Skip to content

Latest commit

 

History

History
130 lines (113 loc) · 3.94 KB

CLUSTER-SETUP.md

File metadata and controls

130 lines (113 loc) · 3.94 KB

Cluster Setup

The cluster setup installs and configures the following components:

  • Coscheduler
  • Kubeflow Training Operator
  • KubeRay
  • Kueue
  • AppWrappers
  • Cluster roles and priority classes

Priorities

Create default-priority, high-priority, and low-priority priority classes:

kubectl apply -f setup.k8s-v1.27/mlbatch-priorities.yaml

Coscheduler

Install Coscheduler v0.28.9 as a secondary scheduler and configure packing:

helm install scheduler-plugins --namespace scheduler-plugins --create-namespace \
  scheduler-plugins/manifests/install/charts/as-a-second-scheduler/ \
  --set-json pluginConfig='[{"args":{"scoringStrategy":{"resources":[{"name":"nvidia.com/gpu","weight":1}],"requestedToCapacityRatio":{"shape":[{"utilization":0,"score":0},{"utilization":100,"score":10}]},"type":"RequestedToCapacityRatio"}},"name":"NodeResourcesFit"},{"args":{"permitWaitingTimeSeconds":300},"name":"Coscheduling"}]'

Patch Coscheduler pod priorities:

kubectl patch deployment -n scheduler-plugins --type=json --patch-file setup.k8s-v1.27/coscheduler-priority-patch.yaml scheduler-plugins-controller
kubectl patch deployment -n scheduler-plugins --type=json --patch-file setup.k8s-v1.27/coscheduler-priority-patch.yaml scheduler-plugins-scheduler

Install Operators

Create the mlbatch-system namespace

kubectl create namespace mlbatch-system

Install the Kubeflow Training Operator

kubectl apply --server-side -k setup.k8s-v1.27/training-operator

Install the KubeRay Operator

kubectl apply --server-side -k setup.k8s-v1.27/kuberay

Install Kueue

kubectl apply --server-side -k setup.k8s-v1.27/kueue

Install the AppWrapper Operator

kubectl apply --server-side -k setup.k8s-v1.27/appwrapper

The provided configuration differs from the default configuration of the operators as follows:

  • Kubeflow Training Operator:
    • gang-scheduler-name is set to scheduler-plugins-scheduler,
  • Kueue:
    • manageJobsWithoutQueueName is enabled,
    • batch/job integration is disabled,
    • waitForPodsReady is disabled,
    • LendingLimit feature gate is enabled,
    • fairSharing is enabled,
    • enableClusterQueueResources metrics is enabled,
  • AppWrapper operator:
    • userRBACAdmissionCheck is disabled,
    • schedulerName is set to scheduler-plugins-scheduler,
    • queueName is set to default-queue,
  • pod priorities, resource requests and limits have been adjusted.

Kueue Configuration

Create Kueue's default flavor:

kubectl apply -f setup.k8s-v1.27/default-flavor.yaml

Cluster Role

Create mlbatch-edit role:

kubectl apply -f setup.k8s-v1.27/mlbatch-edit-role.yaml

Slack Cluster Queue

Create the designated slack ClusterQueue which will be used to automate minor adjustments to cluster capacity caused by node failures and scheduler maintanence.

kubectl apply -f- << EOF
apiVersion: kueue.x-k8s.io/v1beta1
kind: ClusterQueue
metadata:
  name: slack-cluster-queue
spec:
  namespaceSelector: {}
  cohort: default-cohort
  preemption:
    withinClusterQueue: LowerOrNewerEqualPriority
    reclaimWithinCohort: Any
    borrowWithinCohort:
      policy: Never
  resourceGroups:
  - coveredResources: ["cpu", "memory", "nvidia.com/gpu", "nvidia.com/roce_gdr", "pods"]
    flavors:
    - name: default-flavor
      resources:
      - name: "cpu"
        nominalQuota: 8000m
      - name: "memory"
        nominalQuota: 128Gi
      - name: "nvidia.com/gpu"
        nominalQuota: 8
      - name: "nvidia.com/roce_gdr"
        nominalQuota: 1
      - name: "pods"
        nominalQuota: 100
EOF

Edit the above quantities to adjust the quota to the desired values. Pod counts are optional and can be omitted from the list of covered resources. The lendingLimit for each resource will be dynamically adjusted by the MLBatch system to reflect reduced cluster capacity. See QUOTA_MAINTENANCE.md for a detailed discussion of the role of the slack ClusterQueue.