forked from sbird/DLA_script
-
Notifications
You must be signed in to change notification settings - Fork 0
/
thermo.py
222 lines (215 loc) · 7.93 KB
/
thermo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
"""Script for making thermodynamic comparison plots for the Lyman-alpha forest
between Arepo and Gadget"""
import matplotlib
matplotlib.use('PDF')
import numpy as np
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
import plot_flux_power as pflux
plt.figure(1)
#Mean flux
ddir="/home/spb/scratch/ComparisonProject/"
tau_ar512= np.loadtxt(ddir+"tau_eff_arepo_512.txt")
tau_gad512=np.loadtxt(ddir+"tau_eff_gadget_512.txt")
tau_ar256= np.loadtxt(ddir+"tau_eff_arepo_256.txt")
tau_gad256=np.loadtxt(ddir+"tau_eff_gadget_256.txt")
#Tau figure; bottom plot shows normalised to tau_gadget.
gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1])
ax1=plt.subplot(gs[0])
plt.plot(tau_ar512[:,0], tau_ar512[:,1] ,lw=4,color="red",ls="-")
plt.plot(tau_gad512[:,0],tau_gad512[:,1],lw=4,color="blue",ls="--")
plt.plot(tau_ar256[:,0], tau_ar256[:,1] ,lw=4,color="red",ls=":")
plt.plot(tau_gad256[:,0],tau_gad256[:,1],lw=4,color="blue",ls="-.")
plt.ylabel(r"$\tau_\mathrm{eff}$",size=25)
plt.yticks((0,0.4,0.8,1.2,1.6),('0','0.4','0.8','1.2','1.6'))
plt.ylim(0,1.6)
ax2=plt.subplot(gs[1],sharex=ax1)
# plt.ylabel("Flux PDF")
plt.plot(tau_ar512[:,0], 100*(tau_ar512[:,1]/tau_gad512[:,1]-1) ,lw=4,color="red",ls="-")
plt.plot(tau_ar256[:,0], 100*(tau_ar256[:,1]/tau_gad512[:,1]-1) ,lw=4,color="red",ls=":")
plt.plot(tau_gad256[:,0],100*(tau_gad256[:,1]/tau_gad512[:,1]-1),lw=4,color="blue",ls="-.")
plt.subplots_adjust(hspace=0)
plt.setp( ax1.get_xticklabels(), visible=False)
plt.yticks((0,-5,-10),('0','-5','-10'))
plt.ylim(-11,0)
plt.xlabel("Redshift",size=22)
plt.xlim(2,4)
# plt.legend(loc=3,ncol=2)
plt.savefig(ddir+"tau_eff.pdf")
plt.clf()
gad=np.loadtxt(ddir+"Gadget/thermo.txt")
ar=np.loadtxt(ddir+"Arepo/thermo.txt")
#ar_m=np.loadtxt(ddir+"Arepo/thermo_m.txt")
#are=np.loadtxt(ddir+"Arepo_ENTROPY/thermo.txt")
ar2=np.loadtxt(ddir+"Arepo_256/thermo_m.txt")
# ar2=np.loadtxt(ddir+"Arepo_256/thermo.txt")
gad2=np.loadtxt(ddir+"Gadget_256/thermo.txt")
plt.plot(ar[:,0],ar[:,1]/1e3,label="Arepo",color="blue")
#plt.plot(ar_m[:,0],ar_m[:,1],label="Arepo Mass")
#plt.plot(are[:,0],are[:,1],label="Arepo_ENTROPY")
#plt.plot(ar2[:,0],ar2[:,1],label="Arepo 256")
plt.plot(ar2[:,0],ar2[:,1]/1e3,label="Arepo 256",ls="-.",color="black")
plt.plot(gad[:,0],gad[:,1]/1e3, label="Gadget",ls = '--',color="red")
ind = np.where((gad[:,0] < 4.5)*(gad[:,0] > 2))
max=np.max(np.abs(ar[ind,1]-gad[ind,1]))
ind2 = np.where(np.abs(ar[ind,1][0]-gad[ind,1][0]) == max)
print max,gad[ind,0][0][ind2],ar[ind,1][0][ind2]/gad[ind,1][0][ind2],np.abs(gad[ind,2][0][ind2]/ar[ind,2][0][ind2])
##QUICK_LYA plots
# arQ=np.loadtxt(ddir+"Arepo_256_Qlya/thermo.txt")
# ar2=np.loadtxt(ddir+"Arepo_256/thermo.txt")
# gadQ=np.loadtxt(ddir+"Gadget_256_Qlya/thermo.txt")
# plt.plot(arQ[:,0],arQ[:,1]/1e3,label="Arepo 256 Qlya",ls="-.",color="cyan")
# plt.plot(gadQ[:,0],gadQ[:,1]/1e3, label="Gadget 256 Qlya",ls = '--',color="magenta")
#plt.plot(gad2[:,0],gad2[:,1]/1e3,label="Gadget 256",ls = '-.',color="magenta")
plt.ylabel("$T_0$ ($10^3$ K)")
plt.xlabel("Redshift")
plt.xlim(0,8)
plt.ylim(6,12)
# plt.legend(loc=3,ncol=2)
plt.tight_layout()
plt.savefig(ddir+"temp.pdf")
plt.figure(4)
plt.plot(gad[:,0],gad[:,2], label="Gadget",color="red")
plt.plot(ar[:,0],ar[:,2],label="Arepo",color="blue")
plt.plot(ar2[:,0],ar2[:,2],label="Arepo 256",color="black")
# plt.plot(gad2[:,0],gad2[:,2],label="Gadget 256",ls = '--')
# plt.plot(arQ[:,0],arQ[:,2],label="Arepo 256 Q")
# plt.plot(gadQ[:,0],gadQ[:,2],label="Gadget 256 Q",ls = '--')
plt.ylabel("Temp-density relation")
plt.xlabel("Redshift")
plt.xlim(0,8)
plt.ylim(1.54,1.6)
# plt.legend(loc=0)
plt.tight_layout()
plt.savefig(ddir+"gamma.pdf")
f=plt.figure(2)
# pflux.pdfplots(119,color="black")
# Three subplots sharing both x/y axes
# f, (ax1, ax2) = plt.subplots(2, sharex=True)
# Fine-tune figure; make subplots close to each other and hide x ticks for
# all but bottom plot.
gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1])
ax1=plt.subplot(gs[0])
pflux.pdfplots(139)
pflux.pdfplots(159,ls="--")
pflux.pdfplots(189,ls=":")
plt.ylim(0.2,10)
plt.ylabel("Flux PDF",size=22)
plt.yticks((1,10),('1.0','10'))
# plt.xlabel("")
# plt.legend(loc=0)
#plt.tight_layout()
#plt.clf()
ax2=plt.subplot(gs[1],sharex=ax1)
# pflux.pdfrelplots(119,color="black")
pflux.pdfrelplots(139)
pflux.pdfrelplots(159,ls="--")
pflux.pdfrelplots(189,ls=":")
# plt.ylabel("Flux PDF")
plt.ylim(-8,8)
plt.yticks((-5,0,5),('-5','0','5'))
plt.subplots_adjust(hspace=0)
plt.setp( ax1.get_xticklabels(), visible=False)
plt.xlim(0,1)
plt.xlabel("Flux",size=22)
# plt.legend(loc=0)
# plt.tight_layout()
plt.savefig(ddir+"flux_pdf.pdf")
plt.figure(3)
gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1])
ax1=plt.subplot(gs[0])
pflux.pfplots(119,ls="-.")
pflux.pfplots(139)
pflux.pfplots(159,ls="--")
pflux.pfplots(189,ls=":")
plt.ylim(2e-2,0.5)
plt.yticks((0.1,0.5),('0.1','0.5'))
ax2=plt.subplot(gs[1],sharex=ax1)
pflux.pfrelplots(119,ls="-.")
pflux.pfrelplots(139)
pflux.pfrelplots(159,ls="--")
pflux.pfrelplots(189,ls=":")
plt.ylim(-6,6)
plt.yticks((-5,0,5),('-5','0','5'))
plt.subplots_adjust(hspace=0)
plt.setp( ax1.get_xticklabels(), visible=False)
plt.xlim(0.4,5)
plt.xticks((0.5,1,2,5),('0.5','1','2','5'))
plt.savefig(ddir+"flux_pow.pdf")
#plt.figure(5)
#gad=np.loadtxt(ddir+"Gadget/high-den-thermo.txt")
#ar=np.loadtxt(ddir+"Arepo/high-den-thermo.txt")
#plt.plot(gad[:,0],gad[:,1], label="Gadget")
#plt.plot(ar[:,0],ar[:,1],label="Arepo")
#plt.ylabel("Temp at mean density")
#plt.xlabel("Redshift")
#plt.legend(loc=0)
#plt.savefig(ddir+"hdtemp.pdf")
#plt.figure(6)
#plt.plot(gad[:,0],gad[:,2], label="Gadget")
#plt.plot(ar[:,0],ar[:,2],label="Arepo")
#plt.ylabel("Temp-density relation")
#plt.xlabel("Redshift")
#plt.legend(loc=0)
#plt.tight_layout()
#plt.savefig(ddir+"hdgamma.pdf")
#Histogram
#import re
#def load_multi_txt(snap_file):
# """Load data from a text file split into multiple pieces"""
# data=np.loadtxt(snap_file)
# for i in np.arange(1,500):
# file2=re.sub("_0_","_"+str(i)+"_",snap_file)
# if snap_file == file2:
# break
# try:
# data=np.append(data,np.loadtxt(file2))
# except IOError:
# break
# return np.array(data)
#plt.clf()
#temp_ar=load_multi_txt(ddir+"/Arepo/124_tempdata.txt")
#temp_gad=load_multi_txt(ddir+"/Gadget/124_tempdata.txt")
#temp_ar_256=load_multi_txt(ddir+"/Arepo_256/124_0_tempdata.txt")
#temp_gad_256=load_multi_txt(ddir+"/Gadget_256/124_0_tempdata.txt")
## temp_ar_128=load_multi_txt(ddir+"/Arepo_128/124_0_tempdata.txt")
## temp_gad_128=load_multi_txt(ddir+"/Gadget_128/124_0_tempdata.txt")
#plt.hist(temp_ar_256,bins=40,log=True,histtype='stepfilled',label="Arepo 256")
#plt.hist(temp_gad_256,bins=40,log=True,histtype='stepfilled',label="Gadget 256")
## plt.hist(temp_ar_128,bins=40,log=True,histtype='step',label="Arepo 128")
## plt.hist(temp_gad_128,bins=40,log=True,histtype='step',label="Gadget 128")
#plt.hist(temp_ar,bins=40,log=True,histtype='step',label="Arepo 512")
#plt.hist(temp_gad,bins=40,log=True,histtype='step',label="Gadget 512")
#plt.legend(loc=0)
#
#plt.tight_layout()
#plt.savefig(ddir+"temp_hist.pdf")
#Positional plot
#plt.clf()
#pos_ar_256=load_multi_txt(ddir+"/Arepo_256/124_0_posdata.txt")
#pos_ar_256=np.reshape(pos_ar_256,[-1,3])/1000
#pos_gad_256=load_multi_txt(ddir+"/Gadget_256/124_0_posdata.txt")
#pos_gad_256=np.reshape(pos_gad_256,[-1,3])/1000
#ind=np.where(pos_ar_256[:,2]> 19.9)
#plt.scatter(pos_ar_256[ind,0],pos_ar_256[ind,1],c=temp_ar_256[ind],vmin=3.5,vmax=5)
#plt.xlim(0,20)
#plt.ylim(0,20)
#plt.xlabel("x (Mpc)")
#plt.ylabel("y (Mpc)")
#plt.title("Arepo Positions at 19.9 < z < 20 Mpc.")
#cb=plt.colorbar()
#cb.set_label("log T_0")
#plt.tight_layout()
#plt.savefig(ddir+"arepo_pos.pdf")
#plt.figure(7)
#ind2=np.where(pos_gad_256[:,2]> 19.9)
#plt.scatter(pos_gad_256[ind2,0],pos_gad_256[ind2,1],c=temp_gad_256[ind2],vmin=3.5,vmax=5)
#plt.xlim(0,20)
#plt.ylim(0,20)
#plt.xlabel("x (Mpc)")
#plt.ylabel("y (Mpc)")
#plt.title("Gadget Positions at 19.9 < z < 20 Mpc.")
#cb=plt.colorbar()
#cb.set_label("log T_0")
#plt.tight_layout()
#plt.savefig(ddir+"gadget_pos.pdf")