-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStoker_solution.m
167 lines (141 loc) · 5.27 KB
/
Stoker_solution.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
%**************************************************************************
% Stoker's (1957) analytical solution for ideal dam-break
% code generated by: Payam Sarkhosh
% Research assistant at Prof. Yee-Chung Jin's Lab
% University of Regina, Saskatchewan, Canada
% Fall 2021
%**************************************************************************
clc
clear all
clf
%******************************* inputs ***********************************
disp('*******************************************************************')
disp('******* Please enter the following inputs, and press ENTER ********')
disp('*******************************************************************')
disp(' ')
h0 = input(' initial upstream water depth: h0 (m) >> ');
hd = input(' initial downstream water depth: hd (m) >> ');
Lc = input(' channel length: Lc (m) >> ');
Lr = input(' reservoir length: Lr (m) >> ');
T = input(' total simulation time T (s) >> ');
n=2000; %Number of spaceintervals
m=T*200; %Number of time intervals
%**************************************************************************
dx=Lc/n; %space step
dt=T/m; %Time step
g=9.81; %Gravitational acceleration
x=zeros(n,1); %X vector
u=zeros(n,1); %Flow velocity vector
h=zeros(n,1); %Flow depth vector
x_UBC=-Lr;
x_DBC=Lc-Lr;
x0=0;
%************************ Plotting initial condition plot *****************
x1=-Lr;
x2=0;
xDam2=linspace(x1,x2,n);
Dam2=h0+1e-50*xDam2;
x1=x0+1e-10;
xDam1=linspace(x0,x1,n);
Dam1=h0*(xDam1-x0)/1e-10;
%*************************** Mesh generation ******************************
x(1)=x_UBC;
for i=1:n-1
x(i+1)=x_UBC+i*dx;
if abs(x(i)-x0)<0.5*dx
i_0=i;
end
end
x(n)=Lc-Lr;
h(1)=h0;
%****************** defenition of constant values**************************
x2_end=-1e-20;
hA=1e+20;
Cup=(g*h0)^0.5; % wave speed at upstreamstream
Cdown=(g*hd)^0.5; % wave speed at downstream
for k=1:m
Time=k*dt;
%**************** Newton-Raphson iteration ***************************
f_CB=1; df_CB=1; CB=10*h0;
while abs(f_CB/CB)>1e-10
f_CB= CB*hd - hd*(((8*CB^2)/Cdown^2 + 1)^(1/2) - 1)*(CB/2 - Cup...
+((g*hd*(((8*CB^2)/Cdown^2 + 1)^(1/2) - 1))/2)^(1/2)) ;
df_CB= hd -hd*((2*CB*g*hd)/(Cdown^2*((8*CB^2)/Cdown^2 + 1)^(1/2)...
*((g*hd*(((8*CB^2)/Cdown^2 + 1)^(1/2) - 1))/2)^(1/2)) + 1/2)...
*(((8*CB^2)/Cdown^2 + 1)^(1/2) - 1) - (8*CB*hd*(CB/2 - Cup...
+ ((g*hd*(((8*CB^2)/Cdown^2 + 1)^(1/2) - 1))/2)^(1/2)))/...
(Cdown^2*((8*CB^2)/Cdown^2 + 1)^(1/2)) ;
CB=CB-f_CB/df_CB;
end
%*************** Newton-Raphson iteration end *************************
hA=0.5*hd*((1+8*CB^2.0/Cdown^2.0)^0.5-1);
if hd==0
CB=0; hA=0;
end
X2_start=(2*(g*h0)^0.5-3*(g*hA)^0.5)*Time;
X2_end=CB*Time;
uA=2*Cup-2*(g*hA)^0.5;
for i=2:n
h(i)=(2*(g*h0)^0.5-x(i)/Time)^2.0/9/g;
u(i)=2*(x(i)/Time+(g*h0)^0.5)/3;
h(1)=h(2);
u(1)=u(2);
%******************************************************************
if h(i)>=h0
i_A=i;
h(i)=h0;
u(i)=0;
end
if hA==0 && h(i)>h(i-1)
h(i)=0;
u(i)=0;
end
if hA>0
if x(i)<=X2_end && h(i)<=hA
i_B=i;
h(i)=hA;
u(i)=uA;
elseif x(i)>X2_end
h(i)=hd;
u(i)=0;
end
end
end
if (rem(Time,1/m)==0)
subplot(2,1,1)
plot(xDam2,Dam2,'--k','LineWidth',1), hold on
plot(xDam1,Dam1,'--k','LineWidth',1)
plot(x,h,'b','LineWidth',3)
xlim([x_UBC x_DBC])
ylim([0 1.1*h0])
y_label=ylabel('water depth (m)');
set(y_label,'position',get(y_label,'position')-[0.2 0 0]);
set(gca,'FontSize',14)
Time=Time+0.0001;
title({"Stoker's (1957) solution for ideal dam-break problem"
['t = ',num2str(Time,'%.2f'),' s']},'FontSize',15)
Time=Time-0.0001;
hold off
subplot(2,1,2)
brown = [0.5, 0, 0];
plot(x,u,'Color',brown,'LineWidth',3)
xlim([x_UBC x_DBC])
ylim([0 (g*h0)^0.5*2.2])
x_label=xlabel('x (m)');
set(x_label,'position',get(x_label,'position')+[0.15 -0.1 0]);
y_label=ylabel('velocity (m/s)');
set(y_label,'position',get(y_label,'position')-[0.2 0 0]);
set(gca,'FontSize',14)
fig=figure(1);
if(Time == T)
disp(' ')
disp(['******* Outputs at t = ',num2str(Time),' s **********'])
T2 = table(x,h,u);
format short
disp(T2);
disp(['******* Outputs at t = ',num2str(Time),' s **********'])
end
format long
end
hold off
end