forked from 11785-Group-9/BMN-Boundary-Matching-Network
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpost_processing.py
162 lines (131 loc) · 5.27 KB
/
post_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
import json
import multiprocessing as mp
from utils import iou_with_anchors
def load_json(file):
with open(file) as json_file:
data = json.load(json_file)
return data
def getDatasetDict(opt):
# df = pd.read_csv(opt["video_info"])
# json_data = load_json(opt["video_anno"])
# database = json_data
# video_dict = {}
# for i in range(len(df)):
# video_name = df.video.values[i]
# video_info = database[video_name]
# video_new_info = {}
# video_new_info['duration_frame'] = video_info['duration_frame']
# video_new_info['duration_second'] = video_info['duration_second']
# video_new_info["feature_frame"] = video_info['feature_frame']
# video_subset = df.subset.values[i]
# video_new_info['annotations'] = video_info['annotations']
# if video_subset == 'validation':
# video_dict[video_name] = video_new_info
# return video_dict
subset = "validation"
anno_database1 = load_json(opt["video_anno"])
anno_database2 = load_json(opt["video_info"])
anno_database2 = anno_database2['database']
video_dict = {}
for key, items in anno_database1.items():
video_name = key
video_info = items
temp_dict = anno_database2[key[2:]]
video_info['resolution'] = temp_dict['resolution']
video_info['url'] = temp_dict['url']
video_subset = items['subset']
if subset in video_subset:
video_dict[video_name] = video_info
return video_dict
def soft_nms(df, alpha, t1, t2):
'''
df: proposals generated by network;
alpha: alpha value of Gaussian decaying function;
t1, t2: threshold for soft nms.
'''
df = df.sort_values(by="score", ascending=False)
tstart = list(df.xmin.values[:])
tend = list(df.xmax.values[:])
tscore = list(df.score.values[:])
rstart = []
rend = []
rscore = []
while len(tscore) > 1 and len(rscore) < 101:
max_index = tscore.index(max(tscore))
tmp_iou_list = iou_with_anchors(
np.array(tstart),
np.array(tend), tstart[max_index], tend[max_index])
for idx in range(0, len(tscore)):
if idx != max_index:
tmp_iou = tmp_iou_list[idx]
tmp_width = tend[max_index] - tstart[max_index]
if tmp_iou > t1 + (t2 - t1) * tmp_width:
tscore[idx] = tscore[idx] * np.exp(-np.square(tmp_iou) /
alpha)
rstart.append(tstart[max_index])
rend.append(tend[max_index])
rscore.append(tscore[max_index])
tstart.pop(max_index)
tend.pop(max_index)
tscore.pop(max_index)
newDf = pd.DataFrame()
newDf['score'] = rscore
newDf['xmin'] = rstart
newDf['xmax'] = rend
return newDf
def video_post_process(opt, video_list, video_dict):
for video_name in video_list:
df = pd.read_csv("./output/BMN_results/" + video_name + ".csv")
# print("\JEFFERY WAS HERE\n")
if len(df) > 1:
snms_alpha = opt["soft_nms_alpha"]
snms_t1 = opt["soft_nms_low_thres"]
snms_t2 = opt["soft_nms_high_thres"]
df = soft_nms(df, snms_alpha, snms_t1, snms_t2)
# print(video_name, len(df))
df = df.sort_values(by="score", ascending=False)
video_info = video_dict[video_name]
video_duration = float(video_info["duration_frame"] // 16 * 16) / video_info["duration_frame"] * video_info[
"duration_second"]
proposal_list = []
for j in range(min(100, len(df))):
tmp_proposal = {}
tmp_proposal["score"] = df.score.values[j]
tmp_proposal["segment"] = [max(0, df.xmin.values[j]) * video_duration,
min(1, df.xmax.values[j]) * video_duration]
proposal_list.append(tmp_proposal)
result_dict[video_name[2:]] = proposal_list
def BMN_post_processing(opt):
video_dict = getDatasetDict(opt)
video_list = list(video_dict.keys()) # [:100]
global result_dict
result_dict = mp.Manager().dict()
# result_dict = {}
# print(len(video_list))
# video_post_process(opt, video_list, video_dict)
num_videos = len(video_list)
num_videos_per_thread = num_videos // opt["post_process_thread"]
processes = []
for tid in range(opt["post_process_thread"] - 1):
tmp_video_list = video_list[tid * num_videos_per_thread:(tid + 1) * num_videos_per_thread]
p = mp.Process(target=video_post_process, args=(opt, tmp_video_list, video_dict))
p.start()
processes.append(p)
tmp_video_list = video_list[(opt["post_process_thread"] - 1) * num_videos_per_thread:]
p = mp.Process(target=video_post_process, args=(opt, tmp_video_list, video_dict))
p.start()
processes.append(p)
for p in processes:
p.join()
result_dict = dict(result_dict)
# print("\nBEN WAS HERE\n", result_dict)
output_dict = {"version": "VERSION 1.3", "results": result_dict, "external_data": {}}
outfile = open(opt["result_file"], "w")
json.dump(output_dict, outfile)
outfile.close()
# opt = opts.parse_opt()
# opt = vars(opt)
# BSN_post_processing(opt)