forked from UniMath/Contrib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kuratowski.v
418 lines (357 loc) · 9.64 KB
/
kuratowski.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
Require Export UniMath.Foundations.All.
Require Export UniMath.MoreFoundations.Propositions.
(* Structures used in my proofs have been copied from the original source code *)
Section structure.
Variable (T A : Type).
Class hasMembership : Type :=
member : A -> T -> hProp.
Class hasSubset : Type :=
subset : T -> T -> hProp.
Class hasEmpty : Type :=
empty : T.
Class hasSingleton : Type :=
singleton : A -> T.
Class hasUnion : Type :=
union : T -> T -> T.
End structure.
Arguments member {_} {_} {_} _ _.
Arguments empty {_} {_}.
Arguments singleton {_} {_} {_} _.
Arguments union {_} {_} _ _.
Arguments subset {_} {_} _ _.
Notation "∅" := empty.
Notation "{| x |}" := (singleton x).
Infix "∪" := union (at level 8, right associativity).
Infix "∈" := member (at level 9, right associativity).
Infix "⊆" := subset (at level 11, right associativity).
Module Export FiniteSet.
Section FiniteSet.
Private Inductive FiniteSet (A : Type) : Type :=
| E: FiniteSet A
| L: A -> FiniteSet A
| U: FiniteSet A -> FiniteSet A -> FiniteSet A.
Global Instance finiteset_empty : forall A, hasEmpty (FiniteSet A) := E.
Global Instance finiteset_singleton : forall A, hasSingleton (FiniteSet A) A := L.
Global Instance finiteset_union : forall A, hasUnion (FiniteSet A) := U.
Variable A : Type.
Axiom assoc : forall (x y z: FiniteSet A),
x ∪ (y ∪ z) = (x ∪ y) ∪ z.
Axiom nl : forall (x : FiniteSet A),
∅ ∪ x = x.
Axiom nr : forall (x : FiniteSet A),
x ∪ ∅ = x.
Axiom comm : forall (x y : FiniteSet A),
x ∪ y = y ∪ x.
Axiom idem : forall (x : A),
{|x|} ∪ {|x|} = {|x|}.
Axiom trunc : isaset (FiniteSet A).
End FiniteSet.
Arguments assoc {_} _ _ _.
Arguments comm {_} _ _.
Arguments nl {_} _.
Arguments nr {_} _.
Arguments idem {_} _.
Section FiniteSet_induction.
Variable (A : Type)
(P : FiniteSet A -> Type)
(H : forall X : FiniteSet A, isaset (P X))
(eP : P ∅)
(lP : forall a: A, P {|a|})
(uP : forall (x y: FiniteSet A), P x -> P y -> P (x ∪ y))
(assocP : forall (x y z : FiniteSet A) (px: P x) (py: P y) (pz: P z),
transportf P (assoc x y z) (uP x (y ∪ z) px (uP y z py pz))
=
(uP (x ∪ y) z (uP x y px py) pz))
(commP : forall (x y: FiniteSet A) (px: P x) (py: P y),
transportf P (comm x y) (uP x y px py) = (uP y x py px))
(nlP : forall (x : FiniteSet A) (px: P x),
transportf P (nl x) (uP ∅ x eP px) = px)
(nrP : forall (x : FiniteSet A) (px: P x),
transportf P (nr x) (uP x ∅ px eP) = px)
(idemP : forall (x : A),
transportf P (idem x) (uP {|x|} {|x|} (lP x) (lP x)) = lP x).
(* Induction principle *)
Fixpoint FiniteSet_ind
(x : FiniteSet A)
: P x
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P x with
| E _ => fun _ _ _ _ _ _ => eP
| L _ _ => fun _ _ _ _ _ _ => lP _
| U _ _ _ => fun _ _ _ _ _ _ => uP _ _ (FiniteSet_ind _) (FiniteSet_ind _)
end) H assocP commP nlP nrP idemP.
End FiniteSet_induction.
Section FiniteSet_induction_prop.
Variable (A : Type)
(P : FiniteSet A -> Type)
(H : forall X : FiniteSet A, isaprop (P X))
(eP : P ∅)
(lP : forall a: A, P {|a|})
(uP : forall (x y: FiniteSet A), P x -> P y -> P (x ∪ y)).
(* Recursion principle *)
Definition FiniteSet_ind_prop (x : FiniteSet A)
: P x.
Proof.
use FiniteSet_ind.
- intros.
apply isasetaprop.
apply H.
- apply eP.
- apply lP.
- apply uP.
- intros.
apply H.
- intros.
apply H.
- intros.
apply H.
- intros.
apply H.
- intros.
apply H.
Defined.
End FiniteSet_induction_prop.
Section FiniteSet_recursion.
Variable (A : Type)
(P : Type)
(H: isaset P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x).
(* Recursion principle *)
Definition FiniteSet_rec : FiniteSet A -> P.
Proof.
use FiniteSet_ind ; try (intros ; rewrite transportf_const) ; cbn.
- intros.
apply H.
- exact e.
- exact l.
- intros x y.
exact u.
- apply assocP.
- apply commP.
- apply nlP.
- apply nrP.
- apply idemP.
Defined.
End FiniteSet_recursion.
End FiniteSet.
Lemma equality_union (A: Type) : forall (x y: FiniteSet A), (x ∪ x = x) → (y ∪ y = y) → (x ∪ y) ∪ x ∪ y = x ∪ y.
Proof.
intros x y a b.
rewrite <- assoc.
rewrite (comm y (x ∪ y)).
rewrite <- (assoc x y y).
rewrite b.
rewrite assoc.
rewrite a.
apply idpath.
Defined.
Definition def_fin_set := FiniteSet.
Definition def_fin_set_ind := FiniteSet_ind.
Definition idempotent_union (A : Type) : forall x: FiniteSet A, x ∪ x = x.
Proof.
use FiniteSet_ind_prop.
- intros a.
simpl.
apply trunc.
- simpl.
apply nl.
- simpl.
intro a.
apply idem.
- simpl.
intros x y a b.
apply equality_union.
+ exact a.
+ exact b.
Defined.
Section Extensionality.
Global Instance finiteset_member: forall A, hasMembership (FiniteSet A) A.
Proof.
intros A a.
use FiniteSet_rec.
- apply isasethProp.
- apply hfalse.
- apply (fun a' => ischoicebase (a' = a)).
- intros x y.
apply (hdisj x y).
- intros x y z.
simpl.
apply pathsinv0.
apply isassoc_hdisj.
- simpl.
intros.
rewrite iscomm_hdisj.
reflexivity.
- simpl.
intros.
apply hfalse_hdisj.
- intros.
simpl.
apply hPropUnivalence.
{apply hinhuniv.
intros.
induction X as [hG|hP].
+ exact hG.
+ induction hP.
} intros.
apply (hinhpr (ii1 X)).
- intros.
simpl.
apply hPropUnivalence.
{apply hinhuniv.
intros.
induction X as [hG|hP].
+ exact hG.
+ exact hP.
} intros.
apply (hinhpr (ii2 X)).
Defined.
Global Instance finiteset_subset: forall A, hasSubset (FiniteSet A).
Proof.
intros A Y.
use FiniteSet_rec.
- apply isasethProp.
- apply htrue.
- apply (fun a => a ∈ Y).
- intros x y.
apply (hconj x y).
- intros.
simpl.
rewrite isassoc_hconj.
reflexivity.
- intros. simpl.
rewrite iscomm_hconj.
reflexivity.
- simpl.
intros.
apply htrue_hconj.
- simpl.
intros.
rewrite iscomm_hconj.
apply htrue_hconj.
- intros.
simpl.
apply hPropUnivalence.
{intros.
apply (pr1 X).
}intros.
split.
+ exact X.
+ exact X.
Defined.
End Extensionality.
Section ext.
Context {A : Type}.
Lemma equiv_subset1_l (X Y : FiniteSet A) (H1 : Y ∪ X = X) (a : A) (Ya : a ∈ Y) : a ∈ X.
Proof.
apply (transportf (fun Z => a ∈ Z) H1 (hinhpr(ii1 Ya))).
Defined.
Lemma equiv_subset X: forall (Y : FiniteSet A), (forall (a: A), a ∈ Y → a ∈ X) → Y ∪ X = X.
Proof.
use FiniteSet_ind_prop.
- intros.
simpl.
admit.
- simpl.
intros.
apply nl.
- intro b.
intro sub.
specialize (sub b).
revert sub.
revert X.
use FiniteSet_ind_prop.
+ intros.
admit.
+ simpl.
intros.
admit.
+ intros.
simpl.
intros.
admit.
+ intros.
simpl.
intros.
admit.
- intros Y1 Y2 H1 H2 H3.
rewrite <- assoc.
rewrite (H2 (fun a HY => H3 a (hinhpr(inr HY)))).
apply (H1 (fun a HY => H3 a (hinhpr(inl HY)))).
Admitted.
Lemma eq_subset2 (X Y : FiniteSet A) : X = Y ≃ (Y ∪ X = X) × (X ∪ Y = Y).
Proof.
admit.
Admitted.
Theorem fset_ext (X Y : FiniteSet A) :
X = Y ≃ forall (a : A), a ∈ X = a ∈ Y.
Proof.
admit.
Admitted.
Lemma subset_union (X Y : FiniteSet A) :
X ⊆ Y -> X ∪ Y = Y.
Proof.
revert X.
use FiniteSet_ind_prop.
- intros.
admit.
- simpl.
intros.
apply nl.
- intros a.
revert Y.
use FiniteSet_ind_prop.
+ intros.
admit.
+ intro.
admit.
+ intros b p.
admit.
+ intros X1 X2 IH1 IH2 t.
admit.
- intros X1 X2 IH1 IH2 G.
rewrite <- assoc.
admit.
Admitted.
Lemma subset_union_l (X : FiniteSet A) :
forall Y, X ⊆ X ∪ Y.
Proof.
revert X.
use FiniteSet_ind_prop.
- intros.
admit.
- simpl.
intros.
admit.
- intros.
simpl.
admit.
- intros X1 X2 HX1 HX2 Y.
split ; unfold subset in *.
+ admit.
+ admit.
Admitted.
Search ((_ -> _ ) -> (_ -> _) -> (_ ≃ _)).
Lemma subset_union_equiv
: forall X Y : FiniteSet A, X ⊆ Y ≃ X ∪ Y = Y.
Proof.
intros X Y.
admit.
Admitted.
Lemma subset_isIn (X Y : FiniteSet A) :
X ⊆ Y ≃ forall (a : A), a ∈ X -> a ∈ Y.
Proof.
admit.
Admitted.
Lemma eq_subset (X Y : FiniteSet A) :
X = Y ≃ (Y ⊆ X × X ⊆ Y).
Proof.
admit.
Admitted.
End ext.