forked from jainaman224/Algo_Ds_Notes
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathBellmanford.py
73 lines (61 loc) · 1.98 KB
/
Bellmanford.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
class BellmanFord:
"""
Input : Directed Graph
Output : Minimum distance from provided source
Requirements
==========================================================
* Adjency List in the form of a dictionary
* Note : Each node should have a corresponding key (even if empty)
* A source
"""
def __init__(self, adjList, source):
"""
* Converts the adjlist into tuples with source, destination and weight triplets
* Intialisses distance
"""
self.no_vertices = len(adjList.keys())
self.source = source
self.edge_list = []
self.dist = {}
for node in adjList.keys():
self.dist[node] = float('inf') # Sets all distances to inf
for connected_node in adjList[node].keys():
self.edge_list.append((node, connected_node, adjList[node][connected_node]))
self.dist[source] = 0 # Makes source distance as 0
self.no_of_edges = len(self.edge_list)
def run(self):
"""
Bellmanford Implementation
"""
for i in xrange(0, self.no_vertices - 1):
for j in xrange(0, self.no_of_edges):
start = self.edge_list[j][0]
end = self.edge_list[j][1]
weight = self.edge_list[j][2]
if self.dist[start] + weight < self.dist[end]:
self.dist[end] = self.dist[start] + weight
def get_dist(self):
"""
Returns distance dictionary
"""
return self.dist
def print_dist(self):
print "Node", "\t\tDistance"
for each in self.dist.keys():
print each, "\t\t", self.dist[each]
g = { 'A': {'B': -1, 'C': 4},
'B': {'C': 3, 'D': 2, 'E': 2},
'C': {},
'D': {'B': 1, 'C': 5},
'E': {'D': -3},
}
bellmanford = BellmanFord(g, 'A')
bellmanford.run()
bellmanford.print_dist()
#OUTPUT
#Node Distance
#A 0
#C 2
#B -1
#E 1
#D -2