-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmarigold_dc.py
235 lines (194 loc) · 11 KB
/
marigold_dc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# Copyright 2024 Massimiliano Viola, Kevin Qu, Nando Metzger, Anton Obukhov ETH Zurich.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ---------------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/Marigold-DC#-citation
# More information can be found at https://marigolddepthcompletion.github.io
# ---------------------------------------------------------------------------------
import logging
import os
import warnings
import argparse
import diffusers
import numpy as np
import torch
from diffusers import DDIMScheduler, MarigoldDepthPipeline
from PIL import Image
warnings.simplefilter(action="ignore", category=FutureWarning)
diffusers.utils.logging.disable_progress_bar()
class MarigoldDepthCompletionPipeline(MarigoldDepthPipeline):
"""
Pipeline for Marigold Depth Completion.
Extends the MarigoldDepthPipeline to include depth completion functionality.
"""
def __call__(
self, image: Image.Image, sparse_depth: np.ndarray,
num_inference_steps: int = 50, processing_resolution: int = 768, seed: int = 2024
) -> np.ndarray:
"""
Args:
image (PIL.Image.Image): Input image of shape [H, W] with 3 channels.
sparse_depth (np.ndarray): Sparse depth guidance of shape [H, W].
num_inference_steps (int, optional): Number of denoising steps. Defaults to 50.
processing_resolution (int, optional): Resolution for processing. Defaults to 768.
seed (int, optional): Random seed. Defaults to 2024.
Returns:
np.ndarray: Dense depth prediction of shape [H, W].
"""
# Resolving variables
device = self._execution_device
generator = torch.Generator(device=device).manual_seed(seed)
# Check inputs.
if num_inference_steps is None:
raise ValueError("Invalid num_inference_steps")
if type(sparse_depth) is not np.ndarray or sparse_depth.ndim != 2:
raise ValueError("Sparse depth should be a 2D numpy ndarray with zeros at missing positions")
# Prepare empty text conditioning
with torch.no_grad():
if self.empty_text_embedding is None:
text_inputs = self.tokenizer("", padding="do_not_pad",
max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
text_input_ids = text_inputs.input_ids.to(device)
self.empty_text_embedding = self.text_encoder(text_input_ids)[0] # [1,2,1024]
# Preprocess input images
image, padding, original_resolution = self.image_processor.preprocess(
image, processing_resolution=processing_resolution, device=device, dtype=self.dtype
) # [N,3,PPH,PPW]
# Check sparse depth dimensions
if sparse_depth.shape != original_resolution:
raise ValueError(
f"Sparse depth dimensions ({sparse_depth.shape}) must match that of the image ({image.shape[-2:]})"
)
# Encode input image into latent space
with torch.no_grad():
image_latent, pred_latent = self.prepare_latents(image, None, generator, 1, 1) # [N*E,4,h,w], [N*E,4,h,w]
del image
# Preprocess sparse depth
sparse_depth = torch.from_numpy(sparse_depth)[None, None].float().to(device)
sparse_mask = sparse_depth > 0
logging.info(f"Using {sparse_mask.int().sum().item()} guidance points")
# Set up optimization targets and compute the range and lower bound of the sparse depth
scale, shift = torch.nn.Parameter(torch.ones(1, device=device)), torch.nn.Parameter(torch.ones(1, device=device))
pred_latent = torch.nn.Parameter(pred_latent)
sparse_range = (sparse_depth[sparse_mask].max() - sparse_depth[sparse_mask].min()).item() # (cmax − cmin)
sparse_lower = (sparse_depth[sparse_mask].min()).item() # cmin
# Set up optimizer
optimizer = torch.optim.Adam([ {"params": [scale, shift], "lr": 0.005},
{"params": [pred_latent] , "lr": 0.05 }])
def affine_to_metric(depth: torch.Tensor) -> torch.Tensor:
# Convert affine invariant depth predictions to metric depth predictions using the parametrized scale and shift. See Equation 2 of the paper.
return (scale**2) * sparse_range * depth + (shift**2) * sparse_lower
def latent_to_metric(latent: torch.Tensor) -> torch.Tensor:
# Decode latent to affine invariant depth predictions and subsequently to metric depth predictions.
affine_invariant_prediction = self.decode_prediction(latent) # [E,1,PPH,PPW]
prediction = affine_to_metric(affine_invariant_prediction)
prediction = self.image_processor.unpad_image(prediction, padding) # [E,1,PH,PW]
prediction = self.image_processor.resize_antialias(
prediction, original_resolution, "bilinear", is_aa=False
) # [1,1,H,W]
return prediction
def loss_l1l2(input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
# Compute L1 and L2 loss between input and target.
out_l1 = torch.nn.functional.l1_loss(input, target)
out_l2 = torch.nn.functional.mse_loss(input, target)
out = out_l1 + out_l2
return out
# Denoising loop
self.scheduler.set_timesteps(num_inference_steps, device=device)
for _, t in enumerate(
self.progress_bar(self.scheduler.timesteps, desc=f"Marigold-DC steps ({str(device)})...")
):
optimizer.zero_grad()
# Forward pass through the U-Net
batch_latent = torch.cat([image_latent, pred_latent], dim=1) # [1,8,h,w]
noise = self.unet(
batch_latent, t, encoder_hidden_states=self.empty_text_embedding, return_dict=False
)[0] # [1,4,h,w]
# Compute pred_epsilon to later rescale the depth latent gradient
with torch.no_grad():
alpha_prod_t = self.scheduler.alphas_cumprod[t]
beta_prod_t = 1 - alpha_prod_t
pred_epsilon = (alpha_prod_t**0.5) * noise + (beta_prod_t**0.5) * pred_latent
step_output = self.scheduler.step(noise, t, pred_latent, generator=generator)
# Preview the final output depth with Tweedie's formula (See Equation 1 of the paper)
pred_original_sample = step_output.pred_original_sample
# Decode to metric space, compute loss with guidance and backpropagate
current_metric_estimate = latent_to_metric(pred_original_sample)
loss = loss_l1l2(current_metric_estimate[sparse_mask], sparse_depth[sparse_mask])
loss.backward()
# Scale gradients up
with torch.no_grad():
pred_epsilon_norm = torch.linalg.norm(pred_epsilon).item()
depth_latent_grad_norm = torch.linalg.norm(pred_latent.grad).item()
scaling_factor = pred_epsilon_norm / max(depth_latent_grad_norm, 1e-8)
pred_latent.grad *= scaling_factor
# Execute the update step through guidance backprop
optimizer.step()
# Execute update of the latent with regular denoising diffusion step
with torch.no_grad():
pred_latent.data = self.scheduler.step(noise, t, pred_latent, generator=generator).prev_sample
del pred_original_sample, current_metric_estimate, step_output, pred_epsilon, noise
torch.cuda.empty_cache()
del image_latent
# Decode predictions from latent into pixel space
with torch.no_grad():
prediction = latent_to_metric(pred_latent.detach())
# return Numpy array
prediction = self.image_processor.pt_to_numpy(prediction) # [N,H,W,1]
self.maybe_free_model_hooks()
return prediction.squeeze()
def main():
parser = argparse.ArgumentParser(description="Marigold-DC Pipeline")
DEPTH_CHECKPOINT = "prs-eth/marigold-depth-v1-0"
parser.add_argument("--in-image", type=str, default="data/image.png", help="Input image")
parser.add_argument("--in-depth", type=str, default="data/sparse_100.npy", help="Input sparse depth")
parser.add_argument("--out-depth", type=str, default="data/dense_100.npy", help="Output dense depth")
parser.add_argument("--num_inference_steps", type=int, default=50, help="Denoising steps")
parser.add_argument("--processing_resolution", type=int, default=768, help="Denoising resolution")
parser.add_argument("--checkpoint", type=str, default=DEPTH_CHECKPOINT, help="Depth checkpoint")
args = parser.parse_args()
num_inference_steps = args.num_inference_steps
processing_resolution = args.processing_resolution
if torch.cuda.is_available():
device = torch.device("cuda")
else:
if torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
processing_resolution_non_cuda = 512
num_inference_steps_non_cuda = 10
if processing_resolution > processing_resolution_non_cuda:
logging.warning(f"CUDA not found: Reducing processing_resolution to {processing_resolution_non_cuda}")
processing_resolution = processing_resolution_non_cuda
if num_inference_steps > num_inference_steps_non_cuda:
logging.warning(f"CUDA not found: Reducing num_inference_steps to {num_inference_steps_non_cuda}")
num_inference_steps = num_inference_steps_non_cuda
pipe = MarigoldDepthCompletionPipeline.from_pretrained(args.checkpoint, prediction_type="depth").to(device)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
if not torch.cuda.is_available():
logging.warning("CUDA not found: Using a lightweight VAE")
del pipe.vae
pipe.vae = diffusers.AutoencoderTiny.from_pretrained("madebyollin/taesd").to(device)
pred = pipe(
image=Image.open(args.in_image),
sparse_depth=np.load(args.in_depth),
num_inference_steps=num_inference_steps,
processing_resolution=processing_resolution,
)
np.save(args.out_depth, pred)
vis = pipe.image_processor.visualize_depth(pred, val_min=pred.min(), val_max=pred.max())[0]
vis.save(os.path.splitext(args.out_depth)[0] + "_vis.jpg")
if __name__ == "__main__":
main()