-
Notifications
You must be signed in to change notification settings - Fork 0
/
classifier.py
411 lines (316 loc) · 14.3 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import random, numpy as np, argparse
from types import SimpleNamespace
import csv
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from sklearn.metrics import f1_score, accuracy_score
from tokenizer import BertTokenizer
from bert import BertModel
from optimizer import AdamW
from tqdm import tqdm
TQDM_DISABLE=False
# Fix the random seed.
def seed_everything(seed=11711):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
class BertSentimentClassifier(torch.nn.Module):
'''
This module performs sentiment classification using BERT embeddings on the SST dataset.
In the SST dataset, there are 5 sentiment categories (from 0 - "negative" to 4 - "positive").
Thus, your forward() should return one logit for each of the 5 classes.
'''
def __init__(self, config):
super(BertSentimentClassifier, self).__init__()
self.num_labels = config.num_labels
self.bert = BertModel.from_pretrained('bert-base-uncased')
# Pretrain mode does not require updating BERT paramters.
assert config.fine_tune_mode in ["last-linear-layer", "full-model"]
for param in self.bert.parameters():
if config.fine_tune_mode == 'last-linear-layer':
param.requires_grad = False
elif config.fine_tune_mode == 'full-model':
param.requires_grad = True
# Create any instance variables you need to classify the sentiment of BERT embeddings.
### TODO
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
self.classifier = torch.nn.Linear(config.hidden_size, self.num_labels)
def forward(self, input_ids, attention_mask):
'''Takes a batch of sentences and returns logits for sentiment classes'''
# The final BERT contextualized embedding is the hidden state of [CLS] token (the first token).
# HINT: You should consider what is an appropriate return value given that
# the training loop currently uses F.cross_entropy as the loss function.
### TODO
embedding_output = self.bert.embed( input_ids)
sequence_output = self.bert.encode(embedding_output, attention_mask)
# Get cls token hidden state.
first_tk = sequence_output[:, 0]
first_tk = self.bert.pooler_dense(first_tk)
first_tk = self.bert.pooler_af(first_tk)
first_tk = self.dropout(first_tk)
logits = self.classifier(first_tk)
return logits
class SentimentDataset(Dataset):
def __init__(self, dataset, args):
self.dataset = dataset
self.p = args
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return self.dataset[idx]
def pad_data(self, data):
sents = [x[0] for x in data]
labels = [x[1] for x in data]
sent_ids = [x[2] for x in data]
encoding = self.tokenizer(sents, return_tensors='pt', padding=True, truncation=True)
token_ids = torch.LongTensor(encoding['input_ids'])
attention_mask = torch.LongTensor(encoding['attention_mask'])
labels = torch.LongTensor(labels)
return token_ids, attention_mask, labels, sents, sent_ids
def collate_fn(self, all_data):
token_ids, attention_mask, labels, sents, sent_ids= self.pad_data(all_data)
batched_data = {
'token_ids': token_ids,
'attention_mask': attention_mask,
'labels': labels,
'sents': sents,
'sent_ids': sent_ids
}
return batched_data
class SentimentTestDataset(Dataset):
def __init__(self, dataset, args):
self.dataset = dataset
self.p = args
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return self.dataset[idx]
def pad_data(self, data):
sents = [x[0] for x in data]
sent_ids = [x[1] for x in data]
encoding = self.tokenizer(sents, return_tensors='pt', padding=True, truncation=True)
token_ids = torch.LongTensor(encoding['input_ids'])
attention_mask = torch.LongTensor(encoding['attention_mask'])
return token_ids, attention_mask, sents, sent_ids
def collate_fn(self, all_data):
token_ids, attention_mask, sents, sent_ids= self.pad_data(all_data)
batched_data = {
'token_ids': token_ids,
'attention_mask': attention_mask,
'sents': sents,
'sent_ids': sent_ids
}
return batched_data
# Load the data: a list of (sentence, label).
def load_data(filename, flag='train'):
num_labels = {}
data = []
if flag == 'test':
with open(filename, 'r') as fp:
for record in csv.DictReader(fp,delimiter = '\t'):
sent = record['sentence'].lower().strip()
sent_id = record['id'].lower().strip()
data.append((sent,sent_id))
else:
with open(filename, 'r') as fp:
for record in csv.DictReader(fp,delimiter = '\t'):
sent = record['sentence'].lower().strip()
sent_id = record['id'].lower().strip()
label = int(record['sentiment'].strip())
if label not in num_labels:
num_labels[label] = len(num_labels)
data.append((sent, label,sent_id))
print(f"load {len(data)} data from {filename}")
if flag == 'train':
return data, len(num_labels)
else:
return data
# Evaluate the model on dev examples.
def model_eval(dataloader, model, device):
model.eval() # Switch to eval model, will turn off randomness like dropout.
y_true = []
y_pred = []
sents = []
sent_ids = []
for step, batch in enumerate(tqdm(dataloader, desc=f'eval', disable=TQDM_DISABLE)):
b_ids, b_mask, b_labels, b_sents, b_sent_ids = batch['token_ids'],batch['attention_mask'], \
batch['labels'], batch['sents'], batch['sent_ids']
b_ids = b_ids.to(device)
b_mask = b_mask.to(device)
logits = model(b_ids, b_mask)
logits = logits.detach().cpu().numpy()
preds = np.argmax(logits, axis=1).flatten()
b_labels = b_labels.flatten()
y_true.extend(b_labels)
y_pred.extend(preds)
sents.extend(b_sents)
sent_ids.extend(b_sent_ids)
f1 = f1_score(y_true, y_pred, average='macro')
acc = accuracy_score(y_true, y_pred)
return acc, f1, y_pred, y_true, sents, sent_ids
# Evaluate the model on test examples.
def model_test_eval(dataloader, model, device):
model.eval() # Switch to eval model, will turn off randomness like dropout.
y_pred = []
sents = []
sent_ids = []
for step, batch in enumerate(tqdm(dataloader, desc=f'eval', disable=TQDM_DISABLE)):
b_ids, b_mask, b_sents, b_sent_ids = batch['token_ids'],batch['attention_mask'], \
batch['sents'], batch['sent_ids']
b_ids = b_ids.to(device)
b_mask = b_mask.to(device)
logits = model(b_ids, b_mask)
logits = logits.detach().cpu().numpy()
preds = np.argmax(logits, axis=1).flatten()
y_pred.extend(preds)
sents.extend(b_sents)
sent_ids.extend(b_sent_ids)
return y_pred, sents, sent_ids
def save_model(model, optimizer, args, config, filepath):
save_info = {
'model': model.state_dict(),
'optim': optimizer.state_dict(),
'args': args,
'model_config': config,
'system_rng': random.getstate(),
'numpy_rng': np.random.get_state(),
'torch_rng': torch.random.get_rng_state(),
}
torch.save(save_info, filepath)
print(f"save the model to {filepath}")
def train(args):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Create the data and its corresponding datasets and dataloader.
train_data, num_labels = load_data(args.train, 'train')
dev_data = load_data(args.dev, 'valid')
train_dataset = SentimentDataset(train_data, args)
dev_dataset = SentimentDataset(dev_data, args)
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size,
collate_fn=train_dataset.collate_fn)
dev_dataloader = DataLoader(dev_dataset, shuffle=False, batch_size=args.batch_size,
collate_fn=dev_dataset.collate_fn)
# Init model.
config = {'hidden_dropout_prob': args.hidden_dropout_prob,
'num_labels': num_labels,
'hidden_size': 768,
'data_dir': '.',
'fine_tune_mode': args.fine_tune_mode}
config = SimpleNamespace(**config)
model = BertSentimentClassifier(config)
model = model.to(device)
lr = args.lr
optimizer = AdamW(model.parameters(), lr=lr)
best_dev_acc = 0
# Run for the specified number of epochs.
for epoch in range(args.epochs):
model.train()
train_loss = 0
num_batches = 0
for batch in tqdm(train_dataloader, desc=f'train-{epoch}', disable=TQDM_DISABLE):
b_ids, b_mask, b_labels = (batch['token_ids'],
batch['attention_mask'], batch['labels'])
b_ids = b_ids.to(device)
b_mask = b_mask.to(device)
b_labels = b_labels.to(device)
optimizer.zero_grad()
logits = model(b_ids, b_mask)
loss = F.cross_entropy(logits, b_labels.view(-1), reduction='sum') / args.batch_size
loss.backward()
optimizer.step()
train_loss += loss.item()
num_batches += 1
train_loss = train_loss / (num_batches)
train_acc, train_f1, *_ = model_eval(train_dataloader, model, device)
dev_acc, dev_f1, *_ = model_eval(dev_dataloader, model, device)
if dev_acc > best_dev_acc:
best_dev_acc = dev_acc
save_model(model, optimizer, args, config, args.filepath)
print(f"Epoch {epoch}: train loss :: {train_loss :.3f}, train acc :: {train_acc :.3f}, dev acc :: {dev_acc :.3f}")
def test(args):
with torch.no_grad():
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
saved = torch.load(args.filepath)
config = saved['model_config']
model = BertSentimentClassifier(config)
model.load_state_dict(saved['model'])
model = model.to(device)
print(f"load model from {args.filepath}")
dev_data = load_data(args.dev, 'valid')
dev_dataset = SentimentDataset(dev_data, args)
dev_dataloader = DataLoader(dev_dataset, shuffle=False, batch_size=args.batch_size, collate_fn=dev_dataset.collate_fn)
test_data = load_data(args.test, 'test')
test_dataset = SentimentTestDataset(test_data, args)
test_dataloader = DataLoader(test_dataset, shuffle=False, batch_size=args.batch_size, collate_fn=test_dataset.collate_fn)
dev_acc, dev_f1, dev_pred, dev_true, dev_sents, dev_sent_ids = model_eval(dev_dataloader, model, device)
print('DONE DEV')
test_pred, test_sents, test_sent_ids = model_test_eval(test_dataloader, model, device)
print('DONE Test')
with open(args.dev_out, "w+") as f:
print(f"dev acc :: {dev_acc :.3f}")
f.write(f"id \t Predicted_Sentiment \n")
for p, s in zip(dev_sent_ids,dev_pred ):
f.write(f"{p} , {s} \n")
with open(args.test_out, "w+") as f:
f.write(f"id \t Predicted_Sentiment \n")
for p, s in zip(test_sent_ids,test_pred ):
f.write(f"{p} , {s} \n")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=11711)
parser.add_argument("--epochs", type=int, default=10)
parser.add_argument("--fine-tune-mode", type=str,
help='last-linear-layer: the BERT parameters are frozen and the task specific head parameters are updated; full-model: BERT parameters are updated as well',
choices=('last-linear-layer', 'full-model'), default="last-linear-layer")
parser.add_argument("--use_gpu", action='store_true')
parser.add_argument("--batch_size", help='sst: 64, cfimdb: 8 can fit a 12GB GPU', type=int, default=8)
parser.add_argument("--hidden_dropout_prob", type=float, default=0.3)
parser.add_argument("--lr", type=float, help="learning rate, default lr for 'pretrain': 1e-3, 'finetune': 1e-5",
default=1e-3)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_args()
seed_everything(args.seed)
print('Training Sentiment Classifier on SST...')
config = SimpleNamespace(
filepath='sst-classifier.pt',
lr=args.lr,
use_gpu=args.use_gpu,
epochs=args.epochs,
batch_size=args.batch_size,
hidden_dropout_prob=args.hidden_dropout_prob,
train='data/ids-sst-train.csv',
dev='data/ids-sst-dev.csv',
test='data/ids-sst-test-student.csv',
fine_tune_mode=args.fine_tune_mode,
dev_out = 'predictions/' + args.fine_tune_mode + '-sst-dev-out.csv',
test_out = 'predictions/' + args.fine_tune_mode + '-sst-test-out.csv'
)
train(config)
print('Evaluating on SST...')
test(config)
print('Training Sentiment Classifier on cfimdb...')
config = SimpleNamespace(
filepath='cfimdb-classifier.pt',
lr=args.lr,
use_gpu=args.use_gpu,
epochs=args.epochs,
batch_size=8,
hidden_dropout_prob=args.hidden_dropout_prob,
train='data/ids-cfimdb-train.csv',
dev='data/ids-cfimdb-dev.csv',
test='data/ids-cfimdb-test-student.csv',
fine_tune_mode=args.fine_tune_mode,
dev_out = 'predictions/' + args.fine_tune_mode + '-cfimdb-dev-out.csv',
test_out = 'predictions/' + args.fine_tune_mode + '-cfimdb-test-out.csv'
)
train(config)
print('Evaluating on cfimdb...')
test(config)