forked from jainaman224/Algo_Ds_Notes
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathKruskal_Algorithm.cpp
139 lines (116 loc) · 3.79 KB
/
Kruskal_Algorithm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
// C++ implementation of Kruskal's Algorithm to find the Minimum Spanning tree for a weighted, connected and undirected graph.
#include <iostream>
#include <climits>
#define n 6
int parent[n]; // Parent array to hold the parent nodes of each node in the graph
using namespace std;
void printMST(int a[n], int b[n], int weight[n]) // Printing the MST
{
int Minweight = 0; // Weight of Minimum spanning tree
for (int i = 0; i < n - 1; i++)
{
cout << "Edge: " << a[i] << "-" << b[i] << " "
<< "cost: " << weight[i] << endl;
Minweight += weight[i];
}
cout << "Minimum Weight is " << Minweight << endl; // Printing the weight of MINIMUM SPANNING TREE
}
int findParent(int node) // Function to determine the parent node
{
while(parent[node] >= 0)
node = parent[node];
return node;
}
/* "findParentPathCompression" is an alternative for "findParent" which is more efficient.
* We use a technique called "path compression" here.
* With path compression, we destroy the structure of the tree, and only focus on which group a node is in.
*/
int findParentPathCompression(int node)
{
if(node == parent[node]) return node;
return parent[node] = findParentPathCompression(parent[node]);
}
void kruskal(int cost[n][n]) // Function performing Kruskal's algorithm
{
fill_n(parent, n, -1);
int u, v, k = 0, count = 0;
int firstNode, secondNode;
int a[n]; // Array containing the first nodes of all the edges present in MST
int b[n]; // Array containing the second nodes of all the edges present in MST
int weight[n]; // Array containing the weights of the edges present in MST
int minimum;
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
if (cost[i][j] == 0) // If i and j nodes are not adjacent
cost[i][j] = INT_MAX; // Then, initialize their weight as INFINITE
while(count < n-1)
{
minimum = INT_MAX; // Initializing minimum as INFINITE
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
if (cost[i][j] < minimum)
{
minimum = cost[i][j]; // find the minimum cost edge
firstNode = i; // First node of determined edge
secondNode = j; // Second node of determined edge
}
}
}
u = findParent(firstNode);
v = findParent(secondNode);
if (u != v) // If parents of both the nodes are different, no circuit is being formed
{
parent[v] = u;
a[k] = firstNode; // Store first node in array
b[k] = secondNode; // Store second node in array
weight[k] = cost[firstNode][secondNode]; // Store the determined edge's weight in array
count++;
k++;
}
cost[firstNode][secondNode] = cost[secondNode][firstNode] = INT_MAX; // Edges getting included in MST will be given the weight of INFINITE
}
printMST(a, b, weight); // Printing the MST
}
// Driver program to test above function
int main()
{
/* Let the given graph is :
(1)____1___(2)
/ \ / \
3 4 4 6
/ \ / \
/ \ / \
(0)___5___(5)____5___(3)
\ | /
\ | /
\ | /
\ 2 /
6 | 8
\ | /
\ | /
\ | /
\ | /
(4)
*/
int cost[n][n] = {
{ 0, 3, 0, 0, 6, 5 },
{ 3, 0, 1, 0, 0, 4 },
{ 0, 1, 0, 6, 0, 4 },
{ 0, 0, 6, 0, 8, 5 },
{ 6, 0, 0, 8, 0, 2 },
{ 5, 4, 4, 5, 2, 0 }
};
kruskal(cost);
return 0;
}
/*
Output :
Edge: 0-1 cost: 3
Edge: 1-2 cost: 1
Edge: 1-5 cost: 4
Edge: 5-4 cost: 2
Edge: 5-3 cost: 5
Minimum Weight is 15
*/