
PMIx ASC 1Q 2023

Joshua Hursey
Spectrum MPI Developer
jhursey@us.ibm.com

A separated model for
running rootless,

unprivileged PMIx-
enabled HPC applications

in Kubernetes

2

Goal: Moving towards a microservice model for MPI jobs in Kubernetes

mpirun a.out

prted

a.out

a.out

prted

a.out

a.out

Runtime Communication PMIx Communication MPI Communication

sshd sshd

Traditional HPC
Service

Job StatefulSet

Namespace, RBAC

login cn-0 cn-N

Runtime Communication PMIx Communication MPI Communication

sshd sshd
(HPC)

mpirun a.out

prted

a.out

a.out

prted

a.out

a.out

(HPC) (HPC)

Traditional mapping of HPC to K8s

Service
Job StatefulSet

Namespace, RBAC

login cn-0 cn-N

Runtime Communication PMIx Communication MPI Communication

sshd sshd

(APP)

(APP)

(APP)

(REC)

mpirun a.out

prted

a.out

a.out

prted

a.out

a.out

(REC) (REC)

(APP)

Separated mapping of HPC to K8s
?

Goal: Microservice(ish) K8s
Service

Job DaemonSet

Namespace, RBAC

login

StatefulSetcn-0 cn-N

(APP)

(APP)

(APP)

(REC)

mpirun a.out

prted

a.out

a.out

prted

a.out

a.out

(REC) (REC)

(APP)

3

High Performance Computing In Kubernetes (K8s): Traditional Model

− Containerized applications are necessary when running in Kubernetes (K8s)
− HPC container must bring a runtime environment in addition to the application
− Problem:

− Runtime environment and cross-node launching service may need to be
customized per K8s system leading to maintaining many similar containers.

− Container makers must secure the cross-node launching service (often SSH).
− Running sshd in a container exposes an attack vector.

1. Runtime environment
2. Cross-node launching service
3. Application
• libraries
• data
• binary

HPC Container Kubernetes Objects

Namespace
RBAC

Service
StatefulSet

Job
ConfigMap

...

4

High Performance Computing In Kubernetes (K8s): Separated Model

− Separation of concerns
− Runtime container is maintained by sysadmins.
− Application container is runtime agnostic, and smaller.

− Improved security
− Remove ssh from the application container.

− Improved performance
− Smaller application containers, persistent daemons.

Kubernetes Objects

Namespace
RBAC

Service
StatefulSet

Job
ConfigMap

...

Separate
the runtime

container
from the

application
container

1. Runtime environment
2. Cross-node launching service

1. Application
• libraries
• data
• binary

HPC Application Container (APP)

Runtime Environment Container (REC)

The critical point is that the APP
creator is no longer responsible
for maintaining and configuring

the REC portion of the
environment which is most prone

to security vulnerabilities that
could put the host system at risk.

5

Service
Job StatefulSet

Namespace, RBAC

login cn-0 cn-N

Runtime Communication PMIx Communication MPI Communication

sshd sshd
(HPC)

mpirun a.out

prted

a.out

a.out

prted

a.out

a.out

(HPC) (HPC)

K8s Virtual Cluster

− K8s objects establish a virtual cluster to support traditional HPC applications
− Namespace: A context used to group the K8s objects
− Role-Based Access Control (RBAC): Access permissions

− Often consists of the combination of:
ServiceAccount, ClusterRole, ClusterRoleBinding

− Headless Service: Provides DNS services
− StatefulSet: Pod set representing compute nodes
− Job: A Pod representing a login/launch node from which the app. is launched

− Not strictly necessary, but is convenient to have as a point of entry

1. Runtime environment
2. Cross-node launching service
3. Application
• libraries
• data
• binary

HPC Container

6

K8s Virtual Cluster: Job

− Waiting for Pods to be ready with an initContainers
− A race between when the Job starts and the

StatefulSet Pods are ready, causing launch failure.
− Define an initContainers that waits for the virtual

cluster to be ready before starting the Job script.
− Hostfile generation

− The runtime needs a hostfile to launch its daemons.
− A ConfigMap can be used but it must be created

statically before starting the virtual cluster.
− Alternatively, the initContainers can dynamically

create the hostfile in a shared mount with the Job.
− Hostfile can be a list of hostnames or IP addresses

of the Pods in the overlay network.

7

Separated Model: Nested Containers

− The REC is started in each Pod. The REC starts the APP nested within itself.
− Two approaches for nesting containers

1. Expose the host container runtime socket to the REC (may have root).
• Potential attack vector from the APP -> REC -> Host via the exposed socket

2. Install a rootless container runtime inside the REC (e.g., Podman).
− Rootless container runtimes require a form of privileged access to mount file

systems when starting a container.

Service
Job StatefulSet

Namespace, RBAC

login cn-0 cn-N

Runtime Communication PMIx Communication MPI Communication

sshd sshd

(APP)

(APP)

(APP)

(REC)

mpirun a.out

prted

a.out

a.out

prted

a.out

a.out

(REC) (REC)

(APP)

1. Runtime environment
2. Cross-node launching service

1. Application
• libraries
• data
• binary

HPC Application Container (APP)

Runtime Environment Container (REC)

8

Separated Model: Nested Containers

− Two techniques for handling privileged access in K8s for rootless containers.
1. Make the REC Pod fully privileged.

• Potential attack vector from APP -> REC -> Host
2. Use a DevicePlugin to expose the /dev/fuse

file system into the REC Pod.
• https://github.com/jjhursey/fuse-device-plugin/tree/ppc64le-support

Service
Job StatefulSet

Namespace, RBAC

login cn-0 cn-N

Runtime Communication PMIx Communication MPI Communication

sshd sshd

(APP)

(APP)

(APP)

(REC)

mpirun a.out

prted

a.out

a.out

prted

a.out

a.out

(REC) (REC)

(APP)

1. Runtime environment
2. Cross-node launching service

1. Application
• libraries
• data
• binary

HPC Application Container (APP)

Runtime Environment Container (REC)

https://github.com/jjhursey/fuse-device-plugin/tree/ppc64le-support

9

Separated Model: Cross-Node Launching

− The REC needs to start a runtime daemon in each Pod to establish the runtime
environment for the application.

SSH Daemon kubectl exec

kubexec.sh

10

Separated Model: PMIx

− The REC and APP need to communicate to support
operations like inter-process wire-up and dynamics.

− PMIx library serves this purpose over a socket.
− REC contains an instance of the PMIx Server library
− APP contains an instance of the PMIx Client library

− The PMIx library must be either the same or cross-version
compatible in the REC and APP.
− OpenPMIx implementation is committed to cross-version compatibility.

− Open MPI "main," and "v5.0.x" branches allow
for users to build Open MPI without a runtime
environment.

11

Separated Model: Launching the APP container

− PMIx Reference Runtime Environment (PRRTE) is installed in the REC and the
prterun launch command is used to start the APP containers.
− A wrapper script hides the Podman complexities from the user and PRRTE.
− No changes were needed in PRRTE to support this model.
REC$ prterun --map-by ppr:2:node -x MPI_IMAGE wrap-container.sh /examples/init_finalize

podman run --rm \
--network host \
--uts host --ipc host \
--pid host \
--env-host \
--cgroups=no-conmon \
--cap-add=sys_ptrace \
-v /dev/shm:/dev/shm \
${MPI_IMAGE} \
$@

wrap-container.sh − REC <-> APP TCP socket
− MPI shared memory setup
− Signaling and shared memory setup
− Passthrough any PMIx or other envars
− Disable new cgroup only for conmon process
− MPI Cross-Memory Attached shared memory
− Mount point for MPI to setup shared memory segment

12

Demo: Environment
https://github.com/jjhursey/pub-2022-CANOPIE-HPC
− System setup

− 18 IBM Power8 machines with Infiniband CX-5 and 2x NVIDIA P100 GPUs
− Kubernetes 1.23.4 (installed via kubeadm)
− Device Plugins: Mellanox RDMA [1], NVIDIA [2], FUSE [3]
− Host: RHEL 8.4, Docker 20.10.13
− REC: RHEL 8.6, Podman 4.0.2, PRRTE 'master'

− Containers: All with OpenPMIx 'master'
− REC: runtime-with-podman
− APP: All with Open MPI ‘main’

− k8s-mpi: Basic MPI examples
− k8s-nas: NAS Parallel Benchmarks
− k8s-gromacs: Gromacs molecular dynamics

[1] https://github.com/mellanox/k8s-rdma-shared-dev-plugin
[2] https://github.com/NVIDIA/k8s-device-plugin
[3] https://github.com/jjhursey/fuse-device-plugin/tree/ppc64le-support

https://github.com/jjhursey/pub-2022-CANOPIE-HPC
https://github.com/mellanox/k8s-rdma-shared-dev-plugin
https://github.com/NVIDIA/k8s-device-plugin
https://github.com/jjhursey/fuse-device-plugin/tree/ppc64le-support

13

Demo: Launching the virtual cluster
https://github.com/jjhursey/pub-2022-CANOPIE-HPC
shell$ make deploy-ssh-with-podman-unpriv
...

shell$ make login-ssh-with-podman-unpriv
REC$ id
uid=998(mpiuser) gid=995(mpiuser) groups=995(mpiuser)

shell$ make undeploy-ssh-with-podman-unpriv
...

shell$ kubectl get all
NAME READY STATUS RESTARTS AGE
pod/hpc-cluster-login-cnt9r 1/1 Running 0 41s
pod/hpc-cn-0 1/1 Running 0 41s
pod/hpc-cn-1 1/1 Running 0 41s
pod/hpc-cn-2 1/1 Running 0 41s
pod/hpc-cn-3 1/1 Running 0 41s
pod/hpc-cn-4 1/1 Running 0 41s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/hpc-cluster ClusterIP None <none> <none> 42s

NAME READY AGE
statefulset.apps/hpc-cn 5/5 42s

NAME COMPLETIONS DURATION AGE
job.batch/hpc-cluster-login 0/1 41s 41s

https://github.com/jjhursey/pub-2022-CANOPIE-HPC

14

Demo: Applications
https://github.com/jjhursey/pub-2022-CANOPIE-HPC

k8s-mpi

k8s-nas k8s-gromacs

shell$ make login-ssh-with-podman-unpriv
REC$ id
uid=998(mpiuser) gid=995(mpiuser) groups=995(mpiuser)
REC$ cat $PRTE_MCA_prte_default_hostfile
192.168.85.141
192.168.85.42
192.168.135.156
192.168.53.138
192.168.95.120

https://github.com/jjhursey/pub-2022-CANOPIE-HPC

15

Conclusions

− In Kubernetes, HPC containers must include a runtime environment and
cross-node launching service in addition to their application.
− Increases maintenance burden on the container maker.
− Introduces security vulnerabilities into the k8s environment.

− Separated model separates the runtime portion from the application portion
− Separation of concerns: Sysadmin maintains REC, User maintains APP.
− Improved security: Removing ssh from the APP, maybe REC as well.
− Improved performance: Smaller APP, persistent daemons

Service
Job StatefulSet

Namespace, RBAC

login cn-0 cn-N

Runtime Communication PMIx Communication MPI Communication

sshd sshd

(APP)

(APP)

(APP)

(REC)

mpirun a.out

prted

a.out

a.out

prted

a.out

a.out

(REC) (REC)

(APP)

1. Runtime environment
2. Cross-node launching service

1. Application
• libraries
• data
• binary

HPC Application Container (APP)

Runtime Environment Container (REC)

16

Future work

− Consolidate this effort into a K8s operator
− Advancement on current CRDs (Kubeflow, Volcano) since it uses the separated

model and would support more than just MPI applications.
− Alternative to ssh and kubectl for cross-node launching

− Interact more natively with the K8s environment
− Start the runtime daemons in each Pod as soon as the Pod starts running.
− Have the daemon "phone home" instead of being launched by prterun.

− Runtime independent application launcher command
− Currently, the job script must know the launcher command (prterun,

mpirun, srun, jsrun) installed in the REC to launch their job.
− Develop a runtime independent tool that uses PMIx_spawn to start the

application against whatever runtime is installed in the REC.
− Will allow the application job script to be runtime launcher agnostic.

Thank you.

