-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.cpp
596 lines (516 loc) · 16.9 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
/*
* The MIT License (MIT)
*
* Copyright (c) 2014, Michal Podhradsky, Viking Motorsports
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/**
* @file main.cpp
*
* BMS main loop.
*/
#include "main.h"
#include "led.h"
#include "BmsState.h"
#include "downlink.h"
#include "mlec_can.h"
#include "rms_can.h"
#ifndef CAN_FREQUENCY
#define CAN_FREQUENCY 10.0
#endif
#ifndef TELEMETRY_FREQUENCY
#define TELEMETRY_FREQUENCY 10.0
#endif
#ifndef DOWNLINK_FREQUENCY
#define DOWNLINK_FREQUENCY 1.0
#endif
#ifndef MODULES_FREQUENCY
#define MODULES_FREQUENCY 1.0
#endif
#ifndef FAILSAFE_FREQUENCY
#define FAILSAFE_FREQUENCY 10.0
#endif
#ifndef HEARTBEAT_FREQUENCY
#define HEARTBEAT_FREQUENCY 100.0
#endif
#ifndef DATALOG_FREQUENCY
#define DATALOG_FREQUENCY 1.0
#endif
bool throttle_ok;
float epsilon;
bool init;
int counter;
float fsig1, fsig2, delta;
// Tickers
Ticker heartbeat_tic;
Ticker failsafe_tic;
Ticker telemetry_tic;
Ticker downlink_tic;
Ticker can_tic;
Ticker charger_tic;
Ticker datalog_tic;
// Ticker flags
uint8_t flag_heartbeat;
uint8_t flag_failsafe;
uint8_t flag_telemetry;
uint8_t flag_downlink;
uint8_t flag_can;
uint8_t flag_datalog;
// IO pins
//lov_v - p24
//bms_err - p 25
//crit_vol - p26
DigitalOut bms_err_led(p25);
DigitalOut rtds_enable(p24); // to RTDS
DigitalOut fw_enable(p22);//fw_enable(p26); // to fuse box
DigitalOut llim(p23); // to fuse box - shutdown circuit
DigitalOut hlim(p26);//hlim(p22); // to fuse box
DigitalIn brake_en(p12);//interlock - if High then 0, 1 = no voltage or GND
DigitalIn ksi(p11);
float s1;
float s2;
float out;
/**
* Heartbeat
*/
void heartbeat()
{
LED_TOGGLE(led_sys);
bms.up_time++;
}
/**
* Main function
*
* main_init() initializes peripherals
* handle_periodic_taks() might be enmpty if we use timers/tickers
* main_event() handles events (rx message etc)
*
*/
int main( void ) {
main_init();
while(1) {
handle_periodic_tasks();
main_event();
}
}
/**
* Handle periodic tasks
*
* Ticker calls the function within an ISR, so it
* should not be used for calling bulky or library functions
* (such as printf). Instead it triggers the flag, which is
* then handled here.
*/
inline void handle_periodic_tasks(void){
if (flag_heartbeat) {
heartbeat();
flag_heartbeat = 0;
}
// start failsafe checks only after T_MIN secs
// so BMS have time to get CAN responses
if (flag_failsafe && (bms.up_time > T_MIN)) {
failsafe_periodic();
flag_failsafe = 0;
}
if (flag_downlink) {
downlink_periodic();
flag_downlink = 0;
}
if (flag_telemetry) {
telemetry_periodic();
flag_telemetry = 0;
}
if (flag_can) {
can_periodic_rlecs();
can_periodic_rms();
flag_can = 0;
}
if (flag_datalog) {
datalog_periodic();
flag_datalog = 0;
}
}
/**
* Main_init
*
* Initialize I/O, tickers and state machine
*/
inline void main_init(void) {
// State init
// in state will be IO pins!
// so // Initialize output pins too
state_init(); // state.cpp
//IO init
bms_err_led = 1; // for demostrative purposes
llim = 1; // enable AIRS
hlim = 1; // enable charging
rtds_enable = 0; // not play sound (yet)
fw_enable = 1; // enable fw_switch
//set_time(1256729737); // Set RTC time to Wed, 28 Oct 2009 11:35:37
//set_time(1405956440);
//set_time(1405981640);
//set_time(1411861442);
//set_time(1411836242);
throttle_ok = true;
epsilon = 0;
init = false;
counter = 0;
fsig1 = 0;
fsig2 = 0;
delta = 0;
acc_out.write(0); // zero throttle at this point
brake_en.mode(PullUp); // mode doesn't really matter
// Initialize CAN bus
can_init_rlecs();
can_init_rms();
// Start downlinkand logging
downlink_init(); // downlink.cpp
// Attach tickers
flag_heartbeat = 0;
flag_failsafe = 0;
flag_telemetry = 0;
flag_downlink = 0;
flag_can = 0;
flag_datalog = 0;
heartbeat_tic.attach(&heartbeat_tid, 1.0/HEARTBEAT_FREQUENCY);
can_tic.attach(&can_tid, 1.0/CAN_FREQUENCY); // can_bms.cpp
telemetry_tic.attach(&telemetry_tid,1.0/TELEMETRY_FREQUENCY);
downlink_tic.attach(&downlink_tid,1.0/DOWNLINK_FREQUENCY);
failsafe_tic.attach(&failsafe_tid,1.0/FAILSAFE_FREQUENCY);
datalog_tic.attach(&datalog_tid, 1.0/DATALOG_FREQUENCY);
}
/**
* Main_event()
*
* Events: message/data rx
*/
inline void main_event(void) {
// can rx
can_event_rlecs();
can_event_rms();
// datalink/serial rx
downlink_event(); // downlink.cpp
}
/**
* Datalogging
*/
inline void datalog_periodic(void){
// File log
fp = fopen(logname, "a");
if(fp != NULL) {
//debuglink.printf("Writting, time=%f\r\n",(float)bms.up_time/10);
// printf(fp, "%u, %u,%i, %i, %i,%i, %i, %i, %i, %i, %i, %i,%i,%i, %i, %i,%i, %i, %i, %i,%u, %u, %u, %u, %u, %u,%i, %i, %i, %i,%i, %i, %i,%i,%i, %i, %i, %i,%i, %i, %i, %i, %i, %i,%i, %i, %i, %i,%u, %u, %u, %u, %u, %u, %u,%u, %u, %u, %u, %u, %u, %u, %u,%i, %i,%f, %f, %f",bms.timer, bms.up_time,bms.phase_temp[0],bms.phase_temp[1],bms.phase_temp[2],bms.gate_temp, bms.board_temp, bms.rtd_temp[0],bms.rtd_temp[1],bms.rtd_temp[2],bms.rtd_temp[3],bms.rtd_temp[4],bms.motor_temp,bms.torque_shud, bms.torque_cmd,bms.torque_fb,bms.analog_in[0], bms.analog_in[1], bms.analog_in[2], bms.analog_in[3],bms.digital_in[0], bms.digital_in[1], bms.digital_in[2], bms.digital_in[3], bms.digital_in[4], bms.digital_in[5],bms.motor_angle, bms.motor_speed, bms.inv_freq, bms.resolver_angle,bms.phase_current[0], bms.phase_current[1], bms.phase_current[2], bms.dc_current,bms.dc_voltage, bms.output_volt, bms.p_ab_volt, bms.p_bc_volt,bms.flux_cmd, bms.flux_fb, bms.id_fb, bms.iq_fb, bms.id_cmd, bms.iq_cmd,bms.ref_1_5, bms.ref_2_5, bms.ref_5_0, bms.sys_12v,bms.vsm_state, bms.inv_state, bms.relay_state, bms.inv_mode, bms.inv_cmd, bms.inv_enable, bms.direction,bms.faults[0],bms.faults[1],bms.faults[2],bms.faults[3],bms.faults[4],bms.faults[5],bms.faults[6],bms.faults[7],bms.modulation_index, bms.flux_reg_out,
// s1,s2,out);
//fprintf(fp, "%f, %f, %f, %f\n", (float)(bms.timer*0.03), s1, s2, out);
//debuglink.printf("Written\n");
//timer
//fprintf(fp, "%u, %u",bms.timer, bms.up_time);
//timer, uptime
fprintf(fp, "%f, %f,"
// phase temp
"%i, %i, %i,"
// temps rtd temp motor temp
"%i, %i, %i, %i, %i, %i, %i, %i,"
// torque
"%i, %i, %i,"
// analog in
"%i, %i, %i, %i,"
// digitalin
"%u, %u, %u, %u, %u, %u,"
//motor info
"%i, %i, %i, %i,"
//current
"%i, %i, %i, %i,"
// Voltage
"%i, %i, %i, %i,"
// Flux
"%i, %i, %i, %i, %i, %i,"
// Internal Voltages
"%i, %i, %i, %i,"
//States
"%u, %u, %u, %u, %u, %u, %u,"
// Faults (8bytes)
"%u, %u, %u, %u, %u, %u, %u, %u,"
//Various
"%i, %i,"
// Throttle input, min cell temp, max cell temp, min cell volt
"%f, %f, %f, %i, %i, %u, %u\n",
(float)bms.timer, (float)bms.up_time/10,
bms.phase_temp[0],bms.phase_temp[1],bms.phase_temp[2],
bms.gate_temp, bms.board_temp, bms.rtd_temp[0],bms.rtd_temp[1],bms.rtd_temp[2],bms.rtd_temp[3],bms.rtd_temp[4],bms.motor_temp,
bms.torque_shud, bms.torque_cmd,bms.torque_fb,
bms.analog_in[0], bms.analog_in[1], bms.analog_in[2], bms.analog_in[3],
bms.digital_in[0], bms.digital_in[1], bms.digital_in[2], bms.digital_in[3], bms.digital_in[4], bms.digital_in[5],
bms.motor_angle, bms.motor_speed, bms.inv_freq, bms.resolver_angle,
bms.phase_current[0], bms.phase_current[1], bms.phase_current[2], bms.dc_current,
bms.dc_voltage, bms.output_volt, bms.p_ab_volt, bms.p_bc_volt,
bms.flux_cmd, bms.flux_fb, bms.id_fb, bms.iq_fb, bms.id_cmd, bms.iq_cmd,
bms.ref_1_5, bms.ref_2_5, bms.ref_5_0, bms.sys_12v,
bms.vsm_state, bms.inv_state, bms.relay_state, bms.inv_mode, bms.inv_cmd, bms.inv_enable, bms.direction,
bms.faults[0],bms.faults[1],bms.faults[2],bms.faults[3],bms.faults[4],bms.faults[5],bms.faults[6],bms.faults[7],
bms.modulation_index, bms.flux_reg_out,
s1,s2,out, bms.min_cell_temp, bms.max_cell_temp, bms.min_cell_volt, bms.max_cell_volt);
// printf(fp, "%u, %u, %i, %i, %i, %i, %i, %i, %i, %i, %i, %i, %i, %i, %i, %i, %i, %i, %i, %i,"
// "%u, %u, %u, %u, %u, %u,"
// "%i, %i, %i, %i, %i, %i, %i, %i,"
// "%i, %i, %i, %i,"
// "%i, %i, %i, %i, %i, %i,%i, %i, %i, %i, %u, %u, %u, %u, %u, %u, %u, %u, %u, %u, %u, %u, %u, %u, %u, %i, %i, %f, %f, %f");
fclose(fp);
}
else {
//debuglink.printf("Not writing, time=%f\r\n",(float)bms.up_time/10);
}
}
/**
* Failsafe check
*
* This function will save your life is anything goes wrong.
* At least in theory - split to different functions at different frequencies
*
*/
inline void failsafe_periodic(void) {
// Check if we are ready to drive
static int rtds_counter;
if (bms.vsm_state == VSM_ready) {
if ((rtds_enable == 0) && (rtds_counter < 300)) {
rtds_enable = 1; // Play RTDS sound
rtds_counter++;
}
else {
rtds_enable = 0;
}
}
else {
rtds_counter = 0;
rtds_enable = 0;
}
//throttle readout
//static float s1;
//static float s2;
//static float out;
s1 = throttle1.read();
s2 = throttle2.read();
if (!throttle_plausibility(s1, s2, &out)) {
acc_out.write(0);
failsafe_shutdown();
}
else {
acc_out.write(out);
}
// brake plausibility
// if brake ON & throttle > 25% -> shutdown
// brake ON if low voltage on pin
/*
if (brake_en.read() && (out > 0.25)){
failsafe_shutdown();
}
*/
// check rlecs for faults
for (int i=0;i<NUM_RLECS;i++){
if (mlec.rlecsX[i].status == Active) {
// critical faults
if ((mlec.rlecsX[i].faults & RLEC_CELL_1_AD_FAULT) != 0) {
debuglink.printf("!RLEC_CELL_1_AD_FAULT - shutting down...\r\n");
failsafe_shutdown();
}
else if ((mlec.rlecsX[i].faults & RLEC_CELL_VOLTAGE_CONNECTION_FAULT) != 0) {
debuglink.printf("!RLEC_CELL_VOLTAGE_CONNECTION_FAULT - shutting down...\r\n");
failsafe_shutdown();
}
else if ((mlec.rlecsX[i].faults & RLEC_CELL_VOLTAGE_AD_FAULT) != 0) {
debuglink.printf("!RLEC_CELL_VOLTAGE_AD_FAULT - shutting down...\r\n");
failsafe_shutdown();
}
else if ((mlec.rlecsX[i].faults & RLEC_MODULE_VOLTAGE_AD_FAULT) != 0) {
debuglink.printf("!RLEC_MODULE_VOLTAGE_AD_FAULT - shutting down...\r\n");
failsafe_shutdown();
}
else if ((mlec.rlecsX[i].faults & RLEC_CELL_1_VOLTAGE_FAULT) != 0) {
debuglink.printf("!RLEC_CELL_1_VOLTAGE_FAULT - shutting down...\r\n");
failsafe_shutdown();
}
// warnings
else if ((mlec.rlecsX[i].faults & RLEC_CELL_TEMP_AD_FAULT) != 0) {
debuglink.printf("!RLEC_CELL_TEMP_AD_FAULT - warning light on.\r\n");
failsafe_warning();
}
else if ((mlec.rlecsX[i].faults & RLEC_RLEC_TEMP_AD_FAULT) != 0) {
debuglink.printf("!RLEC_RLEC_TEMP_AD_FAULT - warning light on.\r\n");
failsafe_warning();
}
// Charging - overcharge protection
if (mlec.rlecsX[i].max_cell_volt > MAX_CELL_VOLT) {
charger_shutdown();
debuglink.printf("Charging Stopped.\r\n");
}
// Voltage limits
// warning if minimal allowed voltage reached
if (mlec.rlecsX[i].min_cell_volt < MIN_CELL_VOLT) {
//batcritical_warning();
failsafe_shutdown();
debuglink.printf("Minimal voltage reached - shutting down.\r\n");
debuglink.printf("RLEC %i\r\n",i);
debuglink.printf("Min voltage: %f\r\n",(float)mlec.rlecsX[i].min_cell_volt*0.00244);
}
// warning if cell below low threshold
else if (mlec.rlecsX[i].min_cell_volt < BAT_LOW) {
//batlow_warning();
debuglink.printf("Warning - low voltage.\r\n");
}
// warning if cell below very low threshold
else if (mlec.rlecsX[i].min_cell_volt < BAT_VERY_LOW) {
//batverylow_warning();
debuglink.printf("Warning - very low voltage.\r\n");
}
//Temperature limits
if (mlec.rlecsX[i].max_cell_temp > MAX_CELL_TEMP) {
failsafe_shutdown();
debuglink.printf("Max cell temperature reached- shutting down.\r\n");
}
}
}
}
/*
* Charger stop (HLIM low)
* HLIM: 1=ON, 0=OFF
*/
inline void charger_shutdown( void ) {
hlim.write(0); // HACK: disables HV circuit (as well as charger)
}
/*
* Open main contactor (LLIM low)
* LLIM: 1=ON, 0 = FF
*/
inline void failsafe_shutdown( void ) {
fw_enable = 0; // disable FW_EN
wait_ms(100); // give some time to remove current from AIRs
llim = 0; // disable AIR
hlim.write(0); // HACK: disables HV circuit
failsafe_warning(); // light up LED
}
/*
* Light up warning light
*/
inline void failsafe_warning( void ) {
LED_ON(bms_err_led);
}
/*
* Light up BatLow
*/
inline void batlow_warning( void ) {
LED_ON(rtds_enable);
}
/*
* Light up BatLow & reduce throttle
*/
inline void batverylow_warning( void ) {
LED_ON(fw_enable);
// PWM(50%)
}
/*
* Battery ciritical (i.e. lowest allowed limit)
*/
inline void batcritical_warning( void ) {
fw_enable = 0; // disable FW_EN
wait_ms(100); // give some time to remove current from AIRs
failsafe_shutdown(); // open shutdown circuit
}
/*
* Ticker callbacks
*/
void failsafe_tid(void){
flag_failsafe = 1;
}
void telemetry_tid(void){
flag_telemetry = 1;
}
void downlink_tid(void){
flag_downlink = 1;
}
void heartbeat_tid(void){
flag_heartbeat = 1;
}
void can_tid(void){
flag_can = 1;
}
void datalog_tid(void){
flag_datalog = 1;
}
/**
* Throttle plausibility check
* fsig1 = 5V output
* fsig2 = 2.5V output
* scaling factor: 1.9493
*/
bool throttle_plausibility(float sig1, float sig2, float *out) {
static float acc_out;
//static bool throttle_ok;
//static float epsilon;
//static float fsig1, fsig2;
static float gain = 1.92;
// TODO FILTER static float alpha = 0.1;
//static bool init = false;
//static int counter;
// scale stuff up
sig2 = gain*sig2;
// moving average filter
/*
if (init){
fsig1 = alpha*sig1 + (1-alpha)*fsig1;
fsig2 = alpha*sig2 + (1-alpha)*fsig2;
}
else {
fsig1 = sig1;
fsig2 = sig2;
init = true;
}
*/
init = true;
/*
// calculate the percentage from fsig1 (the larger one)
epsilon = 0.1 * f_abs(fsig1) + 0.1;
delta = f_abs(fsig1-fsig2);
if (((delta) > epsilon) && (counter > 10)) {
throttle_ok = false;
acc_out = 0.0;
}
else {
throttle_ok = true;
acc_out = (fsig1 + fsig2)/2; //mean of two signals
}
*/
throttle_ok = true;
static float a = 0.1;
static float b = 1.0;
static float min = 0.12;
static float max = 0.45;
acc_out = ((b-a)*(sig1-min)/(max-min))+a;
counter++;
*out = acc_out;
return throttle_ok;
}
inline float f_abs(float val) {
if (val >= 0) {
return val;
}
else {
return -val;
}
}