Skip to content

Latest commit

 

History

History
89 lines (75 loc) · 2.62 KB

README.md

File metadata and controls

89 lines (75 loc) · 2.62 KB

Twitter Spark Streaming using PySpark

Twitter Spark Streaming

* Testing Environment * ( On Virtual Machine )
  • Ubuntu - 12.04 ( 32 bit )
  • 8GB Ram
  • i7 - QuadCore
Contents in folder:
  • tweepy_kafka_producer.py ( Publishes tweets to kafka topic )
  • twitter_stream.py ( Process the tweets )
  • tweet_task.csv ( Sample output file )
  • get_intent.py ( classifies into topics )
  • generate_Map.py ( Visualizes geo points on map )
  • draw_Pies.py ( draws pie charts )
  • generate_cloud.py ( draws word cloud )
  • my_map.html ( locations plotted map )
  • figure_1.png ( Word cloud )
  • figure_2.png ( pie plot for top 17 locations )
  • tweet_task_intent.csv ( Contains tweet , intent , topic )

Pipeline Structure

Data is ingested in realtime using tweepy ( Twitter API ) and is sent to the producer which publishes it to some user defined topic in kafka.

We then create a consumer, which subscribes to the topic and eventually gets the data.

Technologies Used

This application uses a number of open source technologies to work properly:

  • Apache Spark 1.5.0 - Big Data Processing Engine
  • Tweepy - Twitter Application Programming Interface
  • Kafka - Messaging System
  • Sublime Text Editor - Text Editor
  • Python 2.7 - Programming Language
  • Sentiment140 - API

Python Packages Used

  • matplotlib , wordcloud ,scipy ,geocoder
  • re , pylab , webbrowser , pygmaps
  • json , nltk , collections , urllib2
  • gensim , monkeylearn , random, csv

Kafka Commands

Starts Zookeeper Server:

$ bin/zookeeper-server-start.sh config/zookeeper.properties

Starts Kafka Server:

$ nohup ~/kafka/bin/kafka-server-start.sh ~/kafka/config/server.properties > ~/kafka/kafka.log 2>&1 &

Create Topic ( t ):

$ bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic socialcops

Start Producer:

$ python tweepy_kafka_producer.py

Start Consumer ( another terminal ):

From inside Spark directory -

$ bin/spark-submit --master local[3] --jars external/kafka-assembly/target/scala-2.10/spark-streaming-kafka-assembly-1.5.0.jar SocialCops_Task_SoftwareChallenge/twitter_stream.py localhost:2181 socialcops

Analyse Intent and Topic ( saves to tweet_task_intent.csv )

$ python get_intent.py tweet_task.csv

Draw Pie Charts:

$ python draw_pies.py tweet_task.csv

Plot on map

$ python generate_Map.py tweet_task.csv

Draw WordCloud

$ python generate_cloud.py tweet_task.csv

License

Prakhar Mishra