rotates the plot by ~90 degrees.
:param show_lidarseg: When set to True, the lidar data is colored with the segmentation labels. When set
to False, the colors of the lidar data represent the distance from the center of the ego vehicle.
:param show_lidarseg_legend: Whether to display the legend for the lidarseg labels in the frame.
:param filter_lidarseg_labels: Only show lidar points which belong to the given list of classes. If None
or the list is empty, all classes will be displayed.
:param lidarseg_preds_bin_path: A path to the .bin file which contains the user's lidar segmentation
predictions for the sample.
:param verbose: Whether to display the image after it is rendered.
:param show_panoptic: When set to True, the lidar data is colored with the panoptic labels. When set
to False, the colors of the lidar data represent the distance from the center of the ego vehicle.
If show_lidarseg is True, show_panoptic will be set to False.
"""
lidiar_render(sample_toekn, pred_data, out_path=out_path)
sample = nusc.get('sample', sample_toekn)
# sample = data['results'][sample_token_list[0]][0]
cams = [
'CAM_FRONT_LEFT',
'CAM_FRONT',
'CAM_FRONT_RIGHT',
'CAM_BACK_LEFT',
'CAM_BACK',
'CAM_BACK_RIGHT',
]
if ax is None:
_, ax = plt.subplots(4, 3, figsize=(24, 18))
j = 0
for ind, cam in enumerate(cams):
sample_data_token = sample['data'][cam]
sd_record = nusc.get('sample_data', sample_data_token)
sensor_modality = sd_record['sensor_modality']
if sensor_modality in ['lidar', 'radar']:
assert False
elif sensor_modality == 'camera':
# Load boxes and image.
boxes = [Box(record['translation'], record['size'], Quaternion(record['rotation']),
name=record['detection_name'], token='predicted') for record in
pred_data['results'][sample_toekn] if record['detection_score'] > 0.2]
data_path, boxes_pred, camera_intrinsic = get_predicted_data(sample_data_token,
box_vis_level=box_vis_level, pred_anns=boxes)
_, boxes_gt, _ = nusc.get_sample_data(sample_data_token, box_vis_level=box_vis_level)
if ind == 3:
j += 1
ind = ind % 3
data = Image.open(data_path)
# mmcv.imwrite(np.array(data)[:,:,::-1], f'{cam}.png')
# Init axes.
# Show image.
ax[j, ind].imshow(data)
ax[j + 2, ind].imshow(data)
# Show boxes.
if with_anns:
for box in boxes_pred:
c = np.array(get_color(box.name)) / 255.0
box.render(ax[j, ind], view=camera_intrinsic, normalize=True, colors=(c, c, c))
for box in boxes_gt:
c = np.array(get_color(box.name)) / 255.0
box.render(ax[j + 2, ind], view=camera_intrinsic, normalize=True, colors=(c, c, c))
# Limit visible range.
ax[j, ind].set_xlim(0, data.size[0])
ax[j, ind].set_ylim(data.size[1], 0)
ax[j + 2, ind].set_xlim(0, data.size[0])
ax[j + 2, ind].set_ylim(data.size[1], 0)
else:
raise ValueError("Error: Unknown sensor modality!")
ax[j, ind].axis('off')
ax[j, ind].set_title('PRED: {} {labels_type}'.format(
sd_record['channel'], labels_type='(predictions)' if lidarseg_preds_bin_path else ''))
ax[j, ind].set_aspect('equal')
ax[j + 2, ind].axis('off')
ax[j + 2, ind].set_title('GT:{} {labels_type}'.format(
sd_record['channel'], labels_type='(predictions)' if lidarseg_preds_bin_path else ''))
ax[j + 2, ind].set_aspect('equal')
if out_path is not None:
plt.savefig(out_path+'_camera', bbox_inches='tight', pad_inches=0, dpi=200)
if verbose:
plt.show()
plt.close()
if __name__ == '__main__':
nusc = NuScenes(version='v1.0-trainval', dataroot='./data/nuscenes', verbose=True)
# render_annotation('7603b030b42a4b1caa8c443ccc1a7d52')
bevformer_results = mmcv.load('test/bevformer_base/Thu_Jun__9_16_22_37_2022/pts_bbox/results_nusc.json')
sample_token_list = list(bevformer_results['results'].keys())
for id in range(0, 10):
render_sample_data(sample_token_list[id], pred_data=bevformer_results, out_path=sample_token_list[id])