forked from sbird/DLA_script
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dla_plots.py
813 lines (749 loc) · 38.1 KB
/
dla_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
# -*- coding: utf-8 -*-
"""
This is a module for making plots like those in Tescari & Viel, based on the data gathered in the Halohi module
Figures implemented:
5,6,9,10-13
Possible but not implemented:
14
"""
import halohi
import boxhi
import numpy as np
import os.path as path
import math
import bias
import matplotlib.pyplot as plt
from brokenpowerfit import powerfit
import matplotlib.colors
from cubehelix import cubehelix, cubehelix_r
import halo_mass_function
gcol="blue"
acol="red"
acol2="cyan"
gcol2="magenta"
rcol="black"
astyle="-"
gstyle="--"
#Modified jet that works better in B&W
jet2 = {'red': ((0., 1, 1),(0.2, 0, 0), (0.5, 1, 1), (0.75,1, 1),
(1, 0.5, 0.5)),
'green': ((0., 1, 1), (0.2,1, 1), (0.5,1, 1),
(0.75,0,0), (1, 0, 0)),
'blue': ((0., 1, 1), (0.2, 1, 1), (0.5,0, 0),
(1, 0, 0))}
spb_jet2 = matplotlib.colors.LinearSegmentedColormap('spb_jet2',jet2,256)
#These are parameters for the analytic fits for the DLA abundances.
#breakpoint is at 10^10.5
#For the CIC kernel
#arepo_halo_p = {
# 90 : [ 0.44788372118 , 33.9815447137 , 147.019872918 , 782.356835854 , 2.43699726448 , ],
# 91 : [ 0.44788372118 , 33.9815447137 , 147.019872918 , 782.356835854 , 2.43699726448 , ],
# 124 : [ 0.545131805553 , 33.8286589585 , 79.2409360956 , 7.3077275913 , 4.44331594943 , ],
# 141 : [ 0.545131805553 , 33.8286589585 , 79.2409360956 , 7.3077275913 , 4.44331594943 , ],
# 191 : [ 0.536604868665 , 33.880052174 , 60.3190730406 , -987.746517091 , 0.801277260999 , ],
# }
#gadget_halo_p = {
# 90 : [ 0.400712532199 , 34.1198998574 , 90.8083441527 , 1172.67416847 , 3.28402808298 , ],
# 91 : [ 0.400712532199 , 34.1198998574 , 90.8083441527 , 1172.67416847 , 3.28402808298 , ],
# 124 : [ 0.584178906377 , 33.4164257889 , -43.6910928625 , 328.651366054 , 2.94190923713 , ],
# 141 : [ 0.584178906377 , 33.4164257889 , -43.6910928625 , 328.651366054 , 2.94190923713 , ],
# 191 : [ 0.799269775395 , 32.3381518149 , -76.8165819708 , 42.1669345832 , 2.55134740883 , ],
# }
#For the SPH kernel
arepo_halo_p = {
90 : [ 0.593228633746 , 33.1299984533 , 74.0493146085 , 1497.00861204 , 1.068627058 , ],
141 : [ 0.495570003992 , 33.8061311491 , 101.01513697 , -474.362361738 , 0.528843128887 , ],
191 : [ 0.518273575979 , 33.6289279888 , 66.7295698539 , -1124.56210394 , 0.786777504418 , ],
}
gadget_halo_p = {
90 : [ 0.429181628186 , 33.4591228946 , 79.8087750645 , 1073.24697702 , 2.97141901891 , ],
141 : [ 0.6252104913 , 32.6599023717 , -27.2718078548 , 315.755545603 , 2.73050761493 , ],
191 : [ 0.84906246444 , 31.4994150987 , -49.9975217441 , 20.1374668372 , 2.50768504269 , ],
}
def tab_to_latex():
"""Convert above table to latex format"""
i = 4
for snap in (90, 141, 191):
print str(i)," & Arepo ",
for jj in arepo_halo_p[snap]:
print " & ",sig_fig(jj,2),
print "\\\\ "
print str(i)," & Gadget ",
for jj in gadget_halo_p[snap]:
print " & ",sig_fig(jj,2),
print "\\\\ "
i-=1
def sig_fig(num,figs=3):
"""Round a number to figs significant figures"""
#How many digits does number have?
norm=np.floor(np.log10(np.abs(num)))
rnded=np.round(num,int(figs-norm))
if norm >= figs:
return str(int(rnded))
else:
return str(rnded)
def pr_num(num,rnd=2):
"""Return a string rep of a number"""
return str(np.round(num,rnd))
def tight_layout_wrapper():
"""Wrap tight_layout for matplotlib backends like ps which don't have it"""
try:
plt.tight_layout()
except AttributeError:
pass
class PrettyHalo(halohi.HaloHI):
"""
Derived class with extra methods for plotting a pretty (high-resolution) picture of the grid around a halo.
"""
def plot_pretty_something(self,num,grid,bar_label):
"""
Plots a pretty (high-resolution) picture of the grid around a halo.
Helper for the other functions.
"""
#Plot a figure
vmax=np.max([np.max(grid),25.5])
maxdist = self.sub_radii[num]
plt.imshow(grid,origin='lower',extent=(-maxdist,maxdist,-maxdist,maxdist),vmin=10,vmax=vmax,cmap=spb_jet2)
bar=plt.colorbar()#use_gridspec=True)
bar.set_label(bar_label)
if (maxdist > 150) * (maxdist < 200):
plt.xticks((-150,-75,0,75,150))
plt.yticks((-150,-75,0,75,150))
if maxdist > 300:
plt.xticks((-300,-150,0,150,300))
plt.yticks((-300,-150,0,150,300))
plt.xlabel(r"y (kpc h$^{-1}$)")
plt.ylabel(r"z (kpc h$^{-1}$)")
tight_layout_wrapper()
plt.show()
def plot_pretty_halo(self,num=0):
"""
Plots a pretty (high-resolution) picture of the grid around a halo.
"""
self.plot_pretty_something(num,self.sub_nHI_grid[num],r"log$_{10}$ N$_\mathrm{HI}$ (cm$^{-2}$)")
def plot_pretty_cut_halo(self,num=0,cut_LLS=17,cut_DLA=20.3):
"""
Plots a pretty (high-resolution) picture of the grid around a halo.
"""
cut_grid=np.array(self.sub_nHI_grid[num])
ind=np.where(cut_grid < cut_LLS)
cut_grid[ind]=10
ind2=np.where((cut_grid < cut_DLA)*(cut_grid > cut_LLS))
cut_grid[ind2]=12.
ind3=np.where(cut_grid > cut_DLA)
cut_grid[ind3]=20.3
maxdist = self.sub_radii[num]
plt.imshow(cut_grid,origin='lower',extent=(-maxdist,maxdist,-maxdist,maxdist),vmin=10,vmax=20.3, cmap=spb_jet2)
if (maxdist > 150) * (maxdist < 200):
plt.xticks((-150,-75,0,75,150))
plt.yticks((-150,-75,0,75,150))
if maxdist > 300:
plt.xticks((-300,-150,0,150,300))
plt.yticks((-300,-150,0,150,300))
plt.xlabel(r"y (kpc h$^{-1}$)")
plt.ylabel(r"z (kpc h$^{-1}$)")
tight_layout_wrapper()
plt.show()
def plot_radial_profile(self,minM=3e11,maxM=1e12,minR=0,maxR=20.):
"""Plots the radial density of neutral hydrogen (and possibly gas) for a given halo,
stacking several halo profiles together."""
Rbins=np.linspace(minR,maxR,20)
aRprof=[self.get_stacked_radial_profile(minM,maxM,Rbins[i],Rbins[i+1]) for i in xrange(0,np.size(Rbins)-1)]
plt.plot(Rbins[0:-1],aRprof,color=acol, ls=astyle,label="HI")
plt.xlabel(r"R (kpc h$^{-1}$)")
plt.ylabel(r"Density $N_{HI}$ (kpc$^{-1}$)")
tight_layout_wrapper()
plt.show()
def plot_column_density(self,minN=17,maxN=23.,color=acol, ls=astyle,moment=False):
"""Plots the column density distribution function. """
(aNHI,af_N)=self.column_density_function(0.1,minN-1,maxN+1)
if moment:
paf_N = af_N*aNHI
else:
paf_N = af_N
try:
label = self.label
except AttributeError:
label=""
plt.loglog(aNHI,paf_N,color=color, ls=ls, lw = 3, label=label)
#Make the ticks be less-dense
#ax=plt.gca()
#ax.xaxis.set_ticks(np.power(10.,np.arange(int(minN),int(maxN),2)))
#ax.yaxis.set_ticks(np.power(10.,np.arange(int(np.log10(af_N[-1])),int(np.log10(af_N[0])),2)))
plt.xlabel(r"$N_\mathrm{HI} (\mathrm{cm}^{-2})$")
if moment:
plt.ylabel(r"$N_\mathrm{HI} f(N)$")
else:
plt.ylabel(r"$f(N)$")
# plt.title(r"Column density function at $z="+pr_num(self.redshift,1)+"$")
plt.xlim(10**minN, 10**maxN)
plt.ylim(1e-27,1e-18)
if moment:
plt.ylim(5e-5,1)
# plt.legend(loc=0)
# tight_layout_wrapper()
plt.show()
def plot_column_density_breakdown(self,minN=17,maxN=23., color="black"):
"""Plots the column density distribution function, broken down into halos. """
(aNHI,tot_af_N)=self.column_density_function(0.1,minN-1,maxN+1)
(aNHI,af_N)=self.column_density_function(0.1,minN-1,maxN+1,minM=11, maxM=14)
plt.loglog(aNHI,af_N/tot_af_N,color=color, ls="-",label="Big",lw=4)
(aNHI,af_N)=self.column_density_function(0.1,minN-1,maxN+1,minM=10,maxM=11)
plt.loglog(aNHI,af_N/tot_af_N,color=color, ls="--",label="Middle",lw=4)
try:
(aNHI,af_N)=self.column_density_function(0.1,minN-1,maxN+1,minM=9,maxM=10)
plt.loglog(aNHI,af_N/tot_af_N,color=color, ls=":",label="Small",lw=4)
except IndexError:
pass
ax=plt.gca()
ax.set_xlabel(r"$N_\mathrm{HI} (\mathrm{cm}^{-2})$",size=25)
ax.set_ylabel(r"$f_\mathrm{halo}(N) / f_\mathrm{tot} (N) $",size=25)
plt.xlim(10**minN, 10**maxN)
plt.ylim(1e-2,1)
tight_layout_wrapper()
plt.show()
def plot_sigma_DLA_median(self, DLA_cut=20.3,DLA_upper_cut=42.):
"""Plot the median and scatter of sigma_DLA against mass."""
mass=np.logspace(np.log10(np.min(self.sub_mass)),np.log10(np.max(self.sub_mass)),num=7)
abin_mass = np.empty(np.size(mass)-1)
abin_mass = halohi.calc_binned_median(mass,self.sub_mass, self.sub_mass)
(amed,aloq,aupq)=self.get_sigma_DLA_binned(mass,DLA_cut,DLA_upper_cut)
#To avoid zeros
aloq-=1e-2
#Plot median sigma DLA
plt.errorbar(abin_mass, amed,yerr=[aloq,aupq],fmt='^',color=acol,ms=15,elinewidth=4)
def plot_sigma_DLA(self, DLA_cut=20.3,DLA_upper_cut=42.):
"""Plot sigma_DLA vs mass"""
self.plot_sigma_DLA_contour(DLA_cut,DLA_upper_cut)
self.plot_sigma_DLA_median(DLA_cut,DLA_upper_cut)
#Plot Axes stuff
ax=plt.gca()
ax.set_yscale('log')
ax.set_xscale('log')
# ax.tick_params(labelsize=30)
ax.set_xlabel(r"Mass ($M_\odot$ h$^{-1}$)")
plt.ylabel(r"$\sigma_\mathrm{DLA}$ (kpc$^2$)")
if DLA_cut == 20.3:
plt.title(r"DLA cross-section at $z="+pr_num(self.redshift,1)+"$")
if DLA_cut == 17.:
ax.set_ylabel(r"$\sigma_\mathrm{LLS}$ (kpc$^2$)")
plt.title(r"LLS cross-section at $z="+pr_num(self.redshift,1)+"$")
#plt.xlim(self.minplot,self.maxplot)
if DLA_cut < 19:
plt.ylim(ymin=10)
else:
plt.ylim(ymin=1,ymax=10**4)
#Fits
tight_layout_wrapper()
plt.show()
def plot_sigma_DLA_contour(self, DLA_cut=20.3,DLA_upper_cut=42.):
"""Plot sigma_DLA against mass."""
asigDLA=self.get_sigma_DLA(DLA_cut,DLA_upper_cut)
#Plot sigma DLA
#As contour
ind = np.where(asigDLA > 0)
(hist,xedges, yedges)=np.histogram2d(np.log10(self.sub_mass[ind]),np.log10(asigDLA[ind]),bins=(30,30))
xbins=np.array([(xedges[i+1]+xedges[i])/2 for i in xrange(0,np.size(xedges)-1)])
ybins=np.array([(yedges[i+1]+yedges[i])/2 for i in xrange(0,np.size(yedges)-1)])
plt.contourf(10**xbins,10**ybins,hist.T,[1,1000],colors=("#cd5c5c",acol2),alpha=0.4)
class PrettyBox(boxhi.BoxHI,PrettyHalo):
"""
As above but for the whole box grid
"""
def __init__(self,snap_dir,snapnum,nslice=1,reload_file=False,savefile=None, label=""):
boxhi.BoxHI.__init__(self,snap_dir,snapnum,nslice, reload_file=reload_file,savefile=savefile)
self.label = label
def plot_sigma_DLA(self, minpart = 0, dist=2., color=acol, color2="#cd5c5c"):
"""Plot sigma_DLA"""
#Load defaults from file
self._get_sigma_DLA(minpart, dist)
self.plot_sigma_DLA_median(color=color)
self.plot_sigma_DLA_model(color=color)
print "field dlas:",self.field_dla
ind = np.where(np.logical_and(self.sigDLA > 0, self.real_sub_mass > 0))
(hist,xedges, yedges)=np.histogram2d(np.log10(self.real_sub_mass[ind]),np.log10(self.sigDLA[ind]),bins=(30,30))
xbins=np.array([(xedges[i+1]+xedges[i])/2 for i in xrange(0,np.size(xedges)-1)])
ybins=np.array([(yedges[i+1]+yedges[i])/2 for i in xrange(0,np.size(yedges)-1)])
plt.contourf(10**xbins,10**ybins,hist.T,[1,1000],colors=(color2,color),alpha=0.4)
plt.yscale('log')
plt.xscale('log')
plt.xlabel(r"Halo Mass ($M_\odot$)")
plt.ylabel(r"$\sigma_\mathrm{DLA}$ (kpc/h)$^2$")
def plot_sigma_LLS(self, minpart = 0, dist=2.):
"""Plot sigma_DLA"""
#Load defaults from file
self._get_sigma_LLS(minpart, dist)
print "field dlas:",self.field_lls
ind = np.where(self.sigLLS > 0)
(hist,xedges, yedges)=np.histogram2d(np.log10(self.real_sub_mass[ind]),np.log10(self.sigLLS[ind]),bins=(30,30))
xbins=np.array([(xedges[i+1]+xedges[i])/2 for i in xrange(0,np.size(xedges)-1)])
ybins=np.array([(yedges[i+1]+yedges[i])/2 for i in xrange(0,np.size(yedges)-1)])
plt.contourf(10**xbins,10**ybins,hist.T,[1,1000],colors=("#cd5c5c",acol2),alpha=0.4)
plt.yscale('log')
plt.xscale('log')
def plot_halo_hist(self, Mmin=1e8, Mmax=8e12, nbins=20, color="blue",ls="-",dla = True, minpart = 0, dist=2., plot_error=False, errfac=1.):
"""Plot a histogram of the halo masses of DLA hosts. Each bin contains the fraction
of DLA cells associated with halos in this mass bin"""
if dla:
self._get_sigma_DLA(minpart, dist)
ind = np.where(self.sigDLA > 0)
sigs = self.sigDLA[ind]/1e6
else:
self._get_sigma_LLS(minpart, dist)
ind = np.where(self.sigLLS > 0)
sigs = self.sigLLS[ind]/1e6
massbins = np.logspace(np.log10(Mmin), np.log10(Mmax), nbins+1)
#Now we have a cross-section, we know how many DLA cells are associated with each halo.
(hist,xedges)=np.histogram(np.log10(self.real_sub_mass[ind]),weights = sigs,bins=np.log10(massbins),density=False)
if dla:
bb = bias.HaloBias(self.redshift, self.omegam, 0.045, self.omegal, self.hubble, 0.97)
ii = np.where(np.logical_and(self.real_sub_mass[ind] > 1e9, self.real_sub_mass[ind] < 1e12))
biases = bb.halo_bias(self.real_sub_mass[ind][ii])
dla_bias = np.sqrt(np.sum(sigs[ii]*biases**2)/ np.sum(sigs[ii]))
print "DLA bias is:", dla_bias
#For error bars
xbins=np.array([(10**xedges[i+1]+10**xedges[i])/2 for i in xrange(0,np.size(xedges)-1)])
nzind = np.where(hist > 0)
plt.semilogx(xbins[nzind],hist[nzind], color=color, ls=ls, label=self.label)
if plot_error:
(nn,_)=np.histogram(np.log10(self.real_sub_mass[ind]),bins=np.log10(massbins))
plt.semilogx(xbins[nzind],hist[nzind]*(1+1./np.sqrt(errfac*nn[nzind])), color="grey", ls=ls)
plt.semilogx(xbins[nzind],hist[nzind]*(1-1./np.sqrt(errfac*nn[nzind])), color="grey", ls=ls)
plt.xlabel(r"Halo Mass ($M_\odot$)")
plt.ylabel(r"$\sigma_\mathrm{T}$ (Mpc/h)$^2$")
def plot_halo_mass_func(self):
"""Plots the halo mass function from simulation as well as Sheth-Torman"""
self.load_sigDLA()
mass=np.logspace(8,13,51)
halo_mass=halo_mass_function.HaloMassFunction(self.redshift,omega_m=self.omegam, omega_l=self.omegal, hubble=self.hubble,log_mass_lim=(7,15))
shdndm=[halo_mass.dndm(mm) for mm in mass]
adndm=np.array([self.get_dndm(mass[ii],mass[ii+1]) for ii in range(0,50)])
plt.loglog(mass,shdndm,color="black",ls='--',label="Sheth-Tormen")
plt.loglog(mass[0:-1],adndm,color=acol,ls=astyle,label="Arepo")
#Make the ticks be less-dense
ax=plt.gca()
ax.yaxis.set_ticks(np.power(10.,np.arange(int(np.log10(shdndm[-1])),int(np.log10(shdndm[0])),2)))
plt.ylabel(r"dn/dM (h$^4$ $M^{-1}_\odot$ Mpc$^{-3}$)")
plt.xlabel(r"Mass ($M_\odot$ h$^{-1}$)")
plt.legend(loc=0)
# plt.xlim(self.minplot,self.maxplot)
tight_layout_wrapper()
plt.show()
def plot_sigma_DLA_model(self,color="red"):
"""Plot my analytic model for the DLAs"""
ind = np.where(self.real_sub_mass > 0)
mass=np.logspace(8.5,12,num=100)
#Plot Analytic Fit
ap=self.get_sDLA_fit()
mdiff=np.log10(mass)-ap[0]
fit=(ap[2]*mdiff+ap[1])
# asfit=broken_fit(ap, np.log10(mass))
print "Fit: ",ap
plt.loglog(mass,10**fit,color=color,ls="-",lw=3)
def plot_sigma_DLA_median(self, DLA_cut=20.3,DLA_upper_cut=42.,color=acol):
"""Plot the median and scatter of sigma_DLA against mass."""
ind = np.where(self.real_sub_mass > 0)
mass=np.logspace(np.log10(np.min(self.real_sub_mass[ind])),np.log10(np.max(self.real_sub_mass[ind])),num=7)
abin_mass = np.empty(np.size(mass)-1)
abin_mass = halohi.calc_binned_median(mass,self.real_sub_mass[ind], self.real_sub_mass[ind])
(amed,aloq,aupq)=self.get_sigma_DLA_binned(mass,DLA_cut,DLA_upper_cut)
#To avoid zeros
aloq-=1e-2
#Plot median sigma DLA
plt.errorbar(abin_mass, amed,yerr=[aloq,aupq],fmt='^',color=color,ms=15,elinewidth=4)
def plot_dla_metallicity(self, nbins=40,color="blue", ls="-"):
"""Plot the distribution of DLA metallicities"""
met = self.get_dla_metallicity()
return self._plot_metallicity(met,nbins=nbins,color=color,ls=ls)
def plot_lls_metallicity(self, nbins=40,color="blue",ls="-"):
"""Plot the distribution of LLS metallicities"""
met = self.get_lls_metallicity()
return self._plot_metallicity(met, nbins=nbins,color=color,ls=ls)
def _plot_metallicity(self, met, nbins,color,ls,upper=0,lower=-3):
"""Plot the distribution of metallicities above"""
bins=np.logspace(lower,upper,nbins)
mbin = np.array([(bins[i]+bins[i+1])/2. for i in range(0,np.size(bins)-1)])
#Abs. distance for entire spectrum
hist = np.histogram(met,np.log10(bins),density=True)[0]
plt.plot(np.log10(mbin),hist,color=color,ls=ls, label=self.label)
plt.xlabel(r"log $(Z / Z_\odot)$")
return (mbin,hist)
def plot_species_fraction(self, species, ion, dla=True, nbins=40, color="blue", ls="-"):
"""Plot [X/HI] for X given by species and ion in DLAs or LLS"""
met = self.get_ion_metallicity(species, ion, dla)
return self._plot_metallicity(met, nbins=nbins,color=color,ls=ls)
def plot_ion_corr(self, species, ion, dla=True,nbins=80,color="blue",ls="-",upper=1,lower=-1):
"""Plot the difference between the single-species ionisation and the metallicity from GFM_Metallicity"""
if dla:
met = self.get_dla_metallicity()
else:
met = self.get_lls_metallicity()
ion_met = self.get_ion_metallicity(species, ion, dla)
print 10**np.max(ion_met-met), 10**np.min(ion_met-met), 10**np.median(ion_met-met)
return self._plot_metallicity(ion_met-met, nbins=nbins,color=color,ls=ls,upper=upper,lower=lower)
def plot_impact_param(self, minM = 1e6, maxM=1e20, nbins=40,color="blue",ls="-"):
"""Plot the distribution of metallicities above"""
impact = self.get_dla_impact_parameter(minM,maxM)
bins=np.linspace(0,2,nbins)
mbin = np.array([(bins[i]+bins[i+1])/2. for i in range(0,np.size(bins)-1)])
#Abs. distance for entire spectrum
hist = np.histogram(impact,bins,density=True)[0]
plt.plot(mbin,hist,color=color,ls=ls, label=self.label)
plt.xlabel(r"distance to halo ($R_\mathrm{vir}$)")
return (mbin,hist)
def plot_dla_mass_metallicity(self, color="blue"):
"""Plot host halo mass vs metallicity for DLAs"""
(halo_mass, _, _) = self._load_halo(0)
self._get_sigma_DLA(0,2)
ind = np.where(self.dla_halo >= 0)
masses = halo_mass[self.dla_halo[ind]]
met = self.get_dla_metallicity()[ind]
ind2 = np.where((met > -2.7)*(met < 0.5)*(masses > 10**9))
met = met[ind2]
masses = np.log10(masses[ind2])
(H, xedges, yedges) = np.histogram2d(masses, met,bins=10,normed=True)
xbins=np.array([(xedges[i+1]+xedges[i])/2 for i in xrange(0,np.size(xedges)-1)])
ybins=np.array([(yedges[i+1]+yedges[i])/2 for i in xrange(0,np.size(yedges)-1)])
plt.contourf(10**xbins,ybins,H.T,[0.1,1],colors=(color,"black"),alpha=0.5)
#Get fit
amed=halohi.calc_binned_median(xedges, masses, met)
aupq=halohi.calc_binned_percentile(xedges, masses, met,75)-amed
#Addition to avoid zeros
aloq=amed - halohi.calc_binned_percentile(xedges, masses, met,100-75)
err = (aupq+aloq)/2.
#Arbitrary large values if err is zero
ap = powerfit(xbins, amed, np.log10(err), breakpoint=10)
mdiff=xbins-ap[0]
fit=(ap[2]*mdiff+ap[1])
# asfit=broken_fit(ap, np.log10(mass))
print "Fit: ",ap
#Plot median sigma DLA
plt.errorbar(10**xbins, amed,yerr=[aloq,aupq],fmt='^',color=color,ms=15,elinewidth=4)
plt.semilogx(10**xbins, fit,color=color,ls="-",lw=3)
plt.ylabel(r"log $(Z / Z_\odot)$")
plt.xlabel(r"Halo mass ($M_\odot$)")
return (masses,met)
def plot_colden_mass_breakdown(self,ncdbins=30):
"""Find the proportion of DLAs in each column density bin with various halo masses"""
(halo_mass, _, _) = self._load_halo(0)
self._get_sigma_DLA(0,2)
ind = np.where(self.dla_halo >= 0)
find = np.where(self.dla_halo < 0)
masses = halo_mass[self.dla_halo[ind]]
dlaval = self._load_dla_val(True)
cdbins = np.linspace(20.3,np.max(dlaval),ncdbins+1)
massbins = 10**np.arange(9,14)
massbins[0] = 10**8
nmassbins = np.size(massbins)-1
# massbins = np.logspace(np.log10(np.min(masses))-0.1,np.log10(np.max(masses))+0.1,nmassbins+1)
fractions = np.zeros([nmassbins+2,ncdbins])
for cc in xrange(ncdbins):
cind = np.where((dlaval[ind] > cdbins[cc])*(dlaval[ind] <= cdbins[cc+1]))
for mm in xrange(nmassbins):
mind = np.where((masses[cind] > massbins[mm])*(masses[cind] <= massbins[mm+1]))
fractions[mm+1, cc] = np.max(np.shape(mind))
#Field DLAs
cind = np.where((dlaval[find] > cdbins[cc])*(dlaval[find] <= cdbins[cc+1]))
fractions[nmassbins+1,cc] = np.max(np.shape(cind))
cumfrac = np.cumsum(fractions,0)
fractions/=cumfrac[-1,:]
cumfrac/=cumfrac[-1,:]
width = np.array([(-cdbins[i]+cdbins[i+1]) for i in range(0,np.size(cdbins)-1)])
colors = ["red", "green", "blue", "black", "orange", "purple"]
for mm in xrange(nmassbins):
plt.bar(cdbins[:-1],fractions[mm+1,:],bottom=cumfrac[mm,:],width=width, color=colors[mm],label=pr_num(np.log10(massbins[mm]))+" - "+pr_num(np.log10(massbins[mm+1])), linewidth=0)
plt.bar(cdbins[:-1],fractions[nmassbins+1,:],bottom=cumfrac[nmassbins,:],width=width, label="Field",color=colors[-1],linewidth=0)
return (cdbins, massbins, fractions)
import halomet
class PrettyMetal(halomet.HaloMet,PrettyHalo):
"""
As above but for the whole box grid
"""
def __init__(self,snap_dir,snapnum,elem, ion,reload_file=False,savefile=None):
halomet.HaloMet.__init__(self,snap_dir,snapnum,elem, ion, reload_file=reload_file,savefile=savefile)
def plot_pretty_halo(self,num=0):
"""
Plots a pretty (high-resolution) picture of the grid around a halo.
Helper for the other functions.
"""
#Plot a figure
maxdist = self.sub_radii[num]
plt.imshow(self.sub_nHI_grid[num],origin='lower',extent=(-maxdist,maxdist,-maxdist,maxdist),vmin=13,cmap=cubehelix_r)
bar=plt.colorbar()#use_gridspec=True)
bar.set_label(r"log$_{10}$ N$_\mathrm{Si}$ (amu/cm$^{-2}$)")
if maxdist > 300:
plt.xticks((-300,-150,0,150,300))
plt.yticks((-300,-150,0,150,300))
plt.xlabel(r"y (kpc h$^{-1}$)")
plt.ylabel(r"z (kpc h$^{-1}$)")
tight_layout_wrapper()
plt.show()
class HaloHIPlots:
"""
This class contains functions for plotting all the plots in
Tescari and Viel which are derived from the grid of HI density around the halos.
These are figs 10-13
"""
def __init__(self,base,snapnum,minpart=400,minplot=1e9, maxplot=2e12,reload_file=False):
#Get paths
self.gdir=path.join(base,"Gadget")
self.adir=path.join(base,"Arepo_ENERGY")
#Get data
self.ahalo=PrettyHalo(self.adir,snapnum,minpart,reload_file=reload_file)
# self.ahalo.save_file()
self.ghalo=PrettyHalo(self.gdir,snapnum,minpart,reload_file=reload_file)
# self.ghalo.save_file()
self.minplot=minplot
self.maxplot=maxplot
def plot_sigma_DLA_model(self,DLA_cut=20.3,DLA_upper_cut=42.):
"""Plot my analytic model for the DLAs"""
mass=np.logspace(np.log10(np.min(self.ahalo.sub_mass)),np.log10(np.max(self.ahalo.sub_mass)),num=100)
#Plot Analytic Fit
# ap=self.ahalo.get_sDLA_fit()
# gp=self.ghalo.get_sDLA_fit()
ap=arepo_halo_p[self.ahalo.snapnum]
gp=gadget_halo_p[self.ghalo.snapnum]
asfit=self.ahalo.sDLA_analytic(mass,ap,DLA_cut)-self.ahalo.sDLA_analytic(mass,ap,DLA_upper_cut)
gsfit=self.ghalo.sDLA_analytic(mass,gp,DLA_cut)-self.ghalo.sDLA_analytic(mass,gp,DLA_upper_cut)
# print "Arepo: ",ap
# print "Gadget: ",gp
plt.loglog(mass,gsfit,color=gcol,ls=gstyle,lw=3)
plt.loglog(mass,asfit,color=acol,ls=astyle,lw=3)
def plot_sigma_DLA_median(self, DLA_cut=20.3,DLA_upper_cut=42.):
"""Plot the median and scatter of sigma_DLA against mass."""
self.ahalo.plot_sigma_DLA_median(DLA_cut, DLA_upper_cut)
self.ghalo.plot_sigma_DLA_median(DLA_cut, DLA_upper_cut)
def plot_sigma_DLA(self, DLA_cut=20.3,DLA_upper_cut=42.):
"""Plot sigma_DLA vs mass"""
self.plot_sigma_DLA_contour(DLA_cut,DLA_upper_cut)
self.plot_sigma_DLA_model(DLA_cut,DLA_upper_cut)
self.plot_sigma_DLA_median(DLA_cut,DLA_upper_cut)
#Plot Axes stuff
ax=plt.gca()
ax.set_yscale('log')
ax.set_xscale('log')
# ax.tick_params(labelsize=30)
ax.set_xlabel(r"Mass ($M_\odot$ h$^{-1}$)",size=25)
plt.ylabel(r"$\sigma_\mathrm{DLA}$ (kpc$^2$)",size=25)
if DLA_cut == 20.3:
plt.title(r"DLA cross-section at $z="+pr_num(self.ahalo.redshift,1)+"$")
if DLA_cut == 17.:
ax.set_ylabel(r"$\sigma_\mathrm{LLS}$ (kpc$^2$)",size=25)
plt.title(r"LLS cross-section at $z="+pr_num(self.ahalo.redshift,1)+"$")
plt.xlim(self.minplot,self.maxplot)
if DLA_cut < 19:
plt.ylim(ymin=10)
else:
plt.ylim(ymin=1,ymax=10**4)
#Fits
tight_layout_wrapper()
plt.show()
def plot_sigma_DLA_contour(self, DLA_cut=20.3,DLA_upper_cut=42.):
"""Plot sigma_DLA against mass."""
self.ahalo.plot_sigma_DLA_contour(DLA_cut, DLA_upper_cut)
self.ghalo.plot_sigma_DLA_contour(DLA_cut, DLA_upper_cut)
def get_rel_sigma_DLA(self,DLA_cut=20.3, DLA_upper_cut=42.,min_sigma=15.):
"""
Get the change in sigma_DLA for a particular halo.
and the mass of each halo averaged across arepo and gadget.
DLA_cut is the column density above which to consider a DLA
min_sigma is the minimal sigma_DLA to look at (in grid cell units)
"""
aDLA=self.ahalo.get_sigma_DLA(DLA_cut,DLA_upper_cut)
gDLA=self.ghalo.get_sigma_DLA(DLA_cut,DLA_upper_cut)
rDLA=np.empty(np.size(aDLA))
rmass=np.empty(np.size(aDLA))
cell_area=(2*self.ahalo.sub_radii[0]/self.ahalo.ngrid[0])**2
for ii in xrange(0,np.size(aDLA)):
gg=self.ghalo.identify_eq_halo(self.ahalo.sub_mass[ii],self.ahalo.sub_cofm[ii])
if np.size(gg) > 0 and aDLA[ii]+gDLA[gg] > min_sigma*cell_area:
rDLA[ii] = aDLA[ii]-gDLA[gg]
rmass[ii]=0.5*(self.ahalo.sub_mass[ii]+self.ghalo.sub_mass[gg])
else:
rDLA[ii]=np.NaN
rmass[ii]=np.NaN
return (rmass,rDLA)
def plot_rel_sigma_DLA(self):
"""Plot sigma_DLA against mass. Figure 10."""
# (rmass,rDLA)=self.get_rel_sigma_DLA(17,25)
# ind=np.where(np.isnan(rDLA) != True)
# plt.semilogx(rmass[ind],rDLA[ind],'o',color="green",label="N_HI> 17")
(rmass,rDLA)=self.get_rel_sigma_DLA(20.3,30.)
ind=np.where(np.isnan(rDLA) != True)
plt.semilogx(rmass[ind],rDLA[ind],'o',color="blue",label="N_HI> 20.3")
#Axes
plt.xlim(self.minplot,self.maxplot)
plt.xlabel(r"Mass ($M_\odot$ h$^{-1}$)")
plt.ylabel(r"$\sigma_\mathrm{DLA}$ (Arepo) - $\sigma_\mathrm{DLA}$ (Gadget) (kpc$^2$ h$^{-2}$)")
plt.legend(loc=0)
tight_layout_wrapper()
plt.show()
def plot_dN_dla(self,Mmin=1e9,Mmax=1e13):
"""Plots dN_DLA/dz for the halos. Figure 11"""
mass=np.logspace(np.log10(Mmin),np.log10(Mmax),num=100)
aDLA_dz_tab = np.empty(np.size(mass))
gDLA_dz_tab = np.empty(np.size(mass))
for (i,m) in enumerate(mass):
aDLA_dz_tab[i] = self.ahalo.get_N_DLA_dz(arepo_halo_p[self.ahalo.snapnum],m)
gDLA_dz_tab[i] = self.ghalo.get_N_DLA_dz(gadget_halo_p[self.ghalo.snapnum],m)
plt.loglog(mass,aDLA_dz_tab,color=acol,label="Arepo",ls=astyle,lw=4)
plt.loglog(mass,gDLA_dz_tab,color=gcol,label="Gadget",ls=gstyle,lw=4)
ax=plt.gca()
ax.fill_between(mass, 10**(-0.7), 10**(-0.5),color='yellow')
ax.set_xlabel(r"Mass ($M_\odot$ h$^{-1}$)",size=25)
ax.set_ylabel(r"$\mathrm{dN}_\mathrm{DLA} / \mathrm{dz} (> M_\mathrm{tot})$",size=25)
# plt.legend(loc=3)
plt.xlim(Mmin,1e12)
plt.ylim(10**(-2),1)
tight_layout_wrapper()
plt.show()
# print "Arepo mean halo mass: ",self.ahalo.get_mean_halo_mass(arepo_halo_p[self.ahalo.snapnum])/1e10
# print "Gadget mean halo mass: ",self.ghalo.get_mean_halo_mass(gadget_halo_p[self.ghalo.snapnum])/1e10
def plot_column_density(self,minN=17,maxN=23.):
"""Plots the column density distribution function. Figures 12 and 13"""
(aNHI,af_N)=self.ahalo.column_density_function(0.1,minN-1,maxN+1)
(gNHI,gf_N)=self.ghalo.column_density_function(0.1,minN-1,maxN+1)
plt.loglog(aNHI,af_N,color=acol, ls=astyle,label="Arepo",lw=6)
plt.loglog(gNHI,gf_N,color=gcol, ls=gstyle,label="Gadget",lw=6)
# (aNH2,af_NH2)=self.ahalo.column_density_function(0.4,minN-1,maxN+1,grids=1)
# (gNH2,gf_NH2)=self.ghalo.column_density_function(0.4,minN-1,maxN+1,grids=1)
# plt.loglog(aNH2,af_NH2,color=acol2, ls=astyle,label="Arepo")
# plt.loglog(gNH2,gf_NH2,color=gcol2, ls=gstyle,label="Gadget")
#Make the ticks be less-dense
ax=plt.gca()
#ax.xaxis.set_ticks(np.power(10.,np.arange(int(minN),int(maxN),2)))
#ax.yaxis.set_ticks(np.power(10.,np.arange(int(np.log10(af_N[-1])),int(np.log10(af_N[0])),2)))
ax.set_xlabel(r"$N_\mathrm{HI} (\mathrm{cm}^{-2})$",size=25)
ax.set_ylabel(r"$f(N) (\mathrm{cm}^2)$",size=25)
plt.title(r"Column density function at $z="+pr_num(self.ahalo.redshift,1)+"$")
plt.xlim(10**minN, 10**maxN)
plt.ylim(1e-26,1e-18)
# plt.legend(loc=0)
tight_layout_wrapper()
plt.show()
def plot_column_density_breakdown(self,minN=17,maxN=23.):
"""Plots the column density distribution function, broken down into halos. """
(aNHI,tot_af_N)=self.ahalo.column_density_function(0.4,minN-1,maxN+1)
(gNHI,tot_gf_N)=self.ghalo.column_density_function(0.4,minN-1,maxN+1)
(aNHI,af_N)=self.ahalo.column_density_function(0.4,minN-1,maxN+1,minM=11)
(gNHI,gf_N)=self.ghalo.column_density_function(0.4,minN-1,maxN+1,minM=11)
plt.loglog(aNHI,tot_af_N/tot_gf_N,color="black", ls="-",label="Arepo",lw=4)
plt.loglog(gNHI,gf_N/tot_gf_N,color=gcol, ls="-",label="Gadget",lw=7)
plt.loglog(aNHI,af_N/tot_gf_N,color=acol, ls="-",label="Arepo",lw=4)
(aNHI,af_N)=self.ahalo.column_density_function(0.4,minN-1,maxN+1,minM=10,maxM=11)
(gNHI,gf_N)=self.ghalo.column_density_function(0.4,minN-1,maxN+1,minM=10,maxM=11)
plt.loglog(gNHI,gf_N/tot_gf_N,color=gcol, ls="--",label="Gadget",lw=7)
plt.loglog(aNHI,af_N/tot_gf_N,color=acol, ls="--",label="Arepo",lw=4)
try:
(aNHI,af_N)=self.ahalo.column_density_function(0.4,minN-1,maxN+1,minM=9,maxM=10)
(gNHI,gf_N)=self.ghalo.column_density_function(0.4,minN-1,maxN+1,minM=9,maxM=10)
plt.loglog(gNHI,gf_N/tot_gf_N,color=gcol, ls=":",label="Gadget",lw=7)
plt.loglog(aNHI,af_N/tot_gf_N,color=acol, ls=":",label="Arepo",lw=4)
except IndexError:
pass
#Make the ticks be less-dense
ax=plt.gca()
#ax.xaxis.set_ticks(np.power(10.,np.arange(int(minN),int(maxN),2)))
#ax.yaxis.set_ticks(np.power(10.,np.arange(int(np.log10(af_N[-1])),int(np.log10(af_N[0])),2)))
ax.set_xlabel(r"$N_\mathrm{HI} (\mathrm{cm}^{-2})$",size=25)
ax.set_ylabel(r"$f_\mathrm{halo}(N) / f_\mathrm{GADGET} (N) $",size=25)
# plt.title(r"Halo contribution to $f(N)$ at $z="+pr_num(self.ahalo.redshift,1)+"$")
plt.xlim(10**minN, 10**maxN)
plt.ylim(1e-2,2)
# plt.legend(loc=0)
tight_layout_wrapper()
plt.show()
def plot_radial_profile(self,minM=4e11,maxM=1e12,minR=0,maxR=40.):
"""Plots the radial density of neutral hydrogen for all halos stacked in the mass bin.
"""
#Use sufficiently large bins
scale = 10**43
space=2.*self.ahalo.sub_radii[0]/self.ahalo.ngrid[0]
if maxR/30. > space:
Rbins=np.linspace(minR,maxR,20)
else:
Rbins=np.concatenate((np.array([minR,]),np.linspace(minR+np.ceil(2.5*space),maxR+space,maxR/np.ceil(space))))
Rbinc = [(Rbins[i+1]+Rbins[i])/2 for i in xrange(0,np.size(Rbins)-1)]
Rbinc=np.array([minR,]+Rbinc)
try:
ind = np.where(np.logical_and(self.ahalo.sub_mass > minM, self.ahalo.sub_mass < maxM))
gind = np.where(np.logical_and(self.ghalo.sub_mass > minM, self.ghalo.sub_mass < maxM))
print "No. of halos for ",minM," < M < ",maxM," Arepo: ",np.size(ind)," Gadget: ",np.size(gind)
aRprof=[self.ahalo.get_stacked_radial_profile(minM,maxM,Rbins[i],Rbins[i+1])/scale for i in xrange(0,np.size(Rbins)-1)]
gRprof=[self.ghalo.get_stacked_radial_profile(minM,maxM,Rbins[i],Rbins[i+1])/scale for i in xrange(0,np.size(Rbins)-1)]
plt.semilogy(Rbinc,[aRprof[0],]+aRprof,color=acol, ls=astyle,label="Arepo HI",lw=4)
plt.semilogy(Rbinc,[gRprof[0],]+gRprof,color=gcol, ls=gstyle,label="Gadget HI",lw=4)
RR = np.linspace(minR,maxR,100)
plt.semilogy(RR,1e-5+2*math.pi*RR/(1+self.ahalo.redshift)*self.ahalo.UnitLength_in_cm*10**20.3/scale,color="black", ls="-.",label="DLA density",lw=4)
maxx=np.max((aRprof[0],gRprof[0]))
#If we didn't load the HI grid this time
except AttributeError:
pass
# #Gas profiles
# try:
# agRprof=[self.ahalo.get_stacked_radial_profile(minM,maxM,Rbins[i],Rbins[i+1],True) for i in xrange(0,np.size(Rbins)-1)]
# ggRprof=[self.ghalo.get_stacked_radial_profile(minM,maxM,Rbins[i],Rbins[i+1],True) for i in xrange(0,np.size(Rbins)-1)]
# plt.plot(Rbinc,[agRprof[0],]+agRprof,color="brown", ls=astyle,label="Arepo Gas")
# plt.plot(Rbinc,[ggRprof[0],]+ggRprof,color="orange", ls=gstyle,label="Gadget Gas")
# maxx=np.max((agRprof[0],ggRprof[0]))
# except AttributeError:
# pass
#Make the ticks be less-dense
#ax=plt.gca()
#ax.xaxis.set_ticks(np.power(10.,np.arange(int(minN),int(maxN),2)))
#ax.yaxis.set_ticks(np.power(10.,np.arange(int(np.log10(af_N[-1])),int(np.log10(af_N[0])),2)))
plt.xlabel(r"R (kpc h$^{-1}$)")
plt.ylabel(r"Radial Density ($10^{43}$ cm$^{-1}$)")
#Crop the frame so we see the DLA cross-over point
DLAdens=2*math.pi*Rbins[-1]*self.ahalo.UnitLength_in_cm*10**20.3
if maxx > 20*DLAdens:
plt.ylim(1e-2,20*DLAdens)
else:
plt.ylim(1e-2,5*np.floor(gRprof[0]/5)+5)
plt.xlim(minR,maxR)
tight_layout_wrapper()
plt.show()
def plot_rel_column_density(self,minN=17,maxN=23.):
"""Plots the column density distribution function. Figures 12 and 13"""
(aNHI,af_N)=self.ahalo.column_density_function(0.4,minN-1,maxN+1)
(_,gf_N)=self.ghalo.column_density_function(0.4,minN-1,maxN+1)
plt.semilogx(aNHI,af_N/gf_N,label="Arepo / Gadget",color=rcol)
#Make the ticks be less-dense
# ax=plt.gca()
# ax.xaxis.set_ticks(np.power(10.,np.arange(int(minN),int(maxN),3)))
#ax.yaxis.set_ticks(np.power(10.,np.arange(int(np.log10(af_N[-1])),int(np.log10(af_N[0])),2)))
plt.xlabel(r"$N_\mathrm{HI} (\mathrm{cm}^{-2})$")
plt.ylabel(r"$ \delta f(N)$")
plt.xlim(10**minN, 10**maxN)
# plt.legend(loc=0)
tight_layout_wrapper()
plt.show()
def plot_halo_mass_func(self):
"""Plots the halo mass function as well as Sheth-Torman. Figure 5."""
mass=np.logspace(np.log10(self.minplot),np.log10(self.maxplot),51)
shdndm=[self.ahalo.halo_mass.dndm(mm) for mm in mass]
adndm=np.empty(50)
gdndm=np.empty(50)
for ii in range(0,50):
adndm[ii]=self.ahalo.get_dndm(mass[ii],mass[ii+1])
gdndm[ii]=self.ghalo.get_dndm(mass[ii],mass[ii+1])
plt.loglog(mass,shdndm,color="black",ls='--',label="Sheth-Tormen")
plt.loglog(mass[0:-1],adndm,color=acol,ls=astyle,label="Arepo")
plt.loglog(mass[0:-1],gdndm,color=gcol,ls=gstyle,label="Gadget")
#Make the ticks be less-dense
ax=plt.gca()
ax.yaxis.set_ticks(np.power(10.,np.arange(int(np.log10(shdndm[-1])),int(np.log10(shdndm[0])),2)))
plt.ylabel(r"dn/dM (h$^4$ $M^{-1}_\odot$ Mpc$^{-3}$)")
plt.xlabel(r"Mass ($M_\odot$ h$^{-1}$)")
plt.legend(loc=0)
plt.xlim(self.minplot,self.maxplot)
tight_layout_wrapper()
plt.show()
def print_halo_fits(self):
"""Prints the fitted parameters for the sDLA model"""
ap=self.ahalo.get_sDLA_fit()
gp=self.ghalo.get_sDLA_fit()
print "Arepo: "
print self.ahalo.snapnum," : ",ap,","
print "Gadget: "
print self.ghalo.snapnum," : ",gp,","