-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
51 lines (41 loc) · 1.58 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from flask import Flask, request, jsonify, render_template
from deepface import DeepFace
import cv2
import numpy as np
import json
import random
import re
app = Flask(__name__)
# Load intents file
with open('intents.json') as json_data:
intents = json.load(json_data)
def classify_intent(user_text):
for intent in intents['intents']:
for pattern in intent['patterns']:
# Check if the pattern is found in the user's text (case insensitive)
if re.search(r'\b' + re.escape(pattern) + r'\b', user_text, re.IGNORECASE):
return random.choice(intent['responses'])
return "I'm here for you. How can I assist you?"
@app.route('/')
def index():
return render_template('chat.html')
@app.route('/get', methods=['POST'])
def chatbot_response():
user_text = request.form['msg']
return str(classify_intent(user_text))
@app.route('/analyze-image', methods=['POST'])
def analyze_image():
file = request.files['image']
npimg = np.fromfile(file, np.uint8)
img = cv2.imdecode(npimg, cv2.IMREAD_COLOR)
try:
# Analyze the image using DeepFace to detect emotion
analysis = DeepFace.analyze(img, actions=['emotion'], enforce_detection=False)
# Get the dominant emotion
dominant_emotion = analysis['dominant_emotion']
return jsonify({"mood": dominant_emotion})
except ValueError as e:
# Handle the case where no face is detected
return jsonify({"mood": "no_face", "error": str(e)})
if __name__ == "__main__":
app.run(debug=True)